基于病理分级的代谢相关脂肪性肝病严重程度对袖状胃切除术后疗效的影响
Impact of Severity of Metabolism-Related Fatty Liver Disease Based on Pathologic Grading on Outcomes after Sleeve Gastrectomy
DOI: 10.12677/jcpm.2025.42249, PDF, HTML, XML,   
作者: 曲云飞:山东第一医科大学(山东省医学科学院)研究生部,山东 济南;胡三元*:山东第一医科大学第一附属医院暨山东省千佛山医院普外中心,山东 济南
关键词: 肥胖代谢相关脂肪性肝病袖状胃切除术Obesity Metabolic Dysfunction-Associated Steatotic Liver Disease Sleeve Gastrectomy
摘要: 随着肥胖及其合并症的全球大流行,SG手术因其安全有效,操作简单而成为主要的减重手术之一。代谢性脂肪性肝病(MASLD)是与代谢功能障碍相关的慢性肝病,MASLD分为四个等级:无MASLD、轻度、中度和重度脂肪变性。随着全球肥胖和代谢疾病的流行,MASLD的患病率上升,尤其在肥胖和2型糖尿病患者中较为常见。研究表明,袖状胃切除术(SG)对MASLD患者有效,但术后体重减轻效果因病情严重程度而异。重度MASLD患者通常因胰岛素抵抗、肝脏炎症和代谢紊乱,术后体重减轻较慢且效果差。慢性炎症和肝纤维化进一步加剧这一问题。精准的术前评估和个体化治疗策略对优化术后效果至关重要。未来的研究应深入探讨MASLD分级与SG术后疗效的关系,优化治疗方案,提高长期代谢获益。
Abstract: With the global epidemic of obesity and its complications, SG surgery has become one of the main weight-loss operations because of its safety, effectiveness and simple operation. Metabolic fatty liver disease (MASLD) is a chronic liver disease related to metabolic dysfunction. MASLD is divided into four grades: no MASLD, mild, moderate and severe steatosis. With the prevalence of obesity and metabolic diseases in the world, the prevalence of MASLD is increasing, especially in obese and type 2 diabetic patients. Studies have shown that sleeve gastrectomy (SG) is effective for patients with MASLD, but the effect of weight loss after operation varies with the severity of the disease. Patients with severe MASLD usually lose weight slowly after operation due to insulin resistance, liver inflammation and metabolic disorder, and the effect is poor. Chronic inflammation and liver fibrosis further aggravate this problem. Accurate preoperative evaluation and individualized treatment strategy are very important to optimize postoperative results. Future research should further explore the relationship between MASLD grading and postoperative curative effect of SG, optimize the treatment plan and improve the long-term metabolic benefit.
文章引用:曲云飞, 胡三元. 基于病理分级的代谢相关脂肪性肝病严重程度对袖状胃切除术后疗效的影响[J]. 临床个性化医学, 2025, 4(2): 826-834. https://doi.org/10.12677/jcpm.2025.42249

1. 引言

代谢相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD)是一种以肝细胞脂肪变性为特征的代谢相关慢性肝病,其定义由2023年国际共识更新确立,取代了既往“非酒精性脂肪性肝病(NAFLD)”的命名,以更精准地反映其与代谢功能障碍的紧密关联[1]。MASLD的病理分级基于肝细胞脂肪变性比例,分为无MASLD (脂肪变性<5%);轻度(5%~33%);中度(34%~66%)及重度(脂肪变性 > 66%)四组。值得注意的是,约20%~40%的MASLD患者可能进展为代谢功能障碍相关脂肪性肝炎(MASH),其特征性病理改变包括肝细胞气球样变、小叶炎症及纤维化,最终增加肝硬化及肝细胞癌(HCC)风险[2]-[4]

在全球肥胖大流行的背景下,MASLD在全球范围内的发病率持续上升。流行病学数据显示,MASLD在肥胖个体中的患病率可高达50%~90% [5]-[8]。肥胖不仅是MASLD的主要危险因素,还与2型糖尿病(T2DM)、胰岛素抵抗(IR)、高血压和血脂紊乱等代谢异常密切相关,这些因素在MASLD进展过程中起关键作用[6] [9]。此外,MASLD还与心血管疾病(CVD)高度相关,研究表明MASLD患者的心血管事件发生率显著高于无MASLD个体,即使在调整了传统的心血管危险因素后,这种风险仍然存在[10] [11]。研究表明,MASLD不仅影响肝脏,还通过改变全身能量代谢和炎症状态,对肥胖相关疾病的进展产生重要影响[12]-[15]。因此,MASLD的管理应当纳入整体代谢健康的考量,以优化肥胖及其并发症的治疗策略。

基于最新的系统性综述和长期随访研究,生活方式干预在BMI ≥ 35 kg/m2或BMI ≥ 30 kg/m2伴代谢合并症患者中的长期减重效果确实不佳,而代谢减重手术在长期体重维持、代谢改善和糖尿病缓解等方面均显著优于生活方式干预。这一结论已被多个前瞻性随机对照试验及大型回顾性研究所验证[16]-[18]。此外,与RYGB相比,SG具有手术风险更低、术后并发症较少的优势,因此成为许多肥胖合并代谢疾病患者的首选手术方案[19] [20]

尽管SG对肥胖及其相关代谢疾病具有显著疗效,但在临床工作中我们发现术后个体间的体重减轻效果仍然存在较大差异[21];且目前针对术前MAFLD对SG术后减重效果存在影响的研究非常少,仅有少量相关研究报道。2023年Abu-Rumaileh M等人的研究指出SG术后两年内MASLD组体重减轻显著低于非MASLD组[22]。2024年11月发表的一项最新的meta分析观察到与没有MASLD的患者相比,先前存在MASLD的个体的总体重减轻和超重减轻明显减少,且MASH患者在SG术后1年的体重减轻效果(%EWL)显著低于无MASLD和轻度MASLD患者,提示MASLD可能影响手术后的体重管理[23]。但围绕肝脏脂肪肝变性程度分组的研究暂无相关报道。

对于MASLD影响SG术后体重减轻的可能猜测是:重度的肝脏脂肪变性可能导致更加严重的肝脏和外周组织(如肌肉、脂肪)的IR;同时,重度肝脏脂肪变性常伴随较为严重的肝脏炎症和氧化应激,导致炎症因子(如TNF-α、IL-6)的释放及炎症信号的激活,进一步加剧脂肪组织的胰岛素抵抗和功能异常,形成肝脏脂肪堆积-IR-全身代谢紊乱的恶性循环,其次,肝脏脂肪变性可能导致线粒体功能障碍,降低基础代谢率和脂肪氧化效率[24]-[27];最后,肠道–肝脏轴紊乱–中枢系统调控异常的交互作用,肝脏作为代谢中枢的功能失调是其核心驱动力[28] [29]。因此,明确MASLD患者的肝脏脂肪变性程度与SG术后体重减轻的关系,对于优化术前评估和制定个体化治疗方案具有重要的临床意义,这有助于预测术后效果并采取相应的管理策略。

2. MASLD与全身代谢紊乱

2.1. 病理分级

MASLD的分级主要依据肝细胞脂肪变性的程度,通常采用病理学评分体系,如Brunt分级和Kleiner分级。根据肝细胞内脂肪累积的比例,可将MASLD分为以下四个等级:无MASLD (脂肪变性 < 5%):无明显肝细胞脂肪浸润。轻度脂肪变性(5%~33%):肝小叶内部分肝细胞含有脂滴,累积范围较小。中度脂肪变性(34%~66%):脂肪累积在较大范围的肝细胞中,可能伴有轻微的肝脏炎症反应。重度脂肪变性组(>66%):超过三分之二的肝细胞存在明显的脂肪浸润,可能合并炎症及纤维化。这一分级系统广泛应用于临床研究和病理评估,以指导MASLD患者的分层管理和预后判断[30] [31]

2.2. MASLD与全身代谢紊乱密切相关

MASLD不仅是单纯的肝脏疾病,还与全身代谢异常密切相关。以下几种代谢因素在MASLD的不同分级中呈现不同的病理变化。

2.2.1. 胰岛素抵抗

胰岛素抵抗(Insulin resistance, IR)是MASLD发展的核心机制之一[32]。研究表明,MASLD患者的胰岛素抵抗程度随着肝脂肪变性加重而显著增加,HOMA-IR (胰岛素抵抗指数)在中重度MASLD患者中显著高于轻度或无MASLD组。胰岛素抵抗可促进肝脏异常脂质积累,主要机制包括:促进肝脏葡萄糖生成,抑制肝细胞脂肪酸氧化。增加脂肪组织的脂解作用,使更多游离脂肪酸(FFA)进入肝脏,促进肝脂肪变性,减少胰岛素介导的肝糖原合成,加重脂肪沉积;此外,胰岛素抵抗还通过激活炎症信号通路(如NF-κB通路)和氧化应激通路,促进肝脏炎症反应和氧化损伤,形成恶性循环,加剧MASLD的病理进程[26] [27] [33]

2.2.2. II型糖尿病(T2DM)

MASLD与T2DM呈现双向关系,MASLD患者发生T2DM的风险是无MASLD个体的2~3倍[34]。此外,T2DM可加速MASLD进展至MASH甚至肝纤维化。研究显示,在MASLD患者中,伴T2DM者比无T2DM者的肝脂肪变性程度更严重,且术后体重减轻(%EWL)相对较低,提示T2DM可能影响代谢手术的疗效[4] [35]

2.2.3. 血脂异常

MASLD患者普遍存在血脂紊乱,尤其是甘油三酯(TG)升高、高密度脂蛋白胆固醇(HDL-C)降低。中重度MASLD患者的血浆甘油三酯水平较轻度MASLD和无MASLD组更高。这一现象可能与:肝脏极低密度脂蛋白(VLDL)合成增加,导致循环系统TG水平升高。HDL-C清除率增加,影响胆固醇的逆向转运,进而加重肝脂肪沉积[36] [37]。此外,这一过程与胰岛素抵抗(IR)密切相关,IR通过激活SREBP-1c通路促进VLDL的合成和分泌[32]

2.2.4. 炎症水平

慢性低度炎症在MASLD发展过程中起关键作用。MASLD患者的C反应蛋白(CRP)、白细胞介素-6 (IL-6)和肿瘤坏死因子-α (TNF-α)水平显著升高,且在中重度MASLD患者中炎症水平更高。这些炎症因子不仅加重肝细胞损伤,还可能影响胃肠道激素(GLP-1, PYY)的调控[38],降低袖状胃切除术的长期代谢效应[39]

3. SG对MASLD患者的影响

目前,袖状胃切除术(SG)已成为全球范围内最常实施的减重代谢手术,其占比已超过50%,超过了Roux-en-Y胃旁路手术(RYGB) [16]

3.1. SG手术机制与体重减轻

SG是一种限制性手术,其主要作用机制包括减少胃容量、改变胃肠激素(如GLP-1、PYY、Ghrelin)的分泌模式[38],以及改善胰岛素敏感性及调节能量代谢,实现体重减轻和代谢改善[40] [41]。已有大量研究证实,SG能显著改善T2DM、高血压、血脂异常及MASLD,并可使部分MASH患者的肝脏病理学指标得到逆转[18] [19] [42] [43]

3.1.1. 限制性手术的体重减轻原理

SG通过切除大部分胃体,减少胃容量约三分之二,从而限制食物摄入量[20]。此外,SG对胃肠激素的调节作用是其减重和代谢改善的关键机制之一:如SG后,胰高血糖素样肽-1 (GLP-1)分泌显著增加,GLP-1能促进胰岛素分泌、抑制胃排空,并增强饱腹感。肽YY (PYY)是一种抑制食欲的激素,术后其水平升高,可减少食物摄入量。生长素释放肽(Ghrelin)由胃底部产生,是已知的主要饥饿激素。SG术后,由于胃底的切除,Ghrelin水平显著降低,从而减少饥饿感[38]

3.1.2. 代谢改善效应

SG不仅通过减少食物摄入促进体重减轻,还能改善胰岛素敏感性和脂肪组织功能:研究表明,SG术后,胰岛素抵抗指数(HOMA-IR)显著下降,表明胰岛素敏感性增强;SG减少了内脏脂肪组织的积累,从而降低了脂肪因子(如TNF-α、IL-6)的分泌,这些因子与MASLD进展密切相关;SG术后,肝糖异生能力下降,同时肝脏糖原储存增加,表明SG可改善肝脏糖代谢异常[44]-[46]

3.2. SG对MASLD的影响

近年来,多项研究通过影像学、病理学和代谢指标评估SG对MASLD的影响,结果显示SG可显著改善肝脂肪变性,并在一定程度上逆转肝纤维化,2022年JAMA杂志报道的一篇基于肝活检的研究发现,SG术后84% (95% CI: 73%~92%)的NASH消退,70%的纤维化分期降低(95% CI: 57%~82%),56%的纤维化消失(95% CI: 42%~69%),肝脏疾病进展率下降88%;同时,术后肥胖、NASH相关的主要心血管不良事件(MACE)发生率降至最低[11]。且术后体重减轻幅度越大,肝纤维化逆转的可能性越高,但部分研究显示,即使术后体重减轻有限,SG仍然能够改善肝纤维化[47]

4. MASLD对SG手术的影响

4.1. 术前MASLD严重程度及有无MASH和纤维化对SG术后疗效的影响

研究发现,术前MASLD的严重程度,以及术前有无MASH与术后体重减轻(%EWL)呈负相关,即MASLD越严重的患者,术后体重减轻程度可能越有限[48]

研究表明,MASH患者SG术后%EWL显著低于无MASLD和MASL患者。在一项基于163名SG患者的研究中,1年随访数据显示:无MASLD组%TWL为30.9 ± 8.8,%EWL为69.4 ± 21.8;MASL组%TWL为30.3 ± 9.3,%EWL为67.8 ± 23.1;MASH组%TWL为27.3 ± 9.9,%EWL为57.4 ± 20.1 (p = 0.004)。这些数据表明,MASH患者术后体重减轻效果较差,尤其是%EWL的下降更为显著,提示MASH可能影响SG的短期减重效果。调整混杂因素(年龄、性别、术前BMI和HbA1c)后,MASH仍然与较低的%EWL显著相关(Beta: −7.1; 95% CI: −13.6~−0.5; p = 0.035),但对%TWL的影响在调整后不再显著(Beta: −2.7; 95% CI: −5.7~−0.2; p = 0.069)。这意味着MASLD的影响主要体现在超重减少率(%EWL),而对总的体重减轻(%TWL)影响相对较小[48]

上述研究充分证实术前有无MAFLD及有无MASH对SG术后体重减轻和肝脏代谢存在显著负相关,但并未阐明MAFLD脂肪变性程度对术后患者疗效的影响。但是,关于术前肝纤维化对袖状胃切除术(SG)后体重减轻百分比(%EWL)的直接影响仍缺乏明确证据。

MASLD的严重程度可能影响患者在SG术后体重减轻的效果,尤其是对超重减少率(%EWL)和总体重减少率(%TWL)的影响已在多个研究中被探讨。

4.2. MASLD对SG术后体重减轻效果影响的可能机制

4.2.1. 胰岛素抵抗及代谢异常

重度MASLD患者的HOMA-IR指数通常较高,意味着更严重的胰岛素抵抗。有证据显示,术前HOMA-IR较高的患者,术后%EWL显著较低(p < 0.05) [49]。其可能机制包括:(1) 高HOMA-IR患者术后脂肪氧化能力下降,导致术后能量消耗受限;(2) 术后胰岛素敏感性改善不足削弱代谢适应,降低体重减轻幅度。(3) IR可能通过GLP-1和Ghrelin水平的变化而影响术后体重减轻;(4) 术前HbA1c水平较高的患者术后%EWL较低(p < 0.05)。2型糖尿病的存在和术后2型糖尿病的不缓解对术后%EWL较低显著相关,而脂肪肝严重程度与2型糖尿病发病显著相关,这证实了重度MAFLD影响术后体重减轻与糖代谢紊乱和IR严重程度密切相关[50] [51]

4.2.2. 炎症及纤维化程度

严重的MASLD往往与肝脏炎症,肝纤维化密切相关术前CRP、IL-6水平较高的患者术后%EWL和%TWL均较低,提示慢性炎症可能抑制术后代谢适应性。高炎症状态可能导致脂肪组织持续释放促炎因子,干扰胰岛素信号通路,降低体重减轻效果[52] [53]

研究指出,肝纤维化程度越严重(F2及以上),术后体重减轻可能更低。其可能机制是通过减少肝脏葡萄糖摄取能力和降低胰岛素敏感性,影响SG术后的代谢改善[54]。Umemura et al. (2024)研究了SG对严重肥胖患者肝脏功能的影响,并发现术后代谢改善与术前肝脏炎症程度相关。这可能表明,较严重的术前肝纤维化可能会限制SG在改善代谢方面的效果[55]

4.2.3. 胃肠道激素及食欲调节

研究发现,MASLD患者术后GLP-1和PYY水平升高较少,可能导致术后饱腹感下降,从而影响体重管理。重度MASLD患者术后Ghrelin水平下降不及无MASLD,可能影响长期食欲调控[56]

5. 未来研究方向

未来需要更大样本量和长期随访的前瞻性研究,进一步验证MASLD分级与SG术后疗效的关系。对于肥胖、MASLD以及T2DM等慢病患者制定安全有效且复发风险低的个体化治疗策略是未来研究的任务。

对于重度MASLD患者,应考虑采取针对性的术前干预措施:包括围术期干预,联合术前药物治疗(二甲双胍、GLP-1受体激动剂等);术后加强随访和动态检测计划,重点关注肝功能、血糖控制和体重减轻。整合基于MRI的质子密度脂肪分数(PDFF)或超声衍生的脂肪分数(UDFF)等影像学工具,可以提供肝脏脂肪消退的精确纵向监测。

6. 临床指导建议

6.1. 术前干预措施

轻度MASLD患者,主要依赖生活方式干预,包括:低热量、低碳水化合物、高蛋白的饮食控制,以减少肝脏脂肪积累;增加体力活动,如中等强度的有氧运动,每周至少150分钟,以改善胰岛素敏感性和肝脂肪代谢;以减少肝脂肪变性、降低手术风险,并改善术后代谢恢复能力。而中重度MASLD患者,在生活方式干预的基础上,可能需要考虑药物治疗以改善肝功能,并在术前进行详细的肝功能评估,以确保手术的安全性和有效性。可考虑GLP-1受体激动剂(如司美格鲁肽)、SGLT2抑制剂或维生素E以改善肝功能;术前利用影像学检查(如超声、MRI-PDFF)评估肝脂肪变性程度;血清生物标志物(如NFS、FIB-4、ELF)评估纤维化进展。确保术前控制肝功能异常,以降低围手术期风险,提供手术获益。

6.2. 术后管理策略

轻度MASLD患者继续健康生活方式,防止肝病进展,保持低碳水、高蛋白饮食习惯,避免术后体重反弹;维持规律运动,提高胰岛素敏感性;定期监测肝功能(ALT、AST)、肝脂肪含量及代谢指标(HbA1c, HOMA-IR)。对于中重度MASLD患者需要术后密切随访肝功能,在术后3、6、12个月进行影像学和血清学监测,以评估MASLD逆转情况;必要时药物干预;若术后仍存在肝纤维化或代谢异常,可考虑GLP-1受体激动剂或派莫特罗等抗炎治疗。

6.3. 个体化营养管理

补充足够的蛋白质、维生素(如维生素D、B族维生素),减少术后营养不良的风险。

7. 结论

本研究回顾了代谢性脂肪性肝病(MASLD)严重程度对袖状胃切除术(SG)术后体重减轻效果的影响,结合近十年的最新研究数据,探讨了MASLD在减重手术后的临床意义和机制。通过系统分析,得出结论:MASLD的严重程度能够影响SG术后体重减轻的效果,尤其是重度患者术后%EWL较低,取得满意减重效果时间较轻度或无MASLD患者延迟,该过程与糖脂代谢紊乱及全身多系统验证密切相关。

此外,术前MASLD的精准评估可优化术后管理,未来需要更多深入研究来进一步明确MASLD在减重手术后的作用机制,并制定针对MASLD患者的最佳治疗方案选择和术后管理方案,以提高长期代谢获益。

NOTES

*通讯作者。

参考文献

[1] Rinella, M.E., Lazarus, J.V., Ratziu, V., et al. (2023) A Multi-Society Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Journal of Hepatology, 79, 1542-1556.
[2] Sheka, A.C., Adeyi, O., Thompson, J., Hameed, B., Crawford, P.A. and Ikramuddin, S. (2020) Nonalcoholic Steatohepatitis: A Review. JAMA, 323, 1175-1183.
https://doi.org/10.1001/jama.2020.2298
[3] Rinella, M.E. (2015) Nonalcoholic Fatty Liver Disease: A Systematic Review. JAMA, 313, 2263-2273.
https://doi.org/10.1001/jama.2015.5370
[4] 中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版) [J]. 中华肝脏病杂志, 2024(5): 418-434.
[5] Younossi, Z., Anstee, Q.M., Marietti, M., Hardy, T., Henry, L., Eslam, M., et al. (2017) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20.
https://doi.org/10.1038/nrgastro.2017.109
[6] Chalasani, N., Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., et al. (2017) The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology, 67, 328-357.
https://doi.org/10.1002/hep.29367
[7] Younossi, Z.M., Kalligeros, M. and Henry, L. (2024) Epidemiology of Metabolic Dysfunction-Associated Steatotic Liver Disease. Clinical and Molecular Hepatology, 31, S32-S50.
[8] Maurice, J. and Manousou, P. (2018) Non-Alcoholic Fatty Liver Disease. Clinical Medicine, 18, 245-250.
https://doi.org/10.7861/clinmedicine.18-3-245
[9] Latif, S. and Ahsan, T. (2024) Prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Persons with Obesity and Type 2 Diabetes Mellitus: A Cross-Sectional Study. Euroasian Journal of Hepato-Gastroenterology, 14, 129-133.
https://doi.org/10.5005/jp-journals-10018-1437
[10] Targher, G., Byrne, C.D. and Tilg, H. (2020) NAFLD and Increased Risk of Cardiovascular Disease: Clinical Associations, Pathophysiological Mechanisms and Pharmacological Implications. Gut, 69, 1691-1705.
https://doi.org/10.1136/gutjnl-2020-320622
[11] Aminian, A., Al-Kurd, A., Wilson, R., Bena, J., Fayazzadeh, H., Singh, T., et al. (2021) Association of Bariatric Surgery with Major Adverse Liver and Cardiovascular Outcomes in Patients with Biopsy-Proven Nonalcoholic Steatohepatitis. JAMA, 326, 2031-2042.
https://doi.org/10.1001/jama.2021.19569
[12] Schwärzler, J., Grabherr, F., Grander, C., Adolph, T.E. and Tilg, H. (2023) The Pathophysiology of MASLD: An Immunometabolic Perspective. Expert Review of Clinical Immunology, 20, 375-386.
https://doi.org/10.1080/1744666x.2023.2294046
[13] Sandireddy, R., Sakthivel, S., Gupta, P., Behari, J., Tripathi, M. and Singh, B.K. (2024) Systemic Impacts of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction-Associated Steatohepatitis (MASH) on Heart, Muscle, and Kidney Related Diseases. Frontiers in Cell and Developmental Biology, 12, Article ID: 1433857.
https://doi.org/10.3389/fcell.2024.1433857
[14] Targher, G., Byrne, C.D. and Tilg, H. (2024) MASLD: A Systemic Metabolic Disorder with Cardiovascular and Malignant Complications. Gut, 73, 691-702.
https://doi.org/10.1136/gutjnl-2023-330595
[15] Driessen, S., Francque, S.M., Anker, S.D., Castro Cabezas, M., Grobbee, D.E., Tushuizen, M.E., et al. (2023) Metabolic Dysfunction-Associated Steatotic Liver Disease and the Heart. Hepatology.
https://doi.org/10.1097/hep.0000000000000735
[16] Eisenberg, D., Shikora, S.A., Aarts, E., Aminian, A., Angrisani, L., Cohen, R.V., et al. (2022) 2022 American Society of Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) Indications for Metabolic and Bariatric Surgery. Obesity Surgery, 33, 3-14.
https://doi.org/10.1007/s11695-022-06332-1
[17] Courcoulas, A.P., Gallagher, J.W., Neiberg, R.H., Eagleton, E.B., DeLany, J.P., Lang, W., et al. (2020) Bariatric Surgery vs Lifestyle Intervention for Diabetes Treatment: 5-Year Outcomes from a Randomized Trial. The Journal of Clinical Endocrinology & Metabolism, 105, 866-876.
https://doi.org/10.1210/clinem/dgaa006
[18] Vitiello, A., Angrisani, L., Santonicola, A., Iovino, P., Pilone, V. and Forestieri, P. (2018) Bariatric Surgery versus Lifestyle Intervention in Class I Obesity: 7-10‐Year Results of a Retrospective Study. World Journal of Surgery, 43, 758-762.
https://doi.org/10.1007/s00268-018-4847-8
[19] Colquitt, J.L., Pickett, K., Loveman, E. and Frampton, G.K. (2014) Surgery for Weight Loss in Adults. Cochrane Database of Systematic Reviews, 2014, CD003641.
https://doi.org/10.1002/14651858.cd003641.pub4
[20] Arterburn, D.E., Telem, D.A., Kushner, R.F. and Courcoulas, A.P. (2020) Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA, 324, 879-887.
https://doi.org/10.1001/jama.2020.12567
[21] Azagury, D., Mokhtari, T.E., Garcia, L., Rosas, U.S., Garg, T., Rivas, H., et al. (2019) Heterogeneity of Weight Loss after Gastric Bypass, Sleeve Gastrectomy, and Adjustable Gastric Banding. Surgery, 165, 565-570.
https://doi.org/10.1016/j.surg.2018.08.023
[22] Abu-Rumaileh, M., Haddad, R.A., Yosef, M., Esfandiari, N.H., Kraftson, A., Khairi, S., et al. (2023) Impact of Nonalcoholic Fatty Liver Disease (NAFLD) on Weight Loss after Bariatric Surgery. Obesity Surgery, 33, 3814-3828.
https://doi.org/10.1007/s11695-023-06865-z
[23] Sabench, F., Rusu, E.C., Clavero-Mestres, H., Arredondo-Prats, V., Veciana-Molins, M., Muñiz-Piera, S., et al. (2024) Metabolic-Associated Fatty Liver Disease and Weight Loss after Bariatric Surgery: A Systematic Review and Meta-Analysis. Obesity Surgery, 34, 4459-4471.
https://doi.org/10.1007/s11695-024-07585-8
[24] Hwang, J., Hwang, H., Shin, H., Kim, B.H., Kang, S.H., Yoo, J., et al. (2024) Bariatric Intervention Improves Metabolic Dysfunction-Associated Steatohepatitis in Patients with Obesity: A Systematic Review and Meta-Analysis. Clinical and Molecular Hepatology, 30, 561-576.
https://doi.org/10.3350/cmh.2023.0384
[25] Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L. and Wymer, M. (2016) Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta‐Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology, 64, 73-84.
https://doi.org/10.1002/hep.28431
[26] Samuel, V.T. and Shulman, G.I. (2018) Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metabolism, 27, 22-41.
https://doi.org/10.1016/j.cmet.2017.08.002
[27] Hotamisligil, G.S. (2017) Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity, 47, 406-420.
https://doi.org/10.1016/j.immuni.2017.08.009
[28] Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C., et al. (2012) Intestinal Microbiota Determines Development of Non-Alcoholic Fatty Liver Disease in Mice. Gut, 62, 1787-1794.
https://doi.org/10.1136/gutjnl-2012-303816
[29] Schnabl, B. and Brenner, D.A. (2014) Interactions between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 146, 1513-1524.
https://doi.org/10.1053/j.gastro.2014.01.020
[30] 肖扬, 尹明丽, 温新元. 脂肪肝在肝移植中的应用前景[J]. 中华肝胆外科杂志, 2022(8): 628-632.
[31] Brunt, E.M., Janney, C.G., Di Bisceglie, A.M., Neuschwander-Tetri, B.A. and Bacon, B.R. (1999) Nonalcoholic Steatohepatitis: A Proposal for Grading and Staging the Histological Lesions. American Journal of Gastroenterology, 94, 2467-2474.
https://doi.org/10.1111/j.1572-0241.1999.01377.x
[32] Khan, R.S., Bril, F., Cusi, K. and Newsome, P.N. (2019) Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology, 70, 711-724.
https://doi.org/10.1002/hep.30429
[33] Samuel, V.T. and Shulman, G.I. (2016) The Pathogenesis of Insulin Resistance: Integrating Signaling Pathways and Substrate Flux. Journal of Clinical Investigation, 126, 12-22.
https://doi.org/10.1172/jci77812
[34] Musso, G., Gambino, R., Cassader, M. and Pagano, G. (2010) Meta-Analysis: Natural History of Non-Alcoholic Fatty Liver Disease (NAFLD) and Diagnostic Accuracy of Non-Invasive Tests for Liver Disease Severity. Annals of Medicine, 43, 617-649.
https://doi.org/10.3109/07853890.2010.518623
[35] Bril, F. and Cusi, K. (2017) Management of Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes: A Call to Action. Diabetes Care, 40, 419-430.
https://doi.org/10.2337/dc16-1787
[36] Ipsen, D.H., Lykkesfeldt, J. and Tveden-Nyborg, P. (2018) Molecular Mechanisms of Hepatic Lipid Accumulation in Non-Alcoholic Fatty Liver Disease. Cellular and Molecular Life Sciences, 75, 3313-3327.
https://doi.org/10.1007/s00018-018-2860-6
[37] Anstee, Q.M., Targher, G. and Day, C.P. (2013) Progression of NAFLD to Diabetes Mellitus, Cardiovascular Disease or Cirrhosis. Nature Reviews Gastroenterology & Hepatology, 10, 330-344.
https://doi.org/10.1038/nrgastro.2013.41
[38] McCarty, T.R., Jirapinyo, P. and Thompson, C.C. (2019) Effect of Sleeve Gastrectomy on Ghrelin, GLP-1, PYY, and GIP Gut Hormones: A Systematic Review and Meta-Analysis. Annals of Surgery, 272, 72-80.
https://doi.org/10.1097/sla.0000000000003614
[39] Tilg, H. and Moschen, A.R. (2010) Evolution of Inflammation in Nonalcoholic Fatty Liver Disease: The Multiple Parallel Hits Hypothesis. Hepatology, 52, 1836-1846.
https://doi.org/10.1002/hep.24001
[40] Sadeghi, S., Hosseinpanah, F., Khalaj, A., Mahdavi, M., Valizadeh, M., Taheri, H., et al. (2025) The Journey of MASLD: Tracking Resolution, Relapse, and Predictive Factors after Sleeve Gastrectomy and One-Anastomosis Gastric Bypass, a Propensity Score-Matched Cohort Study. Diabetes Research and Clinical Practice, 219, Article ID: 111969.
https://doi.org/10.1016/j.diabres.2024.111969
[41] Huang, R., Ding, X., Fu, H. and Cai, Q. (2019) Potential Mechanisms of Sleeve Gastrectomy for Reducing Weight and Improving Metabolism in Patients with Obesity. Surgery for Obesity and Related Diseases, 15, 1861-1871.
https://doi.org/10.1016/j.soard.2019.06.022
[42] Mechanick, J.I., Apovian, C., Brethauer, S., Garvey, W.T., Joffe, A.M., Kim, J., et al. (2019) Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures—2019 Update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Endocrine Practice, 25, 1346-1359.
https://doi.org/10.4158/gl-2019-0406
[43] Schauer, P.R., Bhatt, D.L., Kirwan, J.P., Wolski, K., Aminian, A., Brethauer, S.A., et al. (2017) Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. New England Journal of Medicine, 376, 641-651.
https://doi.org/10.1056/nejmoa1600869
[44] Schauer, P.R., Kashyap, S.R., Wolski, K., Brethauer, S.A., Kirwan, J.P., Pothier, C.E., et al. (2012) Bariatric Surgery versus Intensive Medical Therapy in Obese Patients with Diabetes. New England Journal of Medicine, 366, 1567-1576.
https://doi.org/10.1056/nejmoa1200225
[45] Kasalicky, M., Koblihova, E. and Pohnan, R. (2024) Sleeve Gastrectomy—Still Popular Bariatric Method. Rozhledy v Chirurgii, 103, 6-12.
[46] Sandoval, D.A. and Patti, M.E. (2022) Glucose Metabolism after Bariatric Surgery: Implications for T2DM Remission and Hypoglycaemia. Nature Reviews Endocrinology, 19, 164-176.
https://doi.org/10.1038/s41574-022-00757-5
[47] Fakhry, T.K., Mhaskar, R., Schwitalla, T., Muradova, E., Gonzalvo, J.P. and Murr, M.M. (2019) Bariatric Surgery Improves Nonalcoholic Fatty Liver Disease: A Contemporary Systematic Review and Meta-Analysis. Surgery for Obesity and Related Diseases, 15, 502-511.
https://doi.org/10.1016/j.soard.2018.12.002
[48] Martínez-Montoro, J.I., Arranz-Salas, I., Gutiérrez-Repiso, C., Sánchez-García, A., Ocaña-Wilhelmi, L., Pinazo-Bandera, J.M., et al. (2024) Weight Loss after Sleeve Gastrectomy According to Metabolic Dysfunction-Associated Steatotic Liver Disease Stage in Patients with Obesity: A Liver Biopsy-Based Prospective Study. Nutrients, 16, Article No. 3857.
https://doi.org/10.3390/nu16223857
[49] Zhu, Y., Sun, Z., Du, Y., Xu, G., Gong, K., Zhu, B., et al. (2017) Evaluation of Insulin Resistance Improvement after Laparoscopic Sleeve Gastrectomy or Gastric Bypass Surgery with HOMA-IR. BioScience Trends, 11, 675-681.
https://doi.org/10.5582/bst.2017.01307
[50] Rebelos, E., Moriconi, D., Honka, M., Anselmino, M. and Nannipieri, M. (2022) Decreased Weight Loss Following Bariatric Surgery in Patients with Type 2 Diabetes. Obesity Surgery, 33, 179-187.
https://doi.org/10.1007/s11695-022-06350-z
[51] Luo, Y., Haddad, R.A., Ontan, M.S., Eldin, A.W.J., Abu‐Rumaileh, M., Yosef, M., et al. (2023) Impact of Diabetes on Weight Loss Outcomes after Bariatric Surgery: Experience from 5‐Year Follow‐Up of Michigan Bariatric Surgery Cohort. Clinical Endocrinology, 99, 285-295.
https://doi.org/10.1111/cen.14922
[52] Sabench, F., Bertran, L., Vives, M., París, M., Aguilar, C., Martínez, S., et al. (2022) NASH Presence Is Associated with a Lower Weight Loss One and 2 Years after Bariatric Surgery in Women with Severe Obesity. Obesity Surgery, 32, 3313-3323.
https://doi.org/10.1007/s11695-022-06175-w
[53] Zhu, C., Gao, J., Mei, F., Lu, L., Zhou, D. and Qu, S. (2019) Reduction in Thyroid-Stimulating Hormone Correlated with Improved Inflammation Markers in Chinese Patients with Morbid Obesity Undergoing Laparoscopic Sleeve Gastrectomy. Obesity Surgery, 29, 3954-3965.
https://doi.org/10.1007/s11695-019-04063-4
[54] Koh, Z.J., Salgaonkar, H.P., Lee, W.J.J., Kim, G.W., Tan, C.H., Cheng, A., et al. (2018) Improvement in Non-Alcoholic Fatty Liver Disease Score Correlates with Weight Loss in Obese Patients Undergoing Laparoscopic Sleeve Gastrectomy: A Two-Centre Study from an Asian Cohort. Obesity Surgery, 29, 862-868.
https://doi.org/10.1007/s11695-018-3581-5
[55] Umemura, A., Sasaki, A., Takamura, T., Takayama, H., Takeshita, Y., Toya, Y., et al. (2023) Relationship between the Changes in Hepatokine Levels and Metabolic Effects after Laparoscopic Sleeve Gastrectomy in Severely Obese Patients. Surgery Today, 54, 581-590.
https://doi.org/10.1007/s00595-023-02767-w
[56] Stefura, T., Droś, J., Kacprzyk, A., Wierdak, M., Proczko-Stepaniak, M., Szymański, M., et al. (2019) Influence of Preoperative Weight Loss on Outcomes of Bariatric Surgery for Patients under the Enhanced Recovery after Surgery Protocol. Obesity Surgery, 29, 1134-1141.
https://doi.org/10.1007/s11695-018-03660-z