[1]
|
Zhang, W., Yan, H., Peng, Z. and Meng, G. (2014) Electrostatic Pull-In Instability in MEMS/NEMS: A Review. Sensors and Actuators A: Physical, 214, 187-218. https://doi.org/10.1016/j.sna.2014.04.025
|
[2]
|
秦立君, 罗军, 马喜宏, 等. 一种微机电系统面内加速度传感器的设计与仿真[J]. 电子产品可靠性与环境试验, 2024, 42(6): 27-33.
|
[3]
|
Wang, J., Zhang, M., Wang, Z., Sun, S., Ning, Y., Yang, X., et al. (2022) An Ultra-Low Power, Small Size and High Precision Indoor Localization System Based on MEMS Ultrasonic Transducer Chips. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 1469-1477. https://doi.org/10.1109/tuffc.2022.3148314
|
[4]
|
He, J., He, C., Qian, M. and Alsolami, A.A. (2024) Piezoelectric Biosensor Based on Ultrasensitive MEMS System. Sensors and Actuators A: Physical, 376, Article 115664. https://doi.org/10.1016/j.sna.2024.115664
|
[5]
|
林万波, 陆宇平. 基于MEMS技术的三角翼飞行器涡流控制系统研究[J]. 计算机测量与控制, 2008, 16(7): 962-963.
|
[6]
|
Son, J., Ahn, B., Ha, J. and Choi, B. (2016) An Availability of MEMS-Based Accelerometers and Current Sensors in Machinery Fault Diagnosis. Measurement, 94, 680-691. https://doi.org/10.1016/j.measurement.2016.08.035
|
[7]
|
赵晨茜, 张大伟, 王远瑞, 等. 基于微机电系统的智能传感器在全膝关节置换术中的应用及现状[J]. 骨科, 2024, 15(6): 563-567.
|
[8]
|
Judy, J.W. (2001) Microelectromechanical Systems (MEMS): Fabrication, Design and Applications. Smart Materials and Structures, 10, 1115-1134. https://doi.org/10.1088/0964-1726/10/6/301
|
[9]
|
Chircov, C. and Grumezescu, A.M. (2022) Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines, 13, Article 164. https://doi.org/10.3390/mi13020164
|
[10]
|
Schopp, J. and McNamara, S. (2024) Passive Communication for Low Power Distributed Sensors Using MEMS Optical Cavities. Journal of Micromechanics and Microengineering, 34, Article 035011. https://doi.org/10.1088/1361-6439/ad2910
|
[11]
|
Hou, Y., Jiao, R. and Yu, H. (2021) MEMS Based Geophones and Seismometers. Sensors and Actuators A: Physical, 318, Article 112498. https://doi.org/10.1016/j.sna.2020.112498
|
[12]
|
Kciuk, S., Krzystała, E., Mężyk, A. and Szmidt, P. (2022) The Application of Microelectromechanical Systems (MEMS) Accelerometers to the Assessment of Blast Threat to Armored Vehicle Crew. Sensors, 22, Article 316. https://doi.org/10.3390/s22010316
|
[13]
|
裴嘉裕, 张国军, 荆博原, 等. 基于MEMS水听器的水下探测系统设计与实现[J]. 微纳电子技术, 2024, 61(3): 101-111.
|
[14]
|
王军波, 龚黎明, 陈德勇, 等. 平面电极型MEMS电化学地震传感器[J]. 光学精密工程, 2015, 23(3): 769-775.
|
[15]
|
Liao, M. (2021) Progress in Semiconductor Diamond Photodetectors and MEMS Sensors. Functional Diamond, 1, 29-46. https://doi.org/10.1080/26941112.2021.1877019
|
[16]
|
Liu, H., Luo, Z., Hu, Z., Yang, S., Tu, L., Zhou, Z., et al. (2022) A Review of High-Performance MEMS Sensors for Resource Exploration and Geophysical Applications. Petroleum Science, 19, 2631-2648. https://doi.org/10.1016/j.petsci.2022.06.005
|
[17]
|
Younis, M. (2011) MEMS Linear and Nonlinear Statics and Dynamics. Springer. ttps://doi.org/10.1007/978-1-4419-6020-7
|
[18]
|
Adrega, T., Chu, V. and Conde, J.P. (2006) Electrostatically Actuated Resonance of Amorphous Silicon Microresonators in Water. Applied Physics Letters, 89, Article 143109. https://doi.org/10.1063/1.2358215
|
[19]
|
Huang, J. (2008) In-Plane Rotary Comb-Drive Actuator for a Variable Optical Attenuator. Journal of Micro/Nanolithography, MEMS, and MOEMS, 7, Article 043015. https://doi.org/10.1117/1.3013547
|
[20]
|
Li, R., Mohammed, Z., Rasras, M., Elfadel, I.M. and Choi, D. (2021) Design, Modelling and Characterization of Comb Drive MEMS Gap-Changeable Differential Capacitive Accelerometer. Measurement, 169, Article 108377. https://doi.org/10.1016/j.measurement.2020.108377
|
[21]
|
Anderson, M.J., Hill, J.A., Fortunko, C.M., Dogan, N.S. and Moore, R.D. (1995) Broadband Electrostatic Transducers: Modeling and Experiments. The Journal of the Acoustical Society of America, 97, 262-272. https://doi.org/10.1121/1.412310
|
[22]
|
Camon, H., Larnaudie, F. and Rivoirard, F. (1999) Analytical simulation of a 1D Single Crystal Electrostatic Micromirror. International Conference on Modeling and Simulation of Microsystems, San Juan, April 1999, 628-631.
|
[23]
|
Kim, P. and Lieber, C.M. (1999) Nanotube Nanotweezers. Science, 286, 2148-2150. https://doi.org/10.1126/science.286.5447.2148
|
[24]
|
Tilmans, H.A.C., Elwenspoek, M. and Fluitman, J.H.J. (1992) Micro Resonant Force Gauges. Sensors and Actuators A: Physical, 30, 35-53. https://doi.org/10.1016/0924-4247(92)80194-8
|
[25]
|
Nuñez, D., Perdomo, O. and Rivera, A. (2019) On the Stability of Periodic Solutions with Defined Sign in MEMS via Lower and Upper Solutions. Nonlinear Analysis: Real World Applications, 46, 195-218. https://doi.org/10.1016/j.nonrwa.2018.09.010
|
[26]
|
Adams, S.G., Bertsch, F.M., Shaw, K.A. and MacDonald, N.C. (1998) Independent Tuning of Linear and Nonlinear Stiffness Coefficients [Actuators]. Journal of Microelectromechanical Systems, 7, 172-180. https://doi.org/10.1109/84.679344
|
[27]
|
DeMartini, B.E., Butterfield, H.E., Moehlis, J. and Turner, K.L. (2007) Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation. Journal of Microelectromechanical Systems, 16, 1314-1323. https://doi.org/10.1109/jmems.2007.906757
|
[28]
|
Wang, Y.C., Adams, S.G., Thorp, J.S., MacDonald, N.C., Hartwell, P. and Bertsch, F. (1998) Chaos in MEMS, Parameter Estimation and Its Potential Application. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45, 1013-1020. https://doi.org/10.1109/81.728856
|
[29]
|
Shaw, S.W., Turner, K.L., Rhoads, J.F. and Baskaran, R. (2005) Parametrically Excited MEMS-Based Filters. In: Rega, G. and Vestroni, F., Eds., Solid Mechanics and Its Applications, Springer, 137-146. https://doi.org/10.1007/1-4020-3268-4_13
|
[30]
|
张峰, 苑伟政, 常洪龙, 等. 静电梳齿驱动结构的稳定性分析[J]. 传感技术学报, 2011, 24(8): 1122-1125.
|
[31]
|
周春燕, 胡博. 梳齿结构与振动梁复合的硅微谐振器的非线性分析[J]. 北京理工大学学报, 2022, 42(4): 390-397.
|
[32]
|
吴天准, 董景新, 赵长德, 等. 梳齿式微机械加速度计闭环系统的线性度[J]. 机械工程学报, 2006, 1(12): 128-131.
|
[33]
|
Mahmud, M.A.P., Bazaz, S.R., Dabiri, S., Mehrizi, A.A., Asadnia, M., Warkiani, M.E., et al. (2022) Advances in MEMS and Microfluidics‐Based Energy Harvesting Technologies. Advanced Materials Technologies, 7, Article 2101347. https://doi.org/10.1002/admt.202101347
|
[34]
|
Braghin, F., Resta, F., Leo, E. and Spinola, G. (2007) Nonlinear Dynamics of Vibrating MEMS. Sensors and Actuators A: Physical, 134, 98-108. https://doi.org/10.1016/j.sna.2006.10.041
|
[35]
|
Elshurafa, A.M., Khirallah, K., Tawfik, H.H., Emira, A., Abdel Aziz, A.K.S. and Sedky, S.M. (2011) Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators. Journal of Microelectromechanical Systems, 20, 943-958. https://doi.org/10.1109/jmems.2011.2148162
|
[36]
|
Han, J., Li, L., Jin, G., Feng, J., Li, B., Jia, H., et al. (2018) Vibration Identification of Folded-MEMS Comb Drive Resonators. Micromachines, 9, Article 381. https://doi.org/10.3390/mi9080381
|
[37]
|
Senturia, S. (2001) Microsystem Design. Kluwer Academic Publishers. https://doi.org/10.1007/b117574
|
[38]
|
Nathanson, H.C., Newell, W.E., Wickstrom, R.A. and Davis, J.R. (1967) The Resonant Gate Transistor. IEEE Transactions on Electron Devices, 14, 117-133. https://doi.org/10.1109/t-ed.1967.15912
|
[39]
|
Ai, S. and Pelesko, J.A. (2008) Dynamics of a Canonical Electrostatic MEMS/NEMS System. Journal of Dynamics and Differential Equations, 20, 609-641. https://doi.org/10.1007/s10884-007-9094-x
|
[40]
|
Alsaleem, F.M., Younis, M.I. and Ouakad, H.M. (2009) On the Nonlinear Resonances and Dynamic Pull-In of Electrostatically Actuated Resonators. Journal of Micromechanics and Microengineering, 19, Article 045013. https://doi.org/10.1088/0960-1317/19/4/045013
|
[41]
|
Lakrad, F. and Belhaq, M. (2011) Suppression of Pull-In in a Microstructure Actuated by Mechanical Shocks and Electrostatic Forces. International Journal of Non-Linear Mechanics, 46, 407-414. https://doi.org/10.1016/j.ijnonlinmec.2010.10.006
|
[42]
|
Zhang, W. and Meng, G. (2005) Nonlinear Dynamical System of Micro-Cantilever under Combined Parametric and Forcing Excitations in MEMS. Sensors and Actuators A: Physical, 119, 291-299. https://doi.org/10.1016/j.sna.2004.09.025
|
[43]
|
Gutiérrez, A. and Torres, P.J. (2013) Nonautonomous Saddle-Node Bifurcation in a Canonical Electrostatic MEMS. International Journal of Bifurcation and Chaos, 23, Article 1350088. https://doi.org/10.1142/s0218127413500880
|
[44]
|
Lei, J., Li, X., Yan, P. and Zhang, M. (2003) Twist Character of the Least Amplitude Periodic Solution of the Forced Pendulum. SIAM Journal on Mathematical Analysis, 35, 844-867. https://doi.org/10.1137/s003614100241037x
|
[45]
|
Ortega, R. (2016) Symmetric Periodic Solutions in the Sitnikov Problem. Archiv der Mathematik, 107, 405-412. https://doi.org/10.1007/s00013-016-0931-1
|
[46]
|
Gutierrez, A., Núñez, D. and Rivera, A. (2017) Effects of Voltage Change on the Dynamics in a Comb-Drive Finger of an Electrostatic Actuator. International Journal of Non-Linear Mechanics, 95, 224-232. https://doi.org/10.1016/j.ijnonlinmec.2017.05.008
|
[47]
|
Núñez, D., Larreal, O. and Murcia, L. (2021) Odd Periodic Oscillations in Comb-Drive Finger Actuators. Nonlinear Analysis: Real World Applications, 61, Article 103347. https://doi.org/10.1016/j.nonrwa.2021.103347
|
[48]
|
Lerreal, O., Murcia, L. and Núñez, D. (2022) Odd Periodic Oscillations for COMB-Drive Fingers MEMS with Cubic Stiff-Ness. Journal of Mathematical Control Science and Applications, 8, 185-197.
|
[49]
|
Núñez, D. and Murcia, L. (2023) On a Bi-Stability Regime and the Existence of Odd Subharmonics in a Comb-Drive MEMS Model with Cubic Stiffness. Nonlinear Analysis: Real World Applications, 74, Article 103938. https://doi.org/10.1016/j.nonrwa.2023.103938
|