[1]
|
Sasaki, H. and Kohsaka, H. (2018) Current Diagnosis and Treatment of Polymyositis and Dermatomyositis. Modern Rheumatology, 28, 913-921. https://doi.org/10.1080/14397595.2018.1467257
|
[2]
|
Kamperman, R.G., van der Kooi, A.J., de Visser, M., Aronica, E. and Raaphorst, J. (2022) Pathophysiological Mechanisms and Treatment of Dermatomyositis and Immune Mediated Necrotizing Myopathies: A Focused Review. International Journal of Molecular Sciences, 23, Article No. 4301. https://doi.org/10.3390/ijms23084301
|
[3]
|
Dobloug, G.C., Svensson, J., Lundberg, I.E. and Holmqvist, M. (2018) Mortality in Idiopathic Inflammatory Myopathy: Results from a Swedish Nationwide Population-Based Cohort Study. Annals of the Rheumatic Diseases, 77, 40-47. https://doi.org/10.1136/annrheumdis-2017-211402
|
[4]
|
Hill, C.L., Zhang, Y., Sigurgeirsson, B., Pukkala, E., Mellemkjaer, L., Airio, A., et al. (2001) Frequency of Specific Cancer Types in Dermatomyositis and Polymyositis: A Population-Based Study. The Lancet, 357, 96-100. https://doi.org/10.1016/s0140-6736(00)03540-6
|
[5]
|
Oldroyd, A.G.S., Allard, A.B., Callen, J.P., Chinoy, H., Chung, L., Fiorentino, D., et al. (2021) A Systematic Review and Meta-Analysis to Inform Cancer Screening Guidelines in Idiopathic Inflammatory Myopathies. Rheumatology, 60, 2615-2628. https://doi.org/10.1093/rheumatology/keab166
|
[6]
|
Chang, L., Zhang, L., Jia, H., Nie, Z. and Zhang, L. (2020) Malignancy in Dermatomyositis: A Retrospective Paired Case-Control Study of 202 Patients from Central China. Medicine, 99, e21733. https://doi.org/10.1097/md.0000000000021733
|
[7]
|
Strunz, P. and Schmalzing, M. (2023) Paraneoplastische Syndrome in der Rheumatologie. Zeitschrift für Rheumatologie, 82, 212-219. https://doi.org/10.1007/s00393-022-01314-1
|
[8]
|
Abbott, M. and Ustoyev, Y. (2019) Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35, Article ID: 150923. https://doi.org/10.1016/j.soncn.2019.08.002
|
[9]
|
Guerra, N.L., Matas-García, A., Serra-García, L., Morgado-Carrasco, D., Padrosa, J., Aldecoa, I., et al. (2023) Dermatomyositis Unleashed by Immune Checkpoint Inhibitors. Three Additional Cases and a Review of the Literature. Autoimmunity Reviews, 22, Article ID: 103375. https://doi.org/10.1016/j.autrev.2023.103375
|
[10]
|
Birney, E. (2021) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302. https://doi.org/10.1101/cshperspect.a041302
|
[11]
|
Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265. https://doi.org/10.1681/asn.2016010098
|
[12]
|
Davey Smith, G. and Ebrahim, S. (2003) “Mendelian Randomization”: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22. https://doi.org/10.1093/ije/dyg070
|
[13]
|
McKay, J.D., Hung, R.J., Han, Y., Zong, X., Carreras-Torres, R., Christiani, D.C., et al. (2017) Large-Scale Association Analysis Identifies New Lung Cancer Susceptibility Loci and Heterogeneity in Genetic Susceptibility across Histological Subtypes. Nature Genetics, 49, 1126-1132. https://doi.org/10.1038/ng.3892
|
[14]
|
Orrù, V., Steri, M., Sidore, C., Marongiu, M., Serra, V., Olla, S., et al. (2020) Author Correction: Complex Genetic Signatures in Immune Cells Underlie Autoimmunity and Inform Therapy. Nature Genetics, 52, 1266-1266. https://doi.org/10.1038/s41588-020-00718-6
|
[15]
|
Burgess, S. and Thompson, S.G. (2011) Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. International Journal of Epidemiology, 40, 755-764. https://doi.org/10.1093/ije/dyr036
|
[16]
|
Bowden, J. and Holmes, M.V. (2019) Meta‐Analysis Andmendelianrandomization: A Review. Research Synthesis Methods, 10, 486-496. https://doi.org/10.1002/jrsm.1346
|
[17]
|
Burgess, S. and Thompson, S.G. (2017) Erratum to: Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 391-392. https://doi.org/10.1007/s10654-017-0276-5
|
[18]
|
Carter, A.R., Sanderson, E., Hammerton, G., Richmond, R.C., Davey Smith, G., Heron, J., et al. (2021) Mendelian Randomisation for Mediation Analysis: Current Methods and Challenges for Implementation. European Journal of Epidemiology, 36, 465-478. https://doi.org/10.1007/s10654-021-00757-1
|
[19]
|
Jakubaszek, M., Kwiatkowska, B. and Maślińska, M. (2015) Polymyositis and Dermatomyositis as a Risk of Developing Cancer. Rheumatology, 53, 101-105. https://doi.org/10.5114/reum.2015.51510
|
[20]
|
Zhou, B., Li, S., Xie, X., Xu, S., Li, F. and Long, L. (2023) Clinical Features and Risk Factors of Lung Cancer in Elderly Patients with Dermatomyositis. Thoracic Cancer, 14, 1171-1178. https://doi.org/10.1111/1759-7714.14849
|
[21]
|
Liu, Y., Xu, L., Wu, H., Zhao, N., Tang, Y., Li, X., et al. (2018) Characteristics and Predictors of Malignancy in Dermatomyositis: Analysis of 239 Patients from Northern China. Oncology Letters, 16, 5960-5968. https://doi.org/10.3892/ol.2018.9409
|
[22]
|
Pollard, K.M., Cauvi, D.M., Mayeux, J.M., Toomey, C.B., Peiss, A.K., Hultman, P., et al. (2021) Mechanisms of Environment-Induced Autoimmunity. Annual Review of Pharmacology and Toxicology, 61, 135-157. https://doi.org/10.1146/annurev-pharmtox-031320-111453
|
[23]
|
Gebhardt, T., Park, S.L. and Parish, I.A. (2023) Stem-Like Exhausted and Memory CD8+ T Cells in Cancer. Nature Reviews Cancer, 23, 780-798. https://doi.org/10.1038/s41568-023-00615-0
|
[24]
|
Yang, Y. (2015) Cancer Immunotherapy: Harnessing the Immune System to Battle Cancer. Journal of Clinical Investigation, 125, 3335-3337. https://doi.org/10.1172/jci83871
|
[25]
|
Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M., Robert, L., et al. (2014) PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature, 515, 568-571. https://doi.org/10.1038/nature13954
|
[26]
|
Radziszewska, A., Moulder, Z., Jury, E.C. and Ciurtin, C. (2022) CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. International Journal of Molecular Sciences, 23, Article No. 11431. https://doi.org/10.3390/ijms231911431
|
[27]
|
Lugli, E., Galletti, G., Boi, S.K. and Youngblood, B.A. (2020) Stem, Effector, and Hybrid States of Memory CD8+ T Cells. Trends in Immunology, 41, 17-28. https://doi.org/10.1016/j.it.2019.11.004
|
[28]
|
Wu, T.D., Madireddi, S., de Almeida, P.E., Banchereau, R., Chen, Y.J., Chitre, A.S., et al. (2020) Peripheral T Cell Expansion Predicts Tumour Infiltration and Clinical Response. Nature, 579, 274-278. https://doi.org/10.1038/s41586-020-2056-8
|
[29]
|
Chen, Z., Guo, M., Li, Y., Yan, K., Li, L., Shen, F., et al. (2022) Immune Profiling Identifies CD8+ T-Cell Subset Signatures as Prognostic Markers for Recurrence in Papillary Thyroid Cancer. Frontiers in Immunology, 13, Article ID: 894919. https://doi.org/10.3389/fimmu.2022.894919
|
[30]
|
Garrido-Martin, E.M., Mellows, T.W.P., Clarke, J., Ganesan, A., Wood, O., Cazaly, A., et al. (2020) M1hot Tumor-Associated Macrophages Boost Tissue-Resident Memory T Cells Infiltration and Survival in Human Lung Cancer. Journal for ImmunoTherapy of Cancer, 8, e000778. https://doi.org/10.1136/jitc-2020-000778
|
[31]
|
Liu, Y. and Sun, Z. (2021) Turning Cold Tumors into Hot Tumors by Improving T-Cell Infiltration. Theranostics, 11, 5365-5386. https://doi.org/10.7150/thno.58390
|
[32]
|
Shouse, A.N., LaPorte, K.M. and Malek, T.R. (2024) Interleukin-2 Signaling in the Regulation of T Cell Biology in Autoimmunity and Cancer. Immunity, 57, 414-428. https://doi.org/10.1016/j.immuni.2024.02.001
|
[33]
|
Costa, A., Kieffer, Y., Scholer-Dahirel, A., Pelon, F., Bourachot, B., Cardon, M., et al. (2018) Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, 33, 463-479.e10. https://doi.org/10.1016/j.ccell.2018.01.011
|
[34]
|
Peng, Y., Tao, Y., Zhang, Y., Wang, J., Yang, J. and Wang, Y. (2022) cd25: A Potential Tumor Therapeutic Target. International Journal of Cancer, 152, 1290-1303. https://doi.org/10.1002/ijc.34281
|
[35]
|
Peng, L., Chen, L., Solt, L.A., Dominical, V.M. and Shen, Z. (2023) Editorial: Immunometabolism of T Cells in Skin Infection, Autoimmunity and Cancer Biology. Frontiers in Immunology, 14, Article ID: 1237386. https://doi.org/10.3389/fimmu.2023.1237386
|
[36]
|
Sun, W., Li, W., Fu, Q., Wu, C., Lin, J., Zhu, X., et al. (2014) Functionally Distinct Subsets of CD4+ Regulatory T Cells in Patients with Laryngeal Squamous Cell Carcinoma Are Indicative of Immune Deregulation and Disease Progression. Oncology Reports, 33, 354-362. https://doi.org/10.3892/or.2014.3553
|
[37]
|
Zeng, F., Zhang, J., Jin, X., Liao, Q., Chen, Z., Luo, G., et al. (2022) Effect of CD38 on B‐Cell Function and Its Role in the Diagnosis and Treatment of B-Cell‐Related Diseases. Journal of Cellular Physiology, 237, 2796-2807. https://doi.org/10.1002/jcp.30760
|
[38]
|
Zeidler, J.D., Hogan, K.A., Agorrody, G., Peclat, T.R., Kashyap, S., Kanamori, K.S., et al. (2022) The CD38 Glycohydrolase and the NAD Sink: Implications for Pathological Conditions. American Journal of Physiology-Cell Physiology, 322, C521-C545. https://doi.org/10.1152/ajpcell.00451.2021
|
[39]
|
Chini, C.C.S., Guerrico, A.M.G., Nin, V., Camacho-Pereira, J., Escande, C., Barbosa, M.T., et al. (2014) Targeting of NAD Metabolism in Pancreatic Cancer Cells: Potential Novel Therapy for Pancreatic Tumors. Clinical Cancer Research, 20, 120-130. https://doi.org/10.1158/1078-0432.ccr-13-0150
|
[40]
|
Taniguchi, H., Chavan, S.S., Chow, A., Chan, J.M., Mukae, H., Rudin, C.M., et al. (2024) Role of CD38 in Anti-Tumor Immunity of Small Cell Lung Cancer. Frontiers in Immunology, 15, Article ID: 1348982. https://doi.org/10.3389/fimmu.2024.1348982
|
[41]
|
Chen, L., Diao, L., Yang, Y., Yi, X., Rodriguez, B.L., Li, Y., et al. (2018) CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discovery, 8, 1156-1175. https://doi.org/10.1158/2159-8290.cd-17-1033
|
[42]
|
Hogan, K.A., Chini, C.C.S. and Chini, E.N. (2019) The Multi-Faceted Ecto-Enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Frontiers in Immunology, 10, Article No. 1187. https://doi.org/10.3389/fimmu.2019.01187
|
[43]
|
Hermiston, M.L., Xu, Z. and Weiss, A. (2003) CD45: A Critical Regulator of Signaling Thresholds in Immune Cells. Annual Review of Immunology, 21, 107-137. https://doi.org/10.1146/annurev.immunol.21.120601.140946
|
[44]
|
Hoseini, S.S. and Cheung, N.K. (2017) Erratum: Acute Myeloid Leukemia Targets for Bispecific Antibodies. Blood Cancer Journal, 7, e552-e552. https://doi.org/10.1038/bcj.2017.35
|
[45]
|
Huang, A., Zhang, B., Wang, B., Zhang, F., Fan, K. and Guo, Y. (2013) Increased CD14+HLA-DR−/Low Myeloid-Derived Suppressor Cells Correlate with Extrathoracic Metastasis and Poor Response to Chemotherapy in Non-Small Cell Lung Cancer Patients. Cancer Immunology, Immunotherapy, 62, 1439-1451. https://doi.org/10.1007/s00262-013-1450-6
|
[46]
|
Sharygin, D., Koniaris, L.G., Wells, C., Zimmers, T.A. and Hamidi, T. (2023) Role of CD14 in Human Disease. Immunology, 169, 260-270. https://doi.org/10.1111/imm.13634
|
[47]
|
Waldman, R., DeWane, M.E. and Lu, J. (2020) Dermatomyositis: Diagnosis and Treatment. Journal of the American Academy of Dermatology, 82, 283-296. https://doi.org/10.1016/j.jaad.2019.05.105
|