罗沙司他治疗肾性贫血的研究进展
Research Progress on Roxadustat in the Treatment of Renal Anemia
DOI: 10.12677/jcpm.2025.42247, PDF, HTML, XML,   
作者: 郑雅轩, 张欣洲*:暨南大学第二临床医学院,广东 深圳
关键词: 罗沙司他肾性贫血研究进展治疗Roxadustat Renal Anemia Research Progress Treatment
摘要: 近年来,肾性贫血的治疗取得了重大进展。罗沙司他作为全球首个获批的缺氧诱导因子脯氨酰羟化酶抑制剂(HIF-PHI),可模拟缺氧状态以稳定HIF-α亚基,从而激活内源性促红细胞生成素(EPO)的合成,并改善铁代谢。这为肾性贫血提供了一种全新的治疗策略。然而,其长期安全性以及HIF通路多靶点效应的潜在影响仍有待进一步验证。本综述旨在探讨罗沙司他治疗肾性贫血的作用机制、临床证据及其他潜在影响,从而为优化贫血管理提供见解。
Abstract: In recent years, substantial advancements have been achieved in the treatment of renal anemia. Roxadustat, as the world’s first approved hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), mimics hypoxic conditions to stabilize HIF-α subunits, thereby activating endogenous erythropoietin (EPO) synthesis and enhancing iron metabolism. This provides a novel therapeutic strategy for anemia associated with chronic kidney disease (CKD). However, further validation is required regarding its long-term safety and the potential implications of the multi-target effects of the HIF pathway. This review aims to examine the mechanism of action, clinical evidence, and other potential effects of Roxadustat in treating anemia, thereby offering insights for optimizing anemia management.
文章引用:郑雅轩, 张欣洲. 罗沙司他治疗肾性贫血的研究进展[J]. 临床个性化医学, 2025, 4(2): 815-820. https://doi.org/10.12677/jcpm.2025.42247

1. 肾性贫血的治疗现状

慢性肾脏病已然成为全球公共卫生问题中不可忽视的重大挑战之一[1]。其中,贫血是CKD的常见并发症,是CKD疾病后期导致心血管事件如心力衰竭和心脏重构的重要危险因素,同时也增加了住院、死亡以及CKD进展的风险[2] [3]。随着CKD疾病的发展,贫血的患病率也随之上升[3],流行病学显示,超过一半的CKD 4期的患者患有贫血,非透析依赖性慢性肾脏病(NDD-CKD)5期的患者贫血患病率高达75%,而几乎所有透析依赖性慢性肾脏病(DD-CKD)的患者都存在贫血情况。肾性贫血与CKD的临床不良预后及患者生活质量下降密切相关[4]

目前,肾性贫血常见的治疗方式包括补充铁剂、注射红细胞生成制剂(rythropoiesis-stimu-lating agents, ESAs)及输血。然而,传统的治疗方式带来一些隐患,如铁剂过载、心血管风险及感染等。一些患者还会出现对ESAs的低反应性,因此,当这类患者期望达到目标血红蛋白(Hb)值时往往需要注射更大剂量的ESAs [5]。而研究表明,大剂量ESAs的应用导致心血管风险和血栓事件的几率会大大增加[6]

2. 罗沙司他的问世

HIF-PHI是治疗肾性贫血的新型药物。它通过稳定HIF起作用。相关研究证明HIF信号通路可以在多个水平上促进红细胞生成,包括刺激EPO的产生,促进铁的摄取和利用,以及改变骨髓微环境以促进红细胞祖细胞成熟和增殖[7] [8]。同样,在临床实践中,慢性肾病患者对罗沙司他的治疗反应良好。罗沙司他可显著提高和稳定血红蛋白水平,并且它的耐受性良好,一般来说是安全的。与此同时,HIF及其靶基因已被证明与多种生物学和病理过程相关,包括纤维化、血管生成、细胞增殖、代谢转化、炎症和凋亡[9]-[11],在临床应用中发现其还具有降低血压、血脂、保护肾脏损伤等多个额外效应[12] [13]。我们可以推测罗沙司他可能通过多种信号通路治疗肾性贫血或慢性肾脏疾病,且罗沙司他根据稳定HIF可能会有治疗其他疾病的潜力,也可能会增加其他疾病发生的风险。

3. 罗沙司他治疗肾性贫血的机制

3.1. 对EPO生成的影响

CKD患者由于肾EPO生成细胞发生损伤,并且纤维化后失去产生EPO的能力,因此,肾源性EPO生成不足是肾性贫血的主要原因之一[8]。而在缺氧条件下,HIF信号的增加已被证实可以促进EPO的生成[14]。HIF是一种异二聚体转录因子,是由氧敏感α亚基(HIF-α)及组成性表达的β亚基(HIF-β)组成,当机体氧气充足时,HIF-α在特定的脯氨酸残基上能迅速被脯氨酰羟化酶(prolyl-hydroxylase domain, PHD)羟基化。羟基化的HIF-α通过von Hippel-Lindau (VHL)泛素化,最终被蛋白酶体降解。而当机体缺氧时,缺氧条件抑制了HIF-α的羟基化,从而抑制了HIF-α的降解,使得HIF信号下传至肾EPO生成细胞产生更多的EPO,促进Hb的生成[15]。除此之外,在Taku Nakai等人研究的小鼠模型中还证实HIF-PHI可以诱导肝脏EPO的生成,承担了部分促进红细胞生成的作用[16]。因此,罗沙司他可以通过多种信号传导通路促进EPO的生成,从而治疗肾性贫血。

3.2. 对铁代谢的影响

铁的吸收和利用是影响Hb合成的重要环节。随着CKD患者病情的进展,饮食摄入的减少、肠道吸收的障碍、铁流失的增加都加剧了铁的负平衡[17]。并且,由于CKD患者后期体内炎症状态的加重、肌酐清除率下降等因素,导致铁调素(hepcidin)的升高,而铁调素是调节铁稳态的重要激素,使得铁代谢进一步失衡[18]。一方面,临床研究证实,罗沙司他可以下调CKD患者体内铁调素的水平,改善机体的炎症状态,增加血清铁水平以及总铁结合力(Total Iron-Binding Capacity, TIBC),改善CKD患者铁的摄取、动员及利用[19]。另一方面,相比于ESAs,罗沙司他可以在减少静脉铁使用的情况下维持Hb在稳定水平,减少了铁剂过载带来的副作用并在一定程度上减少了因铁缺乏导致的反应性血小板的增加及血栓栓塞的风险[20]

3.3. 对造血干细胞的影响

造血干细胞(Hematopoietic stemcells, HSCs)是一组具有增殖、自我更新及分化为所有血细胞潜力的细胞群。HIF-1α是细胞代谢的调节因子,其在HSCs中高度表达。一些证据表明,骨髓中的原始HSCs更依赖于缺氧环境且更倾向于利用厌氧糖酵解来满足自身能量需求[21],而其中能量代谢通路正是由于HIF-1α的调节来实现的[22]。因此,HIF-1α的存在对HSCs的维持至关重要,同时也调节了机体红细胞的生成。

4. 罗沙司他的其他作用

4.1. 对血脂代谢的影响

临床研究表明,无论CKD患者既往使用他汀类药物的情况如何,罗沙司他均被证实可以降低血清总胆固醇的水平[23]。在一项与ESAs对比疗效的研究中表明,罗沙司他能够有效降低CKD患者低密度脂蛋白胆固醇(Low-Density Lipoprotein Cholesterol, LDL-C)的水平[24]。同时,在Hirai等人的研究中,能够观察到罗沙司他对血清总胆固醇(Total Cholesterol, TC)、高密度脂蛋白胆固醇(High-Density Lipoprotein Cholesterol, HDL-C)和LDL-C水平均有下降作用,并且不影响肾功能,也不会增加蛋白尿的风险[25]

4.2. 对纤维化的影响

肾脏纤维化是CKD最常见的病理表现。不同水平的HIF-1α在体内对肾纤维化有不同的影响。已有研究表明,在CKD的早期阶段,HIF-1α通过调节下游靶基因的表达,能够有效预防化学性和缺氧性损伤,进而延缓肾纤维化的进程[13]。在Zheng等人的研究中,罗沙司他能够提高CKD合并贫血患者体内HIF-1α的表达,并且能够显著降低血清纤维连接蛋白(Fibronectin, FN)以及转化生长因子-β (Transforming Growth Factor-β, TGF-β1)水平,进而有效改善身子那个纤维化[26]。在Wang等人研究的腹膜透析小鼠模型中也证实,罗沙司他可以通过抑制TGF-β/Smad信号通路保护小鼠免受腹膜纤维化的进展[27]

4.3. 对炎症的影响

近年来的研究表明,组织缺氧是多种疾病的重要特征之一,其中炎症在这些疾病的病理过程中起着关键作用。这些疾病包括CKD、动脉粥样硬化、炎症性肠病、感染性疾病、肥胖症以及癌症等[28]。在Yang等人研究的急性肾损伤(Acute Kidney Injury, AKI)小鼠模型中发现,罗沙司他能够通过其抗炎特性有效减轻早期肾缺血损伤,降低黑色素瘤缺乏因子2炎性小体的活性。除此之外,关于罗沙司他对炎症的调节作用也有不同的发现。研究表明,在混合淋巴细胞反应中,罗沙司他能够抑制细胞免疫和体液免疫反应,这可能增加患者机体感染的风险,尤其是与其他免疫抑制剂联用时。这可能与罗沙司他抑制了T细胞的增殖和Th1、Th17的分化,同时促进了Th2、Treg和Tfh的分化,最终导致免疫抑制表型的形成[29]

4.4. 对血管生成的影响

血管生成的主要调控因子为血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF),能够刺激血管生成、促进血管重塑并提高内皮细胞存活率。并且,VEGF的表达受氧分压影响,而这一过程依赖于HIF的调控[30]。目前已有研究证实,罗沙司他能够促进糖尿病小鼠皮肤伤口的愈合以及加速伤口部位的血管生成,这考虑与罗沙司他激活了HIF-VEGF通路相关[31]。除此之外,在Huang等人的研究中还发现,罗沙司他通过稳定HIF-1α和上调VEGF的表达,促进高氧暴露下的肺血管生成[32]。以上这些都表明罗沙司他在临床和治疗应用中的潜力。

4.5. 对甲状腺功能的影响

HIF在机体代谢调节中起着不可或缺的作用。部分CKD合并肾性贫血的患者存在甲状腺功能减退的表现。在一项病例报道中,我们发现使用罗沙司他可能会抑制促甲状腺激素(Thyroid-Stimulating Hormone, TSH)的释放,并降低游离三碘甲状腺原氨酸(Free Triiodothyronine, FT3)和游离四碘甲状腺原氨酸(Free Tetraiodothyronine, FT4)水平。除此之外,在一项回顾性研究中也同样证实了这点,10名肾性贫血的患者在接受罗沙司他治疗后,体内TSH及FT4水平显著下降。这可能与罗沙司他的化学结构与T3相似相关,目前还需要更多的研究来进一步说明[33]

5. 展望

罗沙司他作为一种新型的HIF-PIF,目前已广泛应用于肾性贫血的治疗中,并且在NDD-CKD及DD-CKD患者中都能取得不错的疗效。除了治疗贫血之外,罗沙司他可能还具有调节脂质代谢、减少组织和器官的纤维化、减少机体的炎症反应和促进伤口愈合等作用。目前普遍认为,HIF-PHI的获益可能大于其潜在风险。因此,HIF-PHI上市后仍需监测其长期安全性及不良反应事件,需要进一步的研究确定Hb的最佳目标及HIF-PHI的起始剂量。除此之外,虽然罗沙司他已被证实能够改善铁利用率及降低静脉铁的使用,但在临床应用中,仍需进一步探索铁剂与罗沙司他合用时的剂量以及给药的有效途径。由于HIF通路作用的靶点多、范围广,未来仍需更多的研究来进一步验证其潜在影响。

NOTES

*通讯作者。

参考文献

[1] GBD Chronic Kidney Disease Collaboration (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733.
[2] Matsushita, K., Ballew, S.H., Wang, A.Y., Kalyesubula, R., Schaeffner, E. and Agarwal, R. (2022) Epidemiology and Risk of Cardiovascular Disease in Populations with Chronic Kidney Disease. Nature Reviews Nephrology, 18, 696-707.
https://doi.org/10.1038/s41581-022-00616-6
[3] Babitt, J.L. and Lin, H.Y. (2012) Mechanisms of Anemia in CKD. Journal of the American Society of Nephrology, 23, 1631-1634.
https://doi.org/10.1681/asn.2011111078
[4] Fishbane, S. and Coyne, D.W. (2020) How I Treat Renal Anemia. Blood, 136, 783-789.
https://doi.org/10.1182/blood.2019004330
[5] Weir, M.R. (2021) Managing Anemia across the Stages of Kidney Disease in Those Hyporesponsive to Erythropoiesis-Stimulating Agents. American Journal of Nephrology, 52, 450-466.
https://doi.org/10.1159/000516901
[6] Gupta, N. and Wish, J.B. (2017) Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: A Potential New Treatment for Anemia in Patients with CKD. American Journal of Kidney Diseases, 69, 815-826.
https://doi.org/10.1053/j.ajkd.2016.12.011
[7] Abrass, C.K., Hansen, K., Popov, V. and Denisenko, O. (2011) Alterations in Chromatin Are Associated with Increases in Collagen III Expression in Aging Nephropathy. American Journal of Physiology-Renal Physiology, 300, F531-F539.
https://doi.org/10.1152/ajprenal.00237.2010
[8] Souma, T., Nezu, M., Nakano, D., Yamazaki, S., Hirano, I., Sekine, H., et al. (2016) Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling. Journal of the American Society of Nephrology, 27, 428-438.
https://doi.org/10.1681/asn.2014121184
[9] Kakinuma, Y., Miyauchi, T., Yuki, K., Murakoshi, N., Goto, K. and Yamaguchi, I. (2001) Novel Molecular Mechanism of Increased Myocardial Endothelin-1 Expression in the Failing Heart Involving the Transcriptional Factor Hypoxia-Inducible Factor-1α Induced for Impaired Myocardial Energy Metabolism. Circulation, 103, 2387-2394.
https://doi.org/10.1161/01.cir.103.19.2387
[10] Ban, H.S., Uto, Y. and Nakamura, H. (2021) Hypoxia-Inducible Factor (HIF) Inhibitors: A Patent Survey (2016-2020). Expert Opinion on Therapeutic Patents, 31, 387-397.
https://doi.org/10.1080/13543776.2021.1874345
[11] Vincent, K.A., Shyu, K., Luo, Y., Magner, M., Tio, R.A., Jiang, C., et al. (2000) Angiogenesis Is Induced in a Rabbit Model of Hindlimb Ischemia by Naked DNA Encoding an Hif-1α/vp16 Hybrid Transcription Factor. Circulation, 102, 2255-2261.
https://doi.org/10.1161/01.cir.102.18.2255
[12] Chen, N., Hao, C., Peng, X., Lin, H., Yin, A., Hao, L., et al. (2019) Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. New England Journal of Medicine, 381, 1001-1010.
https://doi.org/10.1056/nejmoa1813599
[13] Del Vecchio, L. and Locatelli, F. (2018) Investigational Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHI) for the Treatment of Anemia Associated with Chronic Kidney Disease. Expert Opinion on Investigational Drugs, 27, 613-621.
https://doi.org/10.1080/13543784.2018.1493455
[14] Jatho, A., Zieseniss, A., Brechtel-Curth, K., Guo, J., Böker, K.O., Salinas, G., et al. (2022) The HIFα-Stabilizing Drug Roxadustat Increases the Number of Renal Epo-Producing Sca-1+ Cells. Cells, 11, Article No. 753.
https://doi.org/10.3390/cells11040753
[15] Rabinowitz, M.H. (2013) Inhibition of Hypoxia-Inducible Factor Prolyl Hydroxylase Domain Oxygen Sensors: Tricking the Body into Mounting Orchestrated Survival and Repair Responses. Journal of Medicinal Chemistry, 56, 9369-9402.
https://doi.org/10.1021/jm400386j
[16] Nakai, T., Iwamura, Y., Kato, K., Hirano, I., Matsumoto, Y., Tomioka, Y., et al. (2023) Drugs Activating Hypoxia-Inducible Factors Correct Erythropoiesis and Hepcidin Levels via Renal EPO Induction in Mice. Blood Advances, 7, 3793-3805.
https://doi.org/10.1182/bloodadvances.2023009798
[17] Macdougall, I.C., Bircher, A.J., Eckardt, K.-U., et al. (2016) Iron Management in Chronic Kidney Disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney International, 89, 28-39.
[18] van der Weerd, N.C., et al. (2015) Hepcidin in Chronic Kidney Disease: Not an Anaemia Management Tool, but Promising as a Cardiovascular Biomarker. The Netherlands Journal of Medicine, 73, 108-118.
[19] Fishbane, S., El-Shahawy, M.A., Pecoits-Filho, R., Van, B.P., Houser, M.T., Frison, L., et al. (2021) Roxadustat for Treating Anemia in Patients with CKD Not on Dialysis: Results from a Randomized Phase 3 Study. Journal of the American Society of Nephrology, 32, 737-755.
https://doi.org/10.1681/asn.2020081150
[20] Provenzano, R., Besarab, A., Sun, C.H., Diamond, S.A., Durham, J.H., Cangiano, J.L., et al. (2016) Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat (FG-4592) for the Treatment of Anemia in Patients with CKD. Clinical Journal of the American Society of Nephrology, 11, 982-991.
https://doi.org/10.2215/cjn.06890615
[21] Eliasson, P. and Jönsson, J. (2009) The Hematopoietic Stem Cell Niche: Low in Oxygen but a Nice Place to Be. Journal of Cellular Physiology, 222, 17-22.
https://doi.org/10.1002/jcp.21908
[22] Ke, Q. and Costa, M. (2006) Hypoxia-Inducible Factor-1 (HIF-1). Molecular Pharmacology, 70, 1469-1480.
https://doi.org/10.1124/mol.106.027029
[23] Takada, A., Shibata, T., Shiga, T., Ugawa, T., Komatsu, K. and Akizawa, T. (2022) Pharmacokinetic/Pharmacodynamic Modeling of Roxadustat’s Effect on LDL Cholesterol in Patients in Japan with Dialysis-Dependent Chronic Kidney Disease and Anemia. Drug Metabolism and Pharmacokinetics, 46, Article ID: 100461.
https://doi.org/10.1016/j.dmpk.2022.100461
[24] Fishbane, S., Pollock, C.A., El-Shahawy, M., Escudero, E.T., Rastogi, A., Van, B.P., et al. (2022) Roxadustat versus Epoetin Alfa for Treating Anemia in Patients with Chronic Kidney Disease on Dialysis: Results from the Randomized Phase 3 ROCKIES Study. Journal of the American Society of Nephrology, 33, 850-866.
https://doi.org/10.1681/asn.2020111638
[25] Hirai, K., Kaneko, S., Minato, S., Yanai, K., Hirata, M., Kitano, T., et al. (2023) Effects of Roxadustat on Anemia, Iron Metabolism, and Lipid Metabolism in Patients with Non-Dialysis Chronic Kidney Disease. Frontiers in Medicine, 10, Article ID: 1071342.
https://doi.org/10.3389/fmed.2023.1071342
[26] Zheng, F., Zhang, P., Zhao, M., Wang, J., Xu, X., Zhang, C., et al. (2022) Effect of Roxadustat on Factors Associated with Renal Fibrosis and Efficacy. Computational and Mathematical Methods in Medicine, 2022, Article ID: 4764254.
https://doi.org/10.1155/2022/4764254
[27] Wang, L., Fan, J., Yang, T., Shen, J., Wang, L. and Ge, W. (2024) Investigating the Therapeutic Effects and Mechanisms of Roxadustat on Peritoneal Fibrosis Based on the TGF-β/Smad Pathway. Biochemical and Biophysical Research Communications, 693, Article ID: 149387.
https://doi.org/10.1016/j.bbrc.2023.149387
[28] Eltzschig, H.K. and Carmeliet, P. (2011) Hypoxia and Inflammation. New England Journal of Medicine, 364, 656-665.
https://doi.org/10.1056/nejmra0910283
[29] Eleftheriadis, T., Pissas, G., Mavropoulos, A., Nikolaou, E., Filippidis, G., Liakopoulos, V., et al. (2020) In Mixed Lymphocyte Reaction, the Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitor Roxadustat Suppresses Cellular and Humoral Alloimmunity. Archivum Immunologiae et Therapiae Experimentalis, 68, Article No. 31.
https://doi.org/10.1007/s00005-020-00596-0
[30] Semenza, G.L. (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148, 399-408.
https://doi.org/10.1016/j.cell.2012.01.021
[31] Zhu, Y., Wang, Y., Jia, Y., Xu, J. and Chai, Y. (2019) Roxadustat Promotes Angiogenesis through HIF-1α/VEGF/VEGFR2 Signaling and Accelerates Cutaneous Wound Healing in Diabetic Rats. Wound Repair and Regeneration, 27, 324-334.
https://doi.org/10.1111/wrr.12708
[32] Huang, L., Chou, H. and Chen, C. (2021) Roxadustat Attenuates Hyperoxia-Induced Lung Injury by Upregulating Proangiogenic Factors in Newborn Mice. Pediatrics & Neonatology, 62, 369-378.
https://doi.org/10.1016/j.pedneo.2021.03.012
[33] Haraguchi, T., Hamamoto, Y., Kuwata, H., Yamazaki, Y., Nakatani, S., Hyo, T., et al. (2023) Effect of Roxadustat on Thyroid Function in Patients with Renal Anemia. The Journal of Clinical Endocrinology & Metabolism, 109, e69-e75.
https://doi.org/10.1210/clinem/dgad483