[1]
|
Wu, D. and Wang, C. (2020) MiR-155 Regulates the Proliferation of Glioma Cells through PI3K/AKT Signaling. Frontiers in Neurology, 11, Article 297. https://doi.org/10.3389/fneur.2020.00297
|
[2]
|
Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. https://doi.org/10.1093/neuonc/noab106
|
[3]
|
Liu, H., Tang, R. and Qi, R. (2019) Interleukin-4 Affects Microglial Autophagic Flux. Neural Regeneration Research, 14, 1594-1602. https://doi.org/10.4103/1673-5374.255975
|
[4]
|
Ye, F., Wang, L., Li, Y., Dong, C., Zhou, L. and Xu, J. (2024) IL4I1 in M2-Like Macrophage Promotes Glioma Progression and Is a Promising Target for Immunotherapy. Frontiers in Immunology, 14, Article 1338244. https://doi.org/10.3389/fimmu.2023.1338244
|
[5]
|
Qian, M., Wang, S., Guo, X., Wang, J., Zhang, Z., Qiu, W., et al. (2020) Hypoxic Glioma-Derived Exosomes Deliver MicroRNA-1246 to Induce M2 Macrophage Polarization by Targeting TERF2IP via the STAT3 and NF-κB Pathways. Oncogene, 39, 428-442. https://doi.org/10.1038/s41388-019-0996-y
|
[6]
|
Sadik, A., Somarribas Patterson, L.F., Öztürk, S., Mohapatra, S.R., Panitz, V., Secker, P.F., et al. (2020) IL4I1 Is a Metabolic Immune Checkpoint That Activates the AHR and Promotes Tumor Progression. Cell, 182, 1252-1270.e34. https://doi.org/10.1016/j.cell.2020.07.038
|
[7]
|
Zemba, M., Ionescu, M.A., Pîrvulescu, R.A., et al. (2023) Biomarkers of Ocular Allergy and Dry Eye Disease. Romanian Journal of Ophthalmology., 67, 250-259. https://doi.org/10.22336/rjo.2023.42
|
[8]
|
Hofer, L.S., Mariotto, S., Wurth, S., Ferrari, S., Mancinelli, C.R., Delogu, R., et al. (2019) Distinct Serum and Cerebrospinal Fluid Cytokine and Chemokine Profiles in Autoantibody-Associated Demyelinating Diseases. Multiple Sclerosis Journal—Experimental, Translational and Clinical, 5. https://doi.org/10.1177/2055217319848463
|
[9]
|
Jing, T., Liao, J., Shen, K., Chen, X., Xu, Z., Tian, W., et al. (2019) Protective Effect of Urolithin a on Cisplatin-Induced Nephrotoxicity in Mice via Modulation of Inflammation and Oxidative Stress. Food and Chemical Toxicology, 129, 108-114. https://doi.org/10.1016/j.fct.2019.04.031
|
[10]
|
Chai, N., Stachon, T., Berger, T., Li, Z., Amini, M., Suiwal, S., et al. (2024) Rose Bengal Photodynamic Therapy (RB-PDT) Modulates the Inflammatory Response in LPS-Stimulated Human Corneal Fibroblasts by Influencing NF-κB and P38 MAPK Signaling Pathways. Current Eye Research, 49, 803-814. https://doi.org/10.1080/02713683.2024.2342600
|
[11]
|
Zeitler, L. and Murray, P.J. (2023) IL4i1 and IDO1: Oxidases That Control a Tryptophan Metabolic Nexus in Cancer. Journal of Biological Chemistry, 299, Article 104827. https://doi.org/10.1016/j.jbc.2023.104827
|
[12]
|
Cousin, C., Aubatin, A., Le Gouvello, S., Apetoh, L., Castellano, F. and Molinier‐Frenkel, V. (2015) The Immunosuppressive Enzyme IL4I1 Promotes FoxP3+ Regulatory T Lymphocyte Differentiation. European Journal of Immunology, 45, 1772-1782. https://doi.org/10.1002/eji.201445000
|
[13]
|
Run, L., Tian, Z., Xu, L., Du, J., Li, N., Wang, Q., et al. (2023) Knockdown of IL4I1 Improved High Glucose-Evoked Insulin Resistance in HepG2 Cells by Alleviating Inflammation and Lipotoxicity through AHR Activation. Applied Biochemistry and Biotechnology, 195, 6694-6707. https://doi.org/10.1007/s12010-023-04399-9
|
[14]
|
Yu, J., Long, B., Li, Z., Tian, X., Li, D., Long, J., et al. (2024) Central Memory CD4+ T Cells Play a Protective Role against Immune Checkpoint Inhibitor-Associated Myocarditis. Cardiovascular Research, 120, 1442-1455. https://doi.org/10.1093/cvr/cvae133
|
[15]
|
Ramspott, J.P., Bekkat, F., Bod, L., Favier, M., Terris, B., Salomon, A., et al. (2018) Emerging Role of Il-4-Induced Gene 1 as a Prognostic Biomarker Affecting the Local T-Cell Response in Human Cutaneous Melanoma. Journal of Investigative Dermatology, 138, 2625-2634. https://doi.org/10.1016/j.jid.2018.06.178
|
[16]
|
Yan, P., Wang, J., Liu, H., Liu, X., Fu, R. and Feng, J. (2023) M1 Macrophage-Derived Exosomes Containing MiR-150 Inhibit Glioma Progression by Targeting MMP16. Cellular Signalling, 108, Article 110731. https://doi.org/10.1016/j.cellsig.2023.110731
|
[17]
|
Zhou, W., Ke, S.Q., Huang, Z., Flavahan, W., Fang, X., Paul, J., et al. (2015) Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumour-Associated Macrophages and Promotes Malignant Growth. Nature Cell Biology, 17, 170-182. https://doi.org/10.1038/ncb3090
|
[18]
|
Liu, L., Cheng, M., Zhang, T., Chen, Y., Wu, Y. and Wang, Q. (2022) Mesenchymal Stem Cell-Derived Extracellular Vesicles Prevent Glioma by Blocking M2 Polarization of Macrophages through a miR-744-5p/TGFB1-Dependent Mechanism. Cell Biology and Toxicology, 38, 649-665. https://doi.org/10.1007/s10565-021-09652-7
|
[19]
|
Wu, J., Yang, H., Cheng, J., Zhang, L., Ke, Y., Zhu, Y., et al. (2020) Knockdown of Milk‐Fat Globule EGF Factor‐8 Suppresses Glioma Progression in GL261 Glioma Cells by Repressing Microglial M2 Polarization. Journal of Cellular Physiology, 235, 8679-8690. https://doi.org/10.1002/jcp.29712
|
[20]
|
Hlaka, L., Ozturk, M., Chia, J.E., Jones, S., Pillay, S., Poswayo, S.K.L., et al. (2021) IL-4I1 Regulation of Immune Protection during Mycobacterium tuberculosis Infection. The Journal of Infectious Diseases, 224, 2170-2180. https://doi.org/10.1093/infdis/jiab558
|
[21]
|
Ermakov, M.S., Nushtaeva, A.A., Richter, V.A. and Koval, O.A. (2022) Cancer-Associated Fibroblasts and Their Role in Tumor Progression. Vavilov Journal of Genetics and Breeding, 26, 14-21. https://doi.org/10.18699/vjgb-22-03
|
[22]
|
Huo, H., Yang, S., Wu, H., Sun, Y., Zhao, R., Ye, R., et al. (2021) Brain Endothelial Cells‐Derived Extracellular Vesicles Overexpressing ECRG4 Inhibit Glioma Proliferation through Suppressing Inflammation and Angiogenesis. Journal of Tissue Engineering and Regenerative Medicine, 15, 1162-1171. Https://doi.org/10.1002/term.3244
|
[23]
|
Pandey, G. (2020) Tumor-Associated Macrophages in Solid Tumor: Friend or Foe. Annals of Translational Medicine, 8, 1027-1027. https://doi.org/10.21037/atm-2020-tam-05
|
[24]
|
胡婉明. 胶质瘤分子数据库的建立及免疫相关分子IL4I1与LGALS3对胶质瘤发生发展的作用与机制研究[D]: [博士学位论文]. 广州: 南方医科大学, 2020.
|
[25]
|
Castellano, F., Prevost-Blondel, A., Cohen, J.L. and Molinier-Frenkel, V. (2021) What Role for AHR Activation in Il4i1-Mediated Immunosuppression? OncoImmunology, 10, e1924500. https://doi.org/10.1080/2162402x.2021.1924500
|
[26]
|
Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61. https://doi.org/10.1016/j.immuni.2014.06.010
|
[27]
|
Grégoire, H., Roncali, L., Rousseau, A., Chérel, M., Delneste, Y., Jeannin, P., et al. (2020) Targeting Tumor Associated Macrophages to Overcome Conventional Treatment Resistance in Glioblastoma. Frontiers in Pharmacology, 11, Article 368. https://doi.org/10.3389/fphar.2020.00368
|