[1]
|
GBD Chronic Kidney Disease Collaboration (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733.
|
[2]
|
Matsushita, K., Ballew, S.H., Wang, A.Y., Kalyesubula, R., Schaeffner, E. and Agarwal, R. (2022) Epidemiology and Risk of Cardiovascular Disease in Populations with Chronic Kidney Disease. Nature Reviews Nephrology, 18, 696-707. https://doi.org/10.1038/s41581-022-00616-6
|
[3]
|
Babitt, J.L. and Lin, H.Y. (2012) Mechanisms of Anemia in CKD. Journal of the American Society of Nephrology, 23, 1631-1634. https://doi.org/10.1681/asn.2011111078
|
[4]
|
Fishbane, S. and Coyne, D.W. (2020) How I Treat Renal Anemia. Blood, 136, 783-789. https://doi.org/10.1182/blood.2019004330
|
[5]
|
Weir, M.R. (2021) Managing Anemia across the Stages of Kidney Disease in Those Hyporesponsive to Erythropoiesis-Stimulating Agents. American Journal of Nephrology, 52, 450-466. https://doi.org/10.1159/000516901
|
[6]
|
Gupta, N. and Wish, J.B. (2017) Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: A Potential New Treatment for Anemia in Patients with CKD. American Journal of Kidney Diseases, 69, 815-826. https://doi.org/10.1053/j.ajkd.2016.12.011
|
[7]
|
Abrass, C.K., Hansen, K., Popov, V. and Denisenko, O. (2011) Alterations in Chromatin Are Associated with Increases in Collagen III Expression in Aging Nephropathy. American Journal of Physiology-Renal Physiology, 300, F531-F539. https://doi.org/10.1152/ajprenal.00237.2010
|
[8]
|
Souma, T., Nezu, M., Nakano, D., Yamazaki, S., Hirano, I., Sekine, H., et al. (2016) Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling. Journal of the American Society of Nephrology, 27, 428-438. https://doi.org/10.1681/asn.2014121184
|
[9]
|
Kakinuma, Y., Miyauchi, T., Yuki, K., Murakoshi, N., Goto, K. and Yamaguchi, I. (2001) Novel Molecular Mechanism of Increased Myocardial Endothelin-1 Expression in the Failing Heart Involving the Transcriptional Factor Hypoxia-Inducible Factor-1α Induced for Impaired Myocardial Energy Metabolism. Circulation, 103, 2387-2394. https://doi.org/10.1161/01.cir.103.19.2387
|
[10]
|
Ban, H.S., Uto, Y. and Nakamura, H. (2021) Hypoxia-Inducible Factor (HIF) Inhibitors: A Patent Survey (2016-2020). Expert Opinion on Therapeutic Patents, 31, 387-397. https://doi.org/10.1080/13543776.2021.1874345
|
[11]
|
Vincent, K.A., Shyu, K., Luo, Y., Magner, M., Tio, R.A., Jiang, C., et al. (2000) Angiogenesis Is Induced in a Rabbit Model of Hindlimb Ischemia by Naked DNA Encoding an Hif-1α/vp16 Hybrid Transcription Factor. Circulation, 102, 2255-2261. https://doi.org/10.1161/01.cir.102.18.2255
|
[12]
|
Chen, N., Hao, C., Peng, X., Lin, H., Yin, A., Hao, L., et al. (2019) Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. New England Journal of Medicine, 381, 1001-1010. https://doi.org/10.1056/nejmoa1813599
|
[13]
|
Del Vecchio, L. and Locatelli, F. (2018) Investigational Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors (HIF-PHI) for the Treatment of Anemia Associated with Chronic Kidney Disease. Expert Opinion on Investigational Drugs, 27, 613-621. https://doi.org/10.1080/13543784.2018.1493455
|
[14]
|
Jatho, A., Zieseniss, A., Brechtel-Curth, K., Guo, J., Böker, K.O., Salinas, G., et al. (2022) The HIFα-Stabilizing Drug Roxadustat Increases the Number of Renal Epo-Producing Sca-1+ Cells. Cells, 11, Article No. 753. https://doi.org/10.3390/cells11040753
|
[15]
|
Rabinowitz, M.H. (2013) Inhibition of Hypoxia-Inducible Factor Prolyl Hydroxylase Domain Oxygen Sensors: Tricking the Body into Mounting Orchestrated Survival and Repair Responses. Journal of Medicinal Chemistry, 56, 9369-9402. https://doi.org/10.1021/jm400386j
|
[16]
|
Nakai, T., Iwamura, Y., Kato, K., Hirano, I., Matsumoto, Y., Tomioka, Y., et al. (2023) Drugs Activating Hypoxia-Inducible Factors Correct Erythropoiesis and Hepcidin Levels via Renal EPO Induction in Mice. Blood Advances, 7, 3793-3805. https://doi.org/10.1182/bloodadvances.2023009798
|
[17]
|
Macdougall, I.C., Bircher, A.J., Eckardt, K.-U., et al. (2016) Iron Management in Chronic Kidney Disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney International, 89, 28-39.
|
[18]
|
van der Weerd, N.C., et al. (2015) Hepcidin in Chronic Kidney Disease: Not an Anaemia Management Tool, but Promising as a Cardiovascular Biomarker. The Netherlands Journal of Medicine, 73, 108-118.
|
[19]
|
Fishbane, S., El-Shahawy, M.A., Pecoits-Filho, R., Van, B.P., Houser, M.T., Frison, L., et al. (2021) Roxadustat for Treating Anemia in Patients with CKD Not on Dialysis: Results from a Randomized Phase 3 Study. Journal of the American Society of Nephrology, 32, 737-755. https://doi.org/10.1681/asn.2020081150
|
[20]
|
Provenzano, R., Besarab, A., Sun, C.H., Diamond, S.A., Durham, J.H., Cangiano, J.L., et al. (2016) Oral Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat (FG-4592) for the Treatment of Anemia in Patients with CKD. Clinical Journal of the American Society of Nephrology, 11, 982-991. https://doi.org/10.2215/cjn.06890615
|
[21]
|
Eliasson, P. and Jönsson, J. (2009) The Hematopoietic Stem Cell Niche: Low in Oxygen but a Nice Place to Be. Journal of Cellular Physiology, 222, 17-22. https://doi.org/10.1002/jcp.21908
|
[22]
|
Ke, Q. and Costa, M. (2006) Hypoxia-Inducible Factor-1 (HIF-1). Molecular Pharmacology, 70, 1469-1480. https://doi.org/10.1124/mol.106.027029
|
[23]
|
Takada, A., Shibata, T., Shiga, T., Ugawa, T., Komatsu, K. and Akizawa, T. (2022) Pharmacokinetic/Pharmacodynamic Modeling of Roxadustat’s Effect on LDL Cholesterol in Patients in Japan with Dialysis-Dependent Chronic Kidney Disease and Anemia. Drug Metabolism and Pharmacokinetics, 46, Article ID: 100461. https://doi.org/10.1016/j.dmpk.2022.100461
|
[24]
|
Fishbane, S., Pollock, C.A., El-Shahawy, M., Escudero, E.T., Rastogi, A., Van, B.P., et al. (2022) Roxadustat versus Epoetin Alfa for Treating Anemia in Patients with Chronic Kidney Disease on Dialysis: Results from the Randomized Phase 3 ROCKIES Study. Journal of the American Society of Nephrology, 33, 850-866. https://doi.org/10.1681/asn.2020111638
|
[25]
|
Hirai, K., Kaneko, S., Minato, S., Yanai, K., Hirata, M., Kitano, T., et al. (2023) Effects of Roxadustat on Anemia, Iron Metabolism, and Lipid Metabolism in Patients with Non-Dialysis Chronic Kidney Disease. Frontiers in Medicine, 10, Article ID: 1071342. https://doi.org/10.3389/fmed.2023.1071342
|
[26]
|
Zheng, F., Zhang, P., Zhao, M., Wang, J., Xu, X., Zhang, C., et al. (2022) Effect of Roxadustat on Factors Associated with Renal Fibrosis and Efficacy. Computational and Mathematical Methods in Medicine, 2022, Article ID: 4764254. https://doi.org/10.1155/2022/4764254
|
[27]
|
Wang, L., Fan, J., Yang, T., Shen, J., Wang, L. and Ge, W. (2024) Investigating the Therapeutic Effects and Mechanisms of Roxadustat on Peritoneal Fibrosis Based on the TGF-β/Smad Pathway. Biochemical and Biophysical Research Communications, 693, Article ID: 149387. https://doi.org/10.1016/j.bbrc.2023.149387
|
[28]
|
Eltzschig, H.K. and Carmeliet, P. (2011) Hypoxia and Inflammation. New England Journal of Medicine, 364, 656-665. https://doi.org/10.1056/nejmra0910283
|
[29]
|
Eleftheriadis, T., Pissas, G., Mavropoulos, A., Nikolaou, E., Filippidis, G., Liakopoulos, V., et al. (2020) In Mixed Lymphocyte Reaction, the Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitor Roxadustat Suppresses Cellular and Humoral Alloimmunity. Archivum Immunologiae et Therapiae Experimentalis, 68, Article No. 31. https://doi.org/10.1007/s00005-020-00596-0
|
[30]
|
Semenza, G.L. (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021
|
[31]
|
Zhu, Y., Wang, Y., Jia, Y., Xu, J. and Chai, Y. (2019) Roxadustat Promotes Angiogenesis through HIF-1α/VEGF/VEGFR2 Signaling and Accelerates Cutaneous Wound Healing in Diabetic Rats. Wound Repair and Regeneration, 27, 324-334. https://doi.org/10.1111/wrr.12708
|
[32]
|
Huang, L., Chou, H. and Chen, C. (2021) Roxadustat Attenuates Hyperoxia-Induced Lung Injury by Upregulating Proangiogenic Factors in Newborn Mice. Pediatrics & Neonatology, 62, 369-378. https://doi.org/10.1016/j.pedneo.2021.03.012
|
[33]
|
Haraguchi, T., Hamamoto, Y., Kuwata, H., Yamazaki, Y., Nakatani, S., Hyo, T., et al. (2023) Effect of Roxadustat on Thyroid Function in Patients with Renal Anemia. The Journal of Clinical Endocrinology & Metabolism, 109, e69-e75. https://doi.org/10.1210/clinem/dgad483
|