[1]
|
Witherel, C.E., Abebayehu, D., Barker, T.H. and Spiller, K.L. (2019) Macrophage and Fibroblast Interactions in Biomaterial‐Mediated Fibrosis. Advanced Healthcare Materials, 8, e1801451. https://doi.org/10.1002/adhm.201801451
|
[2]
|
Abaricia, J.O., Shah, A.H., Chaubal, M., Hotchkiss, K.M. and Olivares-Navarrete, R. (2020) Wnt Signaling Modulates Macrophage Polarization and Is Regulated by Biomaterial Surface Properties. Biomaterials, 243, Article ID: 119920. https://doi.org/10.1016/j.biomaterials.2020.119920
|
[3]
|
Amani, H., Alipour, M., Shahriari, E. and Taboas, J.M. (2024) Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Advanced Healthcare Materials, 13, e2401253. https://doi.org/10.1002/adhm.202401253
|
[4]
|
Sica, A. and Mantovani, A. (2012) Macrophage Plasticity and Polarization: In Vivo Veritas. Journal of Clinical Investigation, 122, 787-795. https://doi.org/10.1172/jci59643
|
[5]
|
Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440. https://doi.org/10.1002/jcp.26429
|
[6]
|
Li, J., Jiang, X., Li, H., Gelinsky, M. and Gu, Z. (2021) Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 33, e2004172. https://doi.org/10.1002/adma.202004172
|
[7]
|
Rayahin, J.E. and Gemeinhart, R.A. (2017) Activation of Macrophages in Response to Biomaterials. In: Kloc, M., Ed., Macrophages: Origin, Functions and Biointervention, Springer International Publishing, 317-351. https://doi.org/10.1007/978-3-319-54090-0_13
|
[8]
|
Anderson, J.M., Rodriguez, A. and Chang, D.T. (2008) Foreign Body Reaction to Biomaterials. Seminars in Immunology, 20, 86-100. https://doi.org/10.1016/j.smim.2007.11.004
|
[9]
|
Liu, K., Dong, X., Wang, Y., Wu, X. and Dai, H. (2022) Dopamine-Modified Chitosan Hydrogel for Spinal Cord Injury. Carbohydrate Polymers, 298, Article ID: 120047. https://doi.org/10.1016/j.carbpol.2022.120047
|
[10]
|
Zhou, Z., Deng, T., Tao, M., Lin, L., Sun, L., Song, X., et al. (2023) Snail-Inspired AFG/GelMA Hydrogel Accelerates Diabetic Wound Healing via Inflammatory Cytokines Suppression and Macrophage Polarization. Biomaterials, 299, Article ID: 122141. https://doi.org/10.1016/j.biomaterials.2023.122141
|
[11]
|
Liu, X., Wan, X., Sui, B., Hu, Q., Liu, Z., Ding, T., et al. (2024) Piezoelectric Hydrogel for Treatment of Periodontitis through Bioenergetic Activation. Bioactive Materials, 35, 346-361. https://doi.org/10.1016/j.bioactmat.2024.02.011
|
[12]
|
Adams, S., Wuescher, L.M., Worth, R. and Yildirim-Ayan, E. (2019) Mechano-Immunomodulation: Mechanoresponsive Changes in Macrophage Activity and Polarization. Annals of Biomedical Engineering, 47, 2213-2231. https://doi.org/10.1007/s10439-019-02302-4
|
[13]
|
Sridharan, R., Cavanagh, B., Cameron, A.R., Kelly, D.J. and O’Brien, F.J. (2019) Material Stiffness Influences the Polarization State, Function and Migration Mode of Macrophages. Acta Biomaterialia, 89, 47-59. https://doi.org/10.1016/j.actbio.2019.02.048
|
[14]
|
Liu, X., Chen, X., Liu, Z., Gu, S., He, L., Wang, K., et al. (2020) Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomaterials Science & Engineering, 6, 3994-4004. https://doi.org/10.1021/acsbiomaterials.0c00669
|
[15]
|
Tang, Z., Wei, X., Li, T., Wu, H., Xiao, X., Hao, Y., et al. (2021) Three-Dimensionally Printed Ti2448 with Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis. Frontiers in Cell and Developmental Biology, 9, Article ID: 750948. https://doi.org/10.3389/fcell.2021.750948
|
[16]
|
Camarero‐Espinosa, S., Carlos‐Oliveira, M., Liu, H., Mano, J.F., Bouvy, N. and Moroni, L. (2021) 3D Printed Dual‐porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 11, e2101415. https://doi.org/10.1002/adhm.202101415
|
[17]
|
Hotchkiss, K.M., Reddy, G.B., Hyzy, S.L., Schwartz, Z., Boyan, B.D. and Olivares-Navarrete, R. (2016) Titanium Surface Characteristics, Including Topography and Wettability, Alter Macrophage Activation. Acta Biomaterialia, 31, 425-434. https://doi.org/10.1016/j.actbio.2015.12.003
|
[18]
|
Tang, D., Han, B., He, C., Xu, Y., Liu, Z., Wang, W., et al. (2024) Electrospun Poly‐L‐Lactic Acid Membranes Promote M2 Macrophage Polarization by Regulating the PCK2/AMPK/mTOR Signaling Pathway. Advanced Healthcare Materials, 13, e2400481. https://doi.org/10.1002/adhm.202400481
|
[19]
|
Ni, S., Zhai, D., Huan, Z., Zhang, T., Chang, J. and Wu, C. (2020) Nanosized Concave Pit/Convex Dot Microarray for Immunomodulatory Osteogenesis and Angiogenesis. Nanoscale, 12, 16474-16488. https://doi.org/10.1039/d0nr03886e
|
[20]
|
Jia, Y., Yang, W., Zhang, K., Qiu, S., Xu, J., Wang, C., et al. (2019) Nanofiber Arrangement Regulates Peripheral Nerve Regeneration through Differential Modulation of Macrophage Phenotypes. Acta Biomaterialia, 83, 291-301. https://doi.org/10.1016/j.actbio.2018.10.040
|
[21]
|
Yang, X., Gao, J., Yang, S., Wu, Y., Liu, H., Su, D., et al. (2023) Pore Size-Mediated Macrophage M1 to M2 Transition Affects Osseointegration of 3D-Printed PEEK Scaffolds. International Journal of Bioprinting, 9, Article No. 755. https://doi.org/10.18063/ijb.755
|
[22]
|
Chaudhuri, O., Cooper-White, J., Janmey, P.A., Mooney, D.J. and Shenoy, V.B. (2020) Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature, 584, 535-546. https://doi.org/10.1038/s41586-020-2612-2
|
[23]
|
Kalashnikov, N. and Moraes, C. (2023) Substrate Viscoelasticity Affects Human Macrophage Morphology and Phagocytosis. Soft Matter, 19, 2438-2445. https://doi.org/10.1039/d2sm01683d
|
[24]
|
Fang, J.Y., Yang, Z., Hu, W., Hoang, B.X. and Han, B. (2024) Viscoelastic Hydrogel Modulates Phenotype of Macrophage‐Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions. Journal of Biomedical Materials Research Part A, 113, e37814. https://doi.org/10.1002/jbm.a.37814
|
[25]
|
Liu, L., Huang, T., Xie, Z., Ye, Z., Zhang, J., Liao, H., et al. (2023) Liquid Crystalline Matrix-Induced Viscoelastic Mechanical Stimulation Modulates Activation and Phenotypes of Macrophage. Journal of Biomaterials Applications, 37, 1568-1581. https://doi.org/10.1177/08853282221136580
|
[26]
|
Zhou, Y. and Wu, Y. (2021) Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS‐induced Signals. Advanced Healthcare Materials, 11, e2102271. https://doi.org/10.1002/adhm.202102271
|
[27]
|
Atcha, H., Jairaman, A., Evans, E.L., Pathak, M.M., Cahalan, M.D. and Liu, W.F. (2021) Ion Channel Mediated Mechanotransduction in Immune Cells. Current Opinion in Solid State and Materials Science, 25, Article ID: 100951. https://doi.org/10.1016/j.cossms.2021.100951
|
[28]
|
Atcha, H., Jairaman, A., Holt, J.R., Meli, V.S., Nagalla, R.R., Veerasubramanian, P.K., et al. (2021) Mechanically Activated Ion Channel Piezo1 Modulates Macrophage Polarization and Stiffness Sensing. Nature Communications, 12, Article No. 3256. https://doi.org/10.1038/s41467-021-23482-5
|
[29]
|
Yang, Z., Zhao, Y., Zhang, X., Huang, L., Wang, K., Sun, J., et al. (2024) Nano-Mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1. ACS Nano, 18, 21221-21235. https://doi.org/10.1021/acsnano.4c04614
|
[30]
|
Song, J., Liu, K., Mei, J., Wang, L., Lin, J., Du, P., et al. (2023) Defined Surface Physicochemical Cues Inhibit M1 Polarization of Human Macrophages Using Colloidal Self-Assembled Patterns. ACS Applied Materials & Interfaces, 15, 35832-35846. https://doi.org/10.1021/acsami.3c04692
|
[31]
|
Liu, Y., An, Y., Li, G. and Wang, S. (2023) Regulatory Mechanism of Macrophage Polarization Based on Hippo Pathway. Frontiers in Immunology, 14, Article ID: 1279591. https://doi.org/10.3389/fimmu.2023.1279591
|
[32]
|
Liu, X., Yuan, Y., Wu, Y., Zhu, C., Liu, Y. and Ke, B. (2025) Extracellular Matrix Stiffness Modulates Myopia Scleral Remodeling through Integrin/F-Actin/YAP Axis. Investigative Ophthalmology & Visual Science, 66, Article No. 22. https://doi.org/10.1167/iovs.66.2.22
|
[33]
|
Meli, V.S., Atcha, H., Veerasubramanian, P.K., Nagalla, R.R., Luu, T.U., Chen, E.Y., et al. (2020) YAP-Mediated Mechanotransduction Tunes the Macrophage Inflammatory Response. Science Advances, 6, eabb8471. https://doi.org/10.1126/sciadv.abb8471
|
[34]
|
Mei, F., Guo, Y., Wang, Y., Zhou, Y., Heng, B.C., Xie, M., et al. (2024) Matrix Stiffness Regulates Macrophage Polarisation via the Piezo1‐YAP Signalling Axis. Cell Proliferation, 57, e13640. https://doi.org/10.1111/cpr.13640
|
[35]
|
Kanchanawong, P. and Calderwood, D.A. (2022) Organization, Dynamics and Mechanoregulation of Integrin-Mediated Cell-ECM Adhesions. Nature Reviews Molecular Cell Biology, 24, 142-161. https://doi.org/10.1038/s41580-022-00531-5
|
[36]
|
Liu, H., Wu, Q., Liu, S., Liu, L., He, Z., Liu, Y., et al. (2024) The Role of Integrin αvβ3 in Biphasic Calcium Phosphate Ceramics Mediated M2 Macrophage Polarization and the Resultant Osteoinduction. Biomaterials, 304, Article ID: 122406. https://doi.org/10.1016/j.biomaterials.2023.122406
|
[37]
|
Ronzier, E., Laurenson, A.J., Manickam, R., Liu, S., Saintilma, I.M., Schrock, D.C., et al. (2022) The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells, 11, Article No. 1806. https://doi.org/10.3390/cells11111806
|
[38]
|
Liu, H., Zhu, L., Dudiki, T., Gabanic, B., Good, L., Podrez, E.A., et al. (2020) Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3’s Link to the Cytoskeleton. The Journal of Immunology, 204, 1954-1967. https://doi.org/10.4049/jimmunol.1901134
|
[39]
|
Fu, Z., Hou, Y., Haugen, H.J., Chen, X., Tang, K., Fang, L., et al. (2023) TiO2 Nanostructured Implant Surface-Mediated M2c Polarization of Inflammatory Monocyte Requiring Intact Cytoskeleton Rearrangement. Journal of Nanobiotechnology, 21, Article No. 1. https://doi.org/10.1186/s12951-022-01751-9
|
[40]
|
Balamurli, G., Liew, A.Q.X., Tee, W.W. and Pervaiz, S. (2024) Interplay between Epigenetics, Senescence and Cellular Redox Metabolism in Cancer and Its Therapeutic Implications. Redox Biology, 78, Article ID: 103441. https://doi.org/10.1016/j.redox.2024.103441
|
[41]
|
Sun, H., Gao, Y., Ma, X., Deng, Y., Bi, L. and Li, L. (2024) Mechanism and Application of Feedback Loops Formed by Mechanotransduction and Histone Modifications. Genes & Diseases, 11, Article ID: 101061. https://doi.org/10.1016/j.gendis.2023.06.030
|
[42]
|
Jain, N. and Vogel, V. (2018) Spatial Confinement Downsizes the Inflammatory Response of Macrophages. Nature Materials, 17, 1134-1144. https://doi.org/10.1038/s41563-018-0190-6
|
[43]
|
Chu, Q., Han, W., He, Z., Hao, L. and Fu, X. (2023) Suppression of LPS‐Activated Inflammatory Responses and Chromosomal Histone Modifications in Macrophages by Micropattern‐Induced Nuclear Deformation. Journal of Biomedical Materials Research Part A, 112, 250-259. https://doi.org/10.1002/jbm.a.37617
|
[44]
|
Wang, Y., Groeger, S., Yong, J. and Ruf, S. (2023) Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation. International Journal of Molecular Sciences, 24, Article No. 3117. https://doi.org/10.3390/ijms24043117
|
[45]
|
He, Y., Xu, K., Li, K., Yuan, Z., Ding, Y., Chen, M., et al. (2020) Improved Osteointegration by SEW2871-Encapsulated Multilayers on Micro-Structured Titanium via Macrophages Recruitment and Immunomodulation. Applied Materials Today, 20, Article ID: 100673. https://doi.org/10.1016/j.apmt.2020.100673
|
[46]
|
Tharp, K.M., Kersten, K., Maller, O., Timblin, G.A., Stashko, C., Canale, F.P., et al. (2024) Tumor-Associated Macrophages Restrict CD8+ T Cell Function through Collagen Deposition and Metabolic Reprogramming of the Breast Cancer Microenvironment. Nature Cancer, 5, 1045-1062. https://doi.org/10.1038/s43018-024-00775-4
|