通气比在急性呼吸窘迫综合征中的研究进展
Research Progress of Ventilatory Ratio in Acute Respiratory Distress Syndrome
DOI: 10.12677/acm.2025.1541040, PDF, HTML, XML,   
作者: 王胜男:浙江大学医学院,浙江 杭州;谢 波*:浙江大学医学院附属湖州医院重症医学科,浙江 湖州
关键词: 通气比死腔急性呼吸窘迫综合征Ventilatory Ratio Dead Space Acute Respiratory Distress Syndrome
摘要: 死腔通气增大反映了急性呼吸窘迫综合征(ARDS)患者主要病理生理特征,与患者死亡率密切相关。床边测量死腔的难度性促使学者们提出了一些其他评估通气效率的指标,如通气比(VR)。越来越多的研究证明VR是一个简单且稳健的床边评估指标,可应用于ARDS患者预后预测,也可能有助于其亚表型确定和呼吸管理,进而优化个体化机械通气管理与临床治疗。
Abstract: Enlarged dead space reflects the main pathophysiological characteristics of patients with acute respiratory distress syndrome (ARDS) and is closely related to the patient’s mortality rate. The difficulty of measuring dead space at the bedside prompted scholars to propose some other indicators to evaluate ventilation efficiency, such as ventilatory ratio (VR). More and more studies have proved that VR is a simple and robust bedside assessment indicator that can be applied to prognostic prediction of ARDS patients, and may also contribute to its subphenotype determination and respiratory management, thereby optimizing individualized mechanical ventilation management and clinical treat.
文章引用:王胜男, 谢波. 通气比在急性呼吸窘迫综合征中的研究进展[J]. 临床医学进展, 2025, 15(4): 1147-1153. https://doi.org/10.12677/acm.2025.1541040

1. 引言

急性呼吸窘迫综合征是(acute respiratory distress syndrome, ARDS)是急性呼吸衰竭的一种常见临床综合征,由弥漫性肺部炎症和水肿引起[1]。2016年全球大型观察性研究显示,ARDS患者占ICU收住患者的10.4%,死亡率高达30%~50% [2]。ARDS可由多种原因诱发,其弥漫性肺泡–毛细血管屏障损伤的典型病理特征引起肺泡塌陷和/或肺泡水肿,造成通气–灌注不匹配和分流增加[1]。机械通气是ARDS患者的主要呼吸支持治疗之一,但其在改善肺泡塌陷或水肿的同时会加重肺损伤。因此评估通气效率在机械通气患者管理中有重要意义。死腔测量是评估通气效率的最准确的替代方法[3],并且基于病理生理特点,死腔增加在ARDS患者普遍存在。此外研究显示死腔增加是ARDS患者死亡率增加和临床不良预后风险增加的因素之一,是ARDS死亡率的独立预测指标[3] [4]。但由于容积二氧化碳描记术(Vcap)测量方法实施受限以及计算繁琐,临床上很少进行死腔的直接测量。

通气比(ventilatory ratio, VR)是一种简单的床边测量通气效率的工具,由Sinha等人[5]首先提出,他

们定义 VR= V ˙ E measured × Pa CO 2measured V ˙ E predicted × Pa CO 2predicted 。VR是一个无单位的指标。一些研究表明,VR与死腔密切相关,其反

映ARDS患者死亡率的效能与死腔相似,可以作为死腔评估的替代方法[4] [6]。根据其生理学特性,VR受死腔和每分钟二氧化碳产量影响,并在各种临床试验及心肺模型中得到验证[3] [7] [8]。本文将就VR研究及其在ARDS中的应用进行综述,为ARDS患者通气管理及治疗提供借鉴。

2. 通气比计算公式

肺泡通气是潮气量中参与气体交换并决定通气效率的部分。人们认为高死腔通气肺单位或高通气血流比( V ˙ A /Q )肺单位存在可能会导致高碳酸血症,而增加每分钟通气量( V ˙ E )能够增加体内二氧化碳清除,以维持动脉二氧化碳分压( PaCO 2 )不变[9]。说明 V ˙ E PaCO 2 之间存在密切关联。由此,Sinha等人提出了VR来描述通气效率,并定义为[5]

VR= V ˙ E measured × Pa CO 2measured V ˙ E predicted × Pa CO 2predicted (1)

其中 V ˙ E predicted =PBW×100 ml/ min PaCO 2predicted =5kPa37.5mmHg

即对于某个患者来说,VR分母的预测值是一个固定值,则上述等式(1)可以简化为:

VR= V ˙ E measured × PaCO 2measured PBW×100×37.5 (2)

其次,将肺泡通气量( V ˙ A )占每分钟通气量中的比例定义为通气效率( E ),则

E= V ˙ A V ˙ E =1 V D V T (3)

V ˙ E = V ˙ A E = V ˙ A 1 V D V T (4)

已知肺泡二氧化碳分压( PACO 2 )可以二氧化碳产生量( V ˙ CO 2 )和 V ˙ A 方程表示,即

PACO 2 = V ˙ CO 2 V ˙ A × P B (5)

假设 PaCO 2 = PACO 2 ,则

PaCO 2measured = V ˙ CO 2actual V ˙ Aactual × P B (6)

P B :代表大气压,对大部分患者为常数,将 V ˙ E measured PaCO 2measured 代入公式(2),则

VR= V ˙ CO 2 E ×k= V ˙ CO 2 1 V D V T ×k (7)

由此通过每分钟通气量及动脉血气结果即可得到VR值。

可见,VR将因二氧化碳产生量( V ˙ CO 2 )和生理死腔分数(VD/VT)的变化而变化,VR增加表示二氧化碳产量增加,死腔增大(通气效率降低),或两者兼有。Sinha等人还分别就上述公式进行ICU患者、ARDS患者和生理模型进行验证,其结果与上述推论一致,且发现高VR与死亡率和不良结局正相关[3]-[5]。VR有希望作为床边预测的简易指标。

3. VR的影响因素

3.1. VD/VT和 V ˙ C O 2

根据VR的生理特性与方程意义,VR受到二氧化碳产量以及死腔的影响。根据公式(7),当VD/VT恒定时,VR与 V ˙ CO 2 呈线性关系;当 V ˙ CO 2 恒定,即二氧化碳稳定产生时,VR与VD/VT呈近指数关系[3] [4] [10]。同时Sinha发现VR受VD/VT影响更大[7] [8] V ˙ CO 2 的影响相对较小。正常生理下,二氧化碳增加可以通过增加每分钟通气量来清除,但在ARDS中受到限制。这与ARDS患者每分钟通气受损或因肺保护而通气受限有关[10]。另外,使用体外支持技术如ECMO、ECCO 2 R时,体内大部分二氧化碳被清除,此时 V ˙ CO 2 的影响可能会增大,VR可能正常或减小,不能完全反映此时的死腔通气[10]。由于数学耦合的复杂性,VR与VD/VT之间的关系尚不能量化[11],虽然VR可以评估通气效率,但不能作为估计死腔的替代方式。

3.2. 肺内分流(静脉混合)

由于肺泡二氧化碳分压( PACO 2 )近似于动脉二氧化碳分压( PaCO 2 )是VD/VT (Enghoff-Bohr)和VR共有的假设(见公式5),忽略了静脉混合( Q va /Q )的影响,VR可能被高估[3] [4]。在健康成人中, PACO 2 PaCO 2 仅相差0.1~0.4 kPa,但在ARDS中,由于分流, PaCO 2 可能远远大于 PACO 2 。并且Maj等人发现这种 PACO 2 PaCO 2 的差异随着 Q va /Q V ˙ CO 2 的增加而增加,因此对于疾病严重程度更高的患者中,这种影响可能是主要因素[10]

3.3. 呼吸末正压

呼吸末正压(PEEP)通过诱导的肺复张引起VR变化。对于肺复张潜力低的患者,在高PEEP时 PaCO 2 增加,VR增大。在肺复张不良的情况下,由于肺血管受压,肺泡死腔增加[12],并且由于呼吸回路和气道中的气体压缩,气道死腔增加[13]。对于复张潜力高的患者,不适宜潮气量引起的过度通气可以通过复张得到缓解,从而改善通气–灌注不匹配,VR降低。

3.4. 氧合指标——PaO2/FiO2

PaO2/FiO2(P/F)是柏林定义中ARDS分级依据,反应肺部氧合功能。根据氧合与气体交换的密切相关性,氧合与二氧化碳清除之间存在相似生理学反应。机械通气FiO2设置一定时,氧合降低引起PaO2下降,肺内血管收缩,导致肺泡死腔增大,VR升高。相应的,ARDS的病理生理学特征表明通气受损是低氧血症的致病机制[14]。但研究表明PaO2/FiO2与VR相关性较差[3] [7],VR可能反映肺部性能的其他信息。此外VR反映ARDS患者效能与柏林定义的标准相似,且相较于PaO2/FiO2对ARDS预测效果更好,有望鉴定ARDS患者的亚表型。

4. 通气比在急性呼吸窘迫综合征的应用

4.1. 作为结局预测指标

已有大量研究证明,VR是ARDS患者死亡率和预后的独立预测指标[3]-[5] [7] [8] [11]。在成人ARDS患者中,VR大于2可能与较高的死亡率相关[4] [7]。尽管受到肺内分流和 V ˙ CO 2 的影响,VR被高估,但结合Jayasimhan等人的荟萃分析[15],我们认为VR对死亡率的预测价值仍存在。此外,另有研究发现VR早期变化轨迹也有助于判断ARDS患者预后[16]-[18],并且VR与死亡率的这种关联在长期机械通气患者中仍成立[19]。由此可见,VR是一个相对稳健的临床床边评估指标。

4.2. 评估ARDS严重程度

越来越多的临床研究表明,VR与ARDS患者严重程度相关,将其纳入柏林定义可能会优化ARDS分层,增加预后预测可靠性[3] [4] [11] [20]。虽然目前缺乏大型随机对照试验验证,但其为我们提供了一个优化可能指标。当评估ARDS严重程度时,纳入VR可能帮助我们更好了解患者氧合受损与通气受损,更加全面地评估疾病严重程度。

4.3. 确定ARDS亚型的潜在能力

众所周知,ARDS患者通气管理的困难在于其存在广泛异质性。2023年7月发布的ARDS全球新定义扩充了柏林定义对ARDS的鉴定,新增了SpO2/FiO2作为诊断标准之一,并根据影像学(局灶性和弥漫性)、炎症反应(高炎症型和低炎症型)、呼吸力学等将ARDS分为不同亚表型,但对如何快速准确的分类没有给出标准[21]。有学者发现P/F无法鉴别局灶性与非局灶性ARDS,而当VR > 1.2时,可以帮助排除局灶性综合征,而P/F无法鉴别[22]。另有研究通过多种模型分析,发现在机械通气最初几天,存在VR和机械功率(MP)稳定轨迹和上升轨迹的两种亚型,且上升轨迹的ARDS患者对应更高的死亡率、更长机械通气时间以及更高静脉血栓风险,这可能与肺部更严重的灌注缺损匹配[23]。纳入VR确定ARDS亚表型可能有助于更加个体化的机械通气与治疗。

4.4. ARDS呼吸管理

俯卧位是目前中重度ARDS患者强烈推荐的治疗方法之一[24],可以有效促进肺泡复张,减少腹侧肺泡死腔,从而改善氧合及高碳酸血症[25] [26]。但也可能带来血流动力学改变、压力性损伤、导管移位等并发症,增加疾病负担。因此,评估俯卧位通气有效性尤为重要。目前主要以P/F比值的改善来评价俯卧位有效性,但研究发现其可靠性较低,存在一定局限性。Tisminetzky等人发现接受俯卧位通气的ARDS患者24小时内通气比的相对下降与较低的ICU死亡率相关,而PaO2/FiO2、动态驱动压和 PaCO 2 的变化未发现相关性[18]。此外,俯卧位4小时内VR的变化似乎与入ICU后28天呼吸机撤机独立相关[17]。即使对于普通机械通气患者,较高的VR也与机械通气时间延长有关,VR < 2似乎是无辅助呼吸所必需的[27]。可见,床边监测VR有助于临床医生判断俯卧位反应性,评估机械通气患者自主呼吸能力,帮助呼吸机撤机。

4.5. COVID-19相关ARDS应用

在COVID-19爆发后,15%~30%的人会继续发展为COVID-19相关的急性呼吸窘迫综合征(CARDS) [28],由此引发学者对COVID-19相关ARDS的研究。CARDS患者的尸检发现与ARDS一致的弥漫性肺泡损伤,但肺毛细血管中的血栓负荷较高,放射学与形态测量分析也发现显著的肺血管变化[29]。在CARDS早期观察到高死腔通气[30],这与其肺部渗出和肺血管微栓塞形成相符,并且更高的VR和上升趋势与更高的CARDS死亡率相关[29] [31] [32]。此外,在使用低潮气量CARDS患者中常出现高碳酸血症,此时VR增大,说明肺死腔增大和通气不足[33]。因此对于出现高碳酸血症的CARDS患者要高度怀疑肺死腔增大,此时可适当增加潮气量设置来纠正。

5. 通气比局限性

VR作为反映通气受损的评价指标,侧面反映死腔大小,但不是估计死腔分数的替代公式。正如前文所述,VR受到 V ˙ CO 2 、肺内分流等影响,尽管学者认为对早期ARDS患者来说,死腔作用大于 V ˙ CO 2 ,但在疾病严重程度高的患者中,由于代谢、药物、体外支持治疗等,这种影响不可忽略。另外,对于VR基于预测体重与理想二氧化碳分压的假设存在异质性,尤其对儿童来说,其生理参数随年龄和发育阶段变化较大,不能简单用预测体重来估算[34]。因此不同个体及病理状态下理想分钟通气量可能受到显著影响,导致VR准确性下降。

6. 小结

通气比是一个简易且可靠的床边评估通气效率的指标,对急性呼吸窘迫综合征患者的结局有较高的预测能力。与其他死腔替代指标相比,VR可以在床边快速获取,其简便性与有效性具有很大优势。尽管其存在一定局限性,将VR纳入常规管理有助于病情评估和更加个体化的通气管理与治疗。当然,目前VR在ARDS中的应用仍处于起步阶段,需要更多的临床研究进一步明确VR的可靠性,探索最佳阈值,以及联合其他指标的通气管理对ARDS预后的潜在有益性。

NOTES

*通讯作者。

参考文献

[1] Bos, L.D.J. and Ware, L.B. (2022) Acute Respiratory Distress Syndrome: Causes, Pathophysiology, and Phenotypes. The Lancet, 400, 1145-1156.
https://doi.org/10.1016/s0140-6736(22)01485-4
[2] Bellani, G., Laffey, J.G., Pham, T., Fan, E., Brochard, L., Esteban, A., et al. (2016) Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 315, 788-800.
https://doi.org/10.1001/jama.2016.0291
[3] Sinha, P., Singh, S., Hardman, J.G., Bersten, A.D. and Soni, N. (2014) Evaluation of the Physiological Properties of Ventilatory Ratio in a Computational Cardiopulmonary Model and Its Clinical Application in an Acute Respiratory Distress Syndrome Population. British Journal of Anaesthesia, 112, 96-101.
https://doi.org/10.1093/bja/aet283
[4] Sinha, P., Calfee, C.S., Beitler, J.R., Soni, N., Ho, K., Matthay, M.A., et al. (2019) Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 199, 333-341.
https://doi.org/10.1164/rccm.201804-0692oc
[5] Sinha, P., Fauvel, N.J., Singh, S. and Soni, N. (2009) Ventilatory Ratio: A Simple Bedside Measure of Ventilation. British Journal of Anaesthesia, 102, 692-697.
https://doi.org/10.1093/bja/aep054
[6] Caviedes, I., Soto, R. and Torres, A. (2021) Pulmonary Angiopathy in Severe COVID-19: Physiological Conclusions Derived from Ventilatory Ratio? American Journal of Respiratory and Critical Care Medicine, 203, 258-259.
https://doi.org/10.1164/rccm.202009-3446le
[7] Sinha, P., Sanders, R.D., Soni, N., Vukoja, M.K. and Gajic, O. (2013) Acute Respiratory Distress Syndrome: The Prognostic Value of Ventilatory Ratio—A Simple Bedside Tool to Monitor Ventilatory Efficiency. American Journal of Respiratory and Critical Care Medicine, 187, 1150-1153.
https://doi.org/10.1164/rccm.201211-2037le
[8] Sinha, P., Fauvel, N.J., Singh, P. and Soni, N. (2013) Analysis of Ventilatory Ratio as a Novel Method to Monitor Ventilatory Adequacy at the Bedside. Critical Care, 17, Article No. R34.
https://doi.org/10.1186/cc12541
[9] Zheng, M. (2023) Dead Space Ventilation-Related Indices: Bedside Tools to Evaluate the Ventilation and Perfusion Relationship in Patients with Acute Respiratory Distress Syndrome. Critical Care, 27, Article No. 46.
https://doi.org/10.1186/s13054-023-04338-4
[10] Maj, R., Palermo, P., Gattarello, S., Brusatori, S., D’Albo, R., Zinnato, C., et al. (2023) Ventilatory Ratio, Dead Space, and Venous Admixture in Patients with Acute Respiratory Distress Syndrome. British Journal of Anaesthesia, 130, 360-367.
https://doi.org/10.1016/j.bja.2022.10.035
[11] Morales-Quinteros, L., Schultz, M.J., Bringué, J., Calfee, C.S., Camprubí, M., Cremer, O.L., et al. (2019) Estimated Dead Space Fraction and the Ventilatory Ratio Are Associated with Mortality in Early Ards. Annals of Intensive Care, 9, Article No. 128.
https://doi.org/10.1186/s13613-019-0601-0
[12] Pintado, M., de Pablo, R., Trascasa, M., Milicua, J., Rogero, S., Daguerre, M., et al. (2013) Individualized PEEP Setting in Subjects with ARDS: A Randomized Controlled Pilot Study. Respiratory Care, 58, 1416-1423.
https://doi.org/10.4187/respcare.02068
[13] Chen, L., Del Sorbo, L., Grieco, D.L., Shklar, O., Junhasavasdikul, D., Telias, I., et al. (2018) Airway Closure in Acute Respiratory Distress Syndrome: An Underestimated and Misinterpreted Phenomenon. American Journal of Respiratory and Critical Care Medicine, 197, 132-136.
https://doi.org/10.1164/rccm.201702-0388le
[14] Grieco, D.L., Bongiovanni, F., Chen, L., Menga, L.S., Cutuli, S.L., Pintaudi, G., et al. (2020) Respiratory Physiology of Covid-19-Induced Respiratory Failure Compared to ARDS of Other Etiologies. Critical Care, 24, Article No. 529.
https://doi.org/10.1186/s13054-020-03253-2
[15] Jayasimhan, D., Chieng, J., Kolbe, J. and Sidebotham, D.A. (2023) Dead-Space Ventilation Indices and Mortality in Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Critical Care Medicine, 51, 1363-1372.
https://doi.org/10.1097/ccm.0000000000005921
[16] Monteiro, A.C.C., Vangala, S., Wick, K.D., Delucchi, K.L., Siegel, E.R., Thompson, B.T., et al. (2022) The Prognostic Value of Early Measures of the Ventilatory Ratio in the ARDS ROSE Trial. Critical Care, 26, Article No. 297.
https://doi.org/10.1186/s13054-022-04179-7
[17] Wang, Z., Xia, F., Dai, H., Chen, H., Xie, J., Qiu, H., et al. (2022) Early Decrease of Ventilatory Ratio after Prone Position Ventilation May Predict Successful Weaning in Patients with Acute Respiratory Distress Syndrome: A Retrospective Cohort Study. Frontiers in Medicine, 9, Article 1057260.
https://doi.org/10.3389/fmed.2022.1057260
[18] Tisminetzky, M., Ferreyro, B.L., Frutos-Vivar, F., Esteban, A., Ríos, F., Thille, A.W., et al. (2022) Decline in Ventilatory Ratio as a Predictor of Mortality in Adults with ARDS Receiving Prone Positioning. Respiratory Care, 67, 1067-1074.
[19] Papoutsi, E., Giannakoulis, V.G., Routsi, C., Kotanidou, A. and Siempos, I.I. (2023) Association between Ventilatory Ratio and Mortality Persists in Patients with ARDS Requiring Prolonged Mechanical Ventilation. Intensive Care Medicine, 49, 876-877.
https://doi.org/10.1007/s00134-023-07107-7
[20] Kaku, N., Nakagama, Y., Shirano, M., Shinomiya, S., Shimazu, K., Yamazaki, K., et al. (2021) Longitudinal Ventilatory Ratio Monitoring for COVID-19: Its Potential in Predicting Severity and Assessing Treatment Response. Critical Care, 25, Article No. 366.
https://doi.org/10.1186/s13054-021-03768-2
[21] Matthay, M.A., Arabi, Y., Arroliga, A.C., Bernard, G., Bersten, A.D., Brochard, L.J., et al. (2024) A New Global Definition of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 209, 37-47.
https://doi.org/10.1164/rccm.202303-0558ws
[22] See, K.C., Estaras, M.T. and Taculod, J.M. (2021) Identification of Focal ARDS Using Ventilatory Ratio. Critical Care, 25, Article No. 371.
https://doi.org/10.1186/s13054-021-03796-y
[23] Bos, L.D.J., Sjoding, M., Sinha, P., Bhavani, S.V., Lyons, P.G., Bewley, A.F., et al. (2021) Longitudinal Respiratory Subphenotypes in Patients with COVID-19-Related Acute Respiratory Distress Syndrome: Results from Three Observational Cohorts. The Lancet Respiratory Medicine, 9, 1377-1386.
[24] Guérin, C., Reignier, J., Richard, J., Beuret, P., Gacouin, A., Boulain, T., et al. (2013) Prone Positioning in Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 368, 2159-2168.
https://doi.org/10.1056/nejmoa1214103
[25] Scholten, E.L., Beitler, J.R., Prisk, G.K. and Malhotra, A. (2017) Treatment of ARDS with Prone Positioning. Chest, 151, 215-224.
https://doi.org/10.1016/j.chest.2016.06.032
[26] Gattinoni, L., Pesenti, A. and Carlesso, E. (2013) Body Position Changes Redistribute Lung Computed-Tomographic Density in Patients with Acute Respiratory Failure: Impact and Clinical Fallout through the Following 20 Years. Intensive Care Medicine, 39, 1909-1915.
https://doi.org/10.1007/s00134-013-3066-x
[27] Proklou, A., Papadakis, E., Kondili, E., Tserlikakis, N., Karageorgos, V., Konstantinou, I., et al. (2021) Ventilatory Ratio Threshold for Unassisted Breathing: A Retrospective Exploratory Analysis. Respiratory Care, 66, 1699-1703.
https://doi.org/10.4187/respcare.09208
[28] Attaway, A.H., Scheraga, R.G., Bhimraj, A., Biehl, M. and Hatipoğlu, U. (2021) Severe Covid-19 Pneumonia: Pathogenesis and Clinical Management. BMJ, 372, n436.
https://doi.org/10.1136/bmj.n436
[29] Villalba, J.A., Hilburn, C.F., Garlin, M.A., Elliott, G.A., Li, Y., Kunitoki, K., et al. (2022) Vasculopathy and Increased Vascular Congestion in Fatal COVID-19 and Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 206, 857-873.
https://doi.org/10.1164/rccm.202109-2150oc
[30] Diehl, J., Peron, N., Chocron, R., Debuc, B., Guerot, E., Hauw-Berlemont, C., et al. (2020) Respiratory Mechanics and Gas Exchanges in the Early Course of COVID-19 ARDS: A Hypothesis-Generating Study. Annals of Intensive Care, 10, Article No. 95.
https://doi.org/10.1186/s13613-020-00716-1
[31] Beloncle, F., Studer, A., Seegers, V., Richard, J., Desprez, C., Fage, N., et al. (2021) Longitudinal Changes in Compliance, Oxygenation and Ventilatory Ratio in COVID-19 versus Non-Covid-19 Pulmonary Acute Respiratory Distress Syndrome. Critical Care, 25, Article No. 248.
https://doi.org/10.1186/s13054-021-03665-8
[32] Torres, A., Motos, A., Riera, J., Fernández-Barat, L., Ceccato, A., Pérez-Arnal, R., et al. (2021) The Evolution of the Ventilatory Ratio Is a Prognostic Factor in Mechanically Ventilated COVID-19 ARDS Patients. Critical Care, 25, Article No. 331.
[33] Liu, X., Liu, X., Xu, Y., Xu, Z., Huang, Y., Chen, S., et al. (2020) Ventilatory Ratio in Hypercapnic Mechanically Ventilated Patients with Covid-19-Associated Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 201, 1297-1299.
https://doi.org/10.1164/rccm.202002-0373le
[34] Bhalla, A.K., Dong, J., Klein, M.J., Khemani, R.G. and Newth, C.J. (2021) The Association between Ventilatory Ratio and Mortality in Children and Young Adults. Respiratory Care, 66, 205-212.
https://doi.org/10.4187/respcare.07937