原发性干燥综合征血清学标志物的研究进展
Research Progress on Serological Markers of Primary Sjögren’s Syndrome
摘要: 原发性干燥综合征(pSS)是一种独特的系统性的自身免疫性疾病,涉及唾液和泪腺以及多个其他器官系统的损伤,其与多种血清学标志物具有相关性,如抗SSA抗体、抗SSB抗体、抗Ro52抗体、抗着丝点抗体、抗M3R抗体、水通道蛋白5、抗唾液腺蛋白1抗体等。本文将对近年来血清学标志物在pSS疾病的发病机制、临床表现以及预后等方面的作用进行综述,旨在为临床实践和科学研究提供新的思路与研究方向。
Abstract: Primary Sjögren’s syndrome (pSS) is a unique systemic autoimmune disease involving damage to salivary and lacrimal glands, as well as multiple other organ systems, that is associated with multiple serological markers, such as anti-SSA antibodies, anti-SSB antibodies, anti-RO52 antibodies, anti-centromere antibodies, anti-M3R antibodies, aquaporin 5, anti-salivary gland protein 1 antibodies and so on. This article will review the recent serological markers in the pathogenesis, clinical manifestations and prognosis of pSS, aiming to provide new ideas and research directions for clinical practice and scientific research.
文章引用:张智栋. 原发性干燥综合征血清学标志物的研究进展[J]. 临床医学进展, 2025, 15(4): 1329-1336. https://doi.org/10.12677/acm.2025.1541062

1. 引言

原发性干燥综合征(pSS)作为一种多系统自身免疫性疾病,其主要特征是淋巴细胞浸润,即多数pSS患者的外分泌腺可受到不同程度地累及,同时可在血液中检测到抗SSA、抗SSB等多种自身抗体。多数情况下,疾病在数月至数年的时间内潜伏发展。pSS包括典型的口干、眼干、肌肉骨骼疼痛以及其他脏器不同程度的受累等特征性的症状。抗SSA抗体和抗SSB抗体是诊断pSS的标志性抗体,但在疾病前期检出率较低,敏感性相对较差[1]。刘荷江等人[2]通过实验证实联合诊断pSS时各抗体的准确率、灵敏度及特异度均有所提高。综上,血清学标志物的检测对pSS有一定的诊断价值,抗体的联合检测更具有一定的临床意义。但由于抗SSA、抗SSB抗体不仅可以在pSS中出现,在多种自身免疫系统疾病中也可出现,特别是在疾病早期或症状不典型时,容易造成误诊或漏诊。近年来,随着研究深入,多种血清学标志物如抗Ro52抗体、抗着丝点抗体、抗M3R抗体、水通道蛋白5、抗唾液腺蛋白1抗体等取得了一些新的进展,为疾病的诊疗及预后提供了新的契机,对该疾病的进一步认识具有重要的意义。

2. 血清学标志物

2.1. 抗Ro/SSA抗体、抗La/SSB抗体

原发性干燥综合征(pSS)作为自身免疫性疾病,由T和B细胞对自身抗原(Ro/SSA、La/SSB和其他)的异常免疫反应介导,被认为是pSS发展的主要机制。抗Ro/SSA、抗La/SSB抗体是诊断pSS标志性抗体,研究发现其与多系统受累、高球蛋白血症以及B细胞活化等密切相关[3]。这种自身抗体主要针对人类Ro/La核糖核蛋白复合物的成分,该复合物由富含尿苷的小细胞质RNA和具有不同生物学功能的共价结合蛋白Ro52、Ro60和La组成。Ro52抗原是E3作为在炎症中提供负反馈调节的连接酶,Ro60是一种RNA降解蛋白,而La是一种磷蛋白,在其他细胞功能中调节RNA的可用性[4]。He等[5]报道指出,pSS患者抗SSA和抗SSB的敏感性分别为45.5%和30.9%,其特异性分别为83.8%和97.7%。在Vasiliki-Kalliopi [6]研究中,分别有33%~74%和23%~52%的pSS患者存在抗Ro/SSA和抗La/SSB抗体,而抗La/SSB抗体很少单独存在。

抗Ro/SSA和抗La/SSB抗体阳性的pSS患者与疾病严重程度和进展密切相关,这类患者往往发病年龄早,更容易出现腮腺反复肿大的症状,同时在小唾液腺组织中观察到更多的淋巴细胞浸润[7]。此外,其发生淋巴结肿大、脾肿大、血管炎及雷诺现象等腺外表现的发生率显著升高[8]。少数pSS患者表现为孤立的抗La/SSB抗体阳性,这类患者发生严重的脏器受累频率相对较低,但ESSDAI疾病活动度评分较高[9]。而在抗Ro/SSA抗体、La/SSB抗体阳性及唇腺病理活检阳性的患者中,其发生淋巴瘤的风险显著升高[10]。在Quartuccio L等人研究中同样发现抗Ro/SSA、抗La/SSB抗体阴性的pSS患者中B细胞活化水平明显降低[11]。Maślińska等人研究报道抗SSB抗体与抗SSA抗体与pSS的疾病活动度和严重程度有一定的相关性,同时抗体可能对预后会有一定的影响,尤其抗Ro/SSA抗体表现出更高的临床相关性[12]

在新生儿中,抗SSA抗体阳性与胎儿心脏畸形相关。流行病学研究显示,抗SSA抗体阳性患者的胎儿心脏病变发生率约为2%,而对于有不良妊娠史,特别是有过胎儿心脏畸形史的患者,其再次妊娠时胎儿心脏病变的风险增加至18% [13]。抗SSA抗体相关的胎儿心脏病变不仅表现为房室传导阻滞,实验表明,母亲体内的抗SSA抗体能够通过胎盘屏障传递给胎儿,诱发新生儿狼疮[14]。病变机制主要为血管炎,不仅会有皮肤一过性损害,严重时可引起胎儿心肌细胞炎性改变[15],导致房室传导阻滞和心肌细胞纤维化等心脏问题[16]。其中三度房室传导阻滞是最为危重的表现之一。一旦胎儿发生三度房室传导阻滞,其病变通常是不可逆的,且胎儿的死亡风险显著升高。此外,在Lin [17]等人研究中表明,抗Ro/SSA抗体也可能是视神经脊髓炎谱系障碍(NMOSD)患者复发和EDSS表现不佳的危险因素。但抗Ro/SSA抗体在其发病机制尚未完全阐明。目前已经提出了几种潜在的免疫机制:抗Ro/SSA抗体与SSA抗原结合导致血脑屏障通透性增加[18]。血清AQP4-IgG主要通过与星形胶质细胞相互作用,引起一系列炎症反应,导致中枢神经系统损伤[19]。另一种解释是免疫复合物沉积导致神经病理变化,包括轴突退化以及在某些情况下有髓纤维的丢失[20]。综上,在临床中应强调个体化随访,对于抗SSA抗体阳性的病人要早诊早治。

2.2. 抗Ro52抗体

抗Ro52抗体特异性较差,可出现在多种自身免疫性疾病,约有一半的患者会产生该抗体。早期研究认为Ro/SSA抗原是由分子量相近的两部分多肽(52 kD和60 kD)组成的同一大分子复合体,即抗Ro/SSA抗体包括抗Ro52和抗Ro60两部分[21]。然而,在2002年,Peene等用HeLa-S100免疫印迹实验证实,抗Ro-52抗体是独立存在的自身抗体,其不与Ro60和SSB抗原产生反应[22]。天然SSA抗原只有Ro60而并不包括Ro52,抗Ro60和抗Ro52并不属于同一抗体系统。

Ro52抗原基因位于人类11号染色体短臂未端,其表达的Ro52抗原被标记为TRIM 21,因此抗Ro-52抗体也称为抗TRIM 21抗体[23]。TRIM 21蛋白具有典型的三个结构域,即环指/Bbox/卷曲–螺旋(RING finger/Bbox/coiled-coil, RBCC)结构,其中已知环指结构域具有E3泛素连接酶活性,在蛋白质的泛素化修饰中起到积极作用[24]。Oke等人研究发现,细胞内抗Ro52抗体的表达可能会受到多种刺激的上调,包括干扰素(IFN)-α,紫外线(UV)辐射和氧化应激[25]。因此,抗Ro52阳性的SS患者通常表现出更多的临床和实验室特征。既往研究表明抗Ro-52抗体是多发性肌炎/皮肌炎、系统性硬化症合并间质性肺病的独立危险因素,抗Ro-52阳性的患者,预后更差,死亡率也更高。关于它与干燥综合征相关间质性肺病之间的关系,目前仍存在争议。但Decker等人和Chan的综述提供了一些线索[26] [27]。Ro52蛋白通过作为与病毒抗原结合的免疫球蛋白的细胞质Fc受体介导细胞内抗体免疫。当特异性抗体识别病原体时,它们可以在感染期间被携带到细胞内,而一旦进入胞质溶胶,与抗体结合的病原体就会被Ro52识别,Ro52不仅可以催化K63连接的泛素链形成,激活先天免疫途径,还可将传入的抗体-病毒复合物引向蛋白酶体降解,从而中和病毒并阻止感染[26]。此外,Ro52蛋白作为E3泛素连接酶,对细胞蛋白的泛素化至关重要,包括各种干扰素调节因子。这些因子在介导1型干扰素中起着关键作用,而1型干扰素是抗微生物防御,特别是抗病毒反应所必需的。Ro52蛋白可被1型干扰素诱导,其E3泛素连接酶活性可能建立负反馈机制。这种机制调节1型干扰素的过量产生和抗病毒应答期间免疫系统的延长激活,从而降低自身免疫性疾病发展的风险。但因Ro52蛋白在肺部的表达量比在身体其他部位的表达量要多,抑制Ro-52蛋白的调节活性可能导致免疫反应过度活跃,进而引起肺部炎症。Buvry等人首次表明,抗Ro52抗体是pSS患者ILD的独立危险因素,同时伴RF阳性率的升高[28]。ILD随着疾病进展可能导致通气衰竭和继发性肺动脉高压,严重者危及生命的并发症[29]。此外,与没有ILD的患者相比,ILD患者出现雷诺现象的频率更高,这表明微血管缺血过程可能在肺损伤发作中发挥重要作用[29]。Palm研究表明[30] pSS患者肺部受累的主要危险因素包括男性、吸烟、疾病的长期演变、全身系统性表现、高丙种球蛋白血症和抗SSA抗体的存在等多种因素相互作用所致。经抗SSA抗体、抗SSB抗体和类风湿因子状态校正的多变量分析证实,抗Ro52抗体的存在导致pSS-ILD发生的风险升高,即表明抗Ro52抗体是pSS-ILD的独立危险因素[28]。研究表明,这些患者病程持续时间长,常伴有小唾液腺的广泛淋巴细胞浸润、严重的外分泌腺功能紊乱以及反复腮腺肿大。此外,抗Ro52阳性的患者更容易合并其他并发症,如贫血、白细胞减少症、血管炎、肾功能不全以及间质性肺病变(ILD)等。这些特征表明抗Ro52抗体在疾病的严重程度和临床表现中可能起着重要的作用[1] [28] [31]。然而,有趣的是,MontanoLoza等人[32]还发现,抗Ro52抗体与抗可溶性肝抗原、肝硬化的发展和更差的预后有关。李等人[33]发现,自身免疫性肝炎(AIH)中抗Ro52抗体阳性的总体患病率高于慢性乙型或丙型肝炎感染,在原发性胆汁性胆管炎(PBC)中同样也发现了抗Ro52抗体的存在,其比例与AIH相似。在Devesa等人[34]的一项研究发现,170名AIH患者中有65例(38%)患者抗Ro52抗体阳性。抗Ro52阳性的AIH患者发生肝硬化和肝死亡或需要肝移植的概率更高[32],但AIH和抗Ro52抗体之间存在关联性还需要进一步的研究来确定,同时抗Ro52抗体相关的系统性自身免疫的广泛表现较为显著,需要进一步的研究来描述抗Ro52抗体与临床之间的精确关联。

2.3. 抗着丝点抗体

抗着丝点抗体(ACA)是抗核抗体的一种类型,主要针对着丝点蛋白质抗原。ACA已在患有不同风湿性疾病的患者中得到描述,包括CREST 综合征、原发性胆汁性肝硬化、原发性雷诺病、类风湿性关节炎和没有明显结缔组织疾病的受试者[35]。近年来的研究发现,pSS患者也可出现ACA,且阳性率在1%到13%不等[36]。Nakamura等[37]研究发现,ACA阳性且抗Ro/SSA抗体、抗La/SSB抗体阴性的pSS患者更易发生雷诺现象且其血清IgG水平相对较低。在唇腺活检的病理组织中,单核细胞浸润级别低,但其小唾液腺中的组织更倾向于纤维化,而非典型的炎症主导的病理过程。另有研究还表明,ACA阳性的pSS患者中雷诺现象、肝脏受累的发生率较高,而出现白细胞减少、多克隆高球蛋白血症以及类风湿因子、抗SSA、抗SSB抗体的阳性率较低[36]。以上发现均提示具有ACA的pSS患者在临床表现、血清学特征及病理特点上与传统的抗SSA或抗SSB抗体阳性患者存在显著差异,应被视为一种特殊亚型。值得注意的是,这类患者出现淋巴瘤的风险较高,但这方面的结论仍需更进一步的研究、随访来验证[38]

2.4. 抗毒蕈碱乙酰胆碱3受体抗体

抗毒蕈碱乙酰胆碱3受体抗体(抗M3R抗体)是一种在pSS患者血清中发现的自身抗体,近年来被认为可以作为诊断pSS的一个潜在血清学标志物。M3R受体广泛存在于多种组织中,特别是在腺体和神经系统中。抗M3R抗体的存在能够特异性结合并抑制M3毒蕈碱乙酰胆碱受体,从而干扰乙酰胆碱与受体的正常结合。这种干扰阻断了细胞内信号传导通路,从而影响腺上皮细胞的正常功能,导致腺体的分泌功能下降。这种作用在pSS患者中尤为明显,患者常常表现出口干和眼干等症状。

为了证实M3R在自身免疫性涎腺炎中的作用,Sumida等人将M3R基因敲除小鼠的脾细胞移植到Rag−/−小鼠体内。结果显示,接受脾细胞移植的Rag−/−小鼠表现出严重的涎腺炎病理特征,同时血清中抗M3R抗体的水平显著升高,而唾液分泌量则明显减少。病理组织学显示,移植后的小鼠唾液腺中有大量单核细胞浸润,主要为CD4+T细胞,同时伴有上皮细胞的破坏。这项研究不仅阐明了M3R在自身免疫性涎腺炎中的抗原角色,还为pSS的发病机制研究提供了重要的实验依据[39] [40]。在K. Jayakanthan [41]研究中发现唾液中的抗M3R抗体阳性在年轻的pSS患者中更为常见,并伴有高球蛋白血症和较短的疾病持续时间。He等人针对血清和唾液使用相同的抗原检测,他们对血清测定的敏感性和特异性分别为62.2%和95.1% [42]。Kovacs等[39]在抗SSA抗体阴性患者中检测到了唾液中的抗M3R抗体,且与白细胞减少症呈正相关。因此,尽管SSA和SSB抗体呈血清阴性状态,但该检测有可能用作pSS分类的辅助测试,尤其是那些对pSS有强烈临床怀疑的患者。

2.5. 其他血清学标记物

随着对pSS疾病的病理生理学研究深入,pSS的诊断标准经常被重新评估。水通道蛋白(AQP)是一类高度特异性的跨膜蛋白,可以在细胞膜上形成选择性水分子通道,有效促进水和小分子跨细胞膜的快速运输[43] [44]。迄今为止,已经在人类中鉴定出13个AQP亚型,并基于功能和结构相似性分为三个亚家族。AQP5在促进细胞水运输并参与各种细胞过程中起着关键作用[45]。AQP5在不同的人体组织中广泛表达,尤其是在唾液和泪腺中。在pSS患者中,已经检测到针对AQP5的自身抗体,这与唾液分泌的降低密切相关,对腺功能有着直接影响[46]。罗慧臣等[47]利用免疫组织化学法检测到AQP5在干燥综合征(SS)患者唇腺中表达,且AQP5主要分布在肌上皮细胞和导管中,而腺上皮的表达则相对较弱。这一发现揭示了AQP5在SS患者中的异常分布特征,为SS患者口干症的发病机制提供了重要线索。

早在2001年的时候,Serge Steinfeld S等[48]就通过大鼠实验发现,敲除AQP5基因的大鼠在唾液分泌速率生成方面明显降低。尽管大量研究已证实pSS的发病与唾液腺等外分泌腺体的组织破坏存在相关,但pSS的发病严重程度与腺体的破坏程度并不水平,这可能与多种因素有关,包括免疫系统的异常反应、细胞因子的释放、腺体微环境的改变以及其他系统性因素的影响。此外,炎症已被证明会引起AQP5定位的重大变化,在SS患者中,由于淋巴细胞浸润破坏了腺泡细胞,可以观察到AQP5渗出。这些变化被认为是由于炎症性浸润和对腺上皮上皮的损害而引起的,强调了炎症环境在破坏AQP5转运中的作用,从而引起AQP5的下调[49]

近年来,在pSS中还发现了抗唾液腺蛋白1 (SP1)抗体、抗碳酸酐酶6 (CA6)抗体以及抗腮腺分泌蛋白(PSP)抗体,作为识别特定唾液腺和泪腺组织的抗体,不仅丰富了pSS的血清学标志物谱,还为理解疾病的病理机制提供了新的线索[50] [51]。既往研究发现抗CA6抗体与SS中的肾小管酸中毒相关[6]。在一项构建IL-14α转基因小鼠中还研究发现,注射SP1蛋白的小鼠组,其颌下腺和泪腺的淋巴细胞浸润更为明显,唾液流率下降更低,且抗SSA、SSB抗体测定更高,SP1抗原抗体免疫复合物的沉积加速了pSS的疾病进程[52]。而在SS小鼠模型中进一步表明,这些抗体的表达要早于抗Ro和抗La抗体[50],更常见于早期或轻度疾病的SS患者[53]。抗SP1、抗CA6和抗PSP抗体已被证明是系统性硬化症和混合性结缔组织病中继发性SS的潜在良好标志物,与这些标记物相比,抗Ro的敏感性和特异性较低,但随着疾病的进展,这些自身抗体可能会消失。目前还需要进一步的研究来确定其在SS过程中表达的时间以及病理生理学中的作用。因此,尽管腺体的破坏是pSS的一个重要方面,但要全面理解该病的发病机制,还需要考虑其他可能的因素。这提示我们在研究和治疗pSS时,除了关注腺体的结构损伤外,还应关注功能性改变和其他相关的免疫机制。

3. 展望

在pSS疾病的诊断、发病机制和预后中,血清学标志物扮演着至关重要的角色。尽管传统的自身抗体如抗Ro/SSA和抗La/SSB,已被广泛应用,但其特异性和敏感性仍存在一定局限性。此外,唇腺活检作为病理学诊断的“金标准”,由于其创伤性、取材困难以及早期活检率低等问题,常常导致pSS患者的诊断延迟或误诊。因此,提高诊断率变得尤为重要。随着对pSS发病机制研究的不断深入许多血清学标志物被发现,这对我们在早期pSS诊断中具有一定的指导意义,但仍需克服诸多挑战。未来,随着研究的深入和技术的进步,这些血清学标志物有望在pSS的早期诊断、个体化治疗和预后评估中发挥更大的作用。

参考文献

[1] Retamozo, S., Akasbi, M., Brito-Zerón, P., et al. (2012) Anti-Ro52 Antibody Testing Influences the Classification and Clinical Characterisation of Primary Sjgren’s Syndrome. Clinical & Experimental Rheumatology, 30, 686-692.
[2] 刘荷江, 常娥, 郭敏. 自身抗体检测诊断原发性干燥综合征的临床应用价值分析[J]. 内科, 2018, 13(3): 329-332.
[3] Hernández-Molina, G., Leal-Alegre, G. and Michel-Peregrina, M. (2011) The Meaning of Anti-Ro and Anti-La Antibodies in Primary Sjögren’s Syndrome. Autoimmunity Reviews, 10, 123-125.
https://doi.org/10.1016/j.autrev.2010.09.001
[4] Routsias, J.G. and Tzioufas, A.G. (2010) Autoimmune Response and Target Autoantigens in Sjögren’s Syndrome. European Journal of Clinical Investigation, 40, 1026-1036.
https://doi.org/10.1111/j.1365-2362.2010.02342.x
[5] He, J., Fang, W. and Li, Z.G. (2008) [The Application of Combined Detection of Autoantibodies in Primary Sjögren’s Syndrome]. Chinese Journal of Internal Medicine, 47, 46-51.
[6] Bournia, V. and Vlachoyiannopoulos, P.G. (2012) Subgroups of Sjögren Syndrome Patients According to Serological Profiles. Journal of Autoimmunity, 39, 15-26.
https://doi.org/10.1016/j.jaut.2012.03.001
[7] Mofors, J., Holmqvist, M., Westermark, L., Björk, A., Kvarnström, M., Forsblad‐d’Elia, H., et al. (2019) Concomitant Ro/SSA and La/SSB Antibodies Are Biomarkers for the Risk of Venous Thromboembolism and Cerebral Infarction in Primary Sjögren’s Syndrome. Journal of Internal Medicine, 286, 458-468.
https://doi.org/10.1111/joim.12941
[8] Mofors, J., Björk, A., Smedby, K.E., Kvarnström, M., Forsblad-d’Elia, H., Magnusson-Bucher, S., et al. (2020) Increased Risk of Multiple Myeloma in Primary Sjögren’s Syndrome Is Limited to Individuals with Ro/SSA and La/SSB Autoantibodies. Annals of the Rheumatic Diseases, 79, 307-308.
https://doi.org/10.1136/annrheumdis-2019-216287
[9] Acar-Denizli, N., Horváth, I.F., Mandl, T., et al. (2020) Systemic Phenotype Related to Primary Sjgren’s Syndrome in 279 Patients Carrying Isolated Anti-La/SSB Antibodies. Clinical and Experimental Rheumatology, 126, 85-94.
[10] Cafaro, G., Perricone, C., Baldini, C., et al. (2020) Significance of Anti-La/SSB Antibodies in Primary Sjögren’s Syndrome Patients with Combined Positivity for Anti-Ro/SSA and Salivary Gland Biopsy. Clinical and Experimental Rheumatology, 126, 53-56.
[11] Quartuccio, L., Baldini, C., Bartoloni, E., Priori, R., Carubbi, F., Corazza, L., et al. (2015) Anti-SSA/SSB-Negative Sjögren’s Syndrome Shows a Lower Prevalence of Lymphoproliferative Manifestations, and a Lower Risk of Lymphoma Evolution. Autoimmunity Reviews, 14, 1019-1022.
https://doi.org/10.1016/j.autrev.2015.07.002
[12] Maślińska, M., Mańczak, M., Wojciechowska, B. and Kwiatkowska, B. (2017) The Prevalence of ANA Antibodies, Anticentromere Antibodies, and Anti-Cyclic Citrullinated Peptide Antibodies in Patients with Primary Sjögren’s Syndrome Compared to Patients with Dryness Symptoms without Primary Sjögren’s Syndrome Confirmation. Rheumatology, 55, 113-119.
https://doi.org/10.5114/reum.2017.68909
[13] Wainwright, B., Bhan, R., Trad, C., Cohen, R., Saxena, A., Buyon, J., et al. (2020) Autoimmune-Mediated Congenital Heart Block. Best Practice & Research Clinical Obstetrics & Gynaecology, 64, 41-51.
https://doi.org/10.1016/j.bpobgyn.2019.09.001
[14] Ambrosi, A., Dzikaite, V., Park, J., Strandberg, L., Kuchroo, V.K., Herlenius, E., et al. (2012) Anti-Ro52 Monoclonal Antibodies Specific for Amino Acid 200-239, but Not Other Ro52 Epitopes, Induce Congenital Heart Block in a Rat Model. Annals of the Rheumatic Diseases, 71, 448-454.
https://doi.org/10.1136/annrheumdis-2011-200414
[15] Llanos, C., Friedman, D.M., Saxena, A., Izmirly, P.M., Tseng, C., Dische, R., et al. (2012) Anatomical and Pathological Findings in Hearts from Fetuses and Infants with Cardiac Manifestations of Neonatal Lupus. Rheumatology, 51, 1086-1092.
https://doi.org/10.1093/rheumatology/ker515
[16] Cuneo, B.F., Strasburger, J.F., Niksch, A., Ovadia, M. and Wakai, R.T. (2009) An Expanded Phenotype of Maternal SSA/SSB Antibody-Associated Fetal Cardiac Disease. The Journal of Maternal-Fetal & Neonatal Medicine, 22, 233-238.
https://doi.org/10.1080/14767050802488220
[17] Lin, L., Hang, H., Zhang, J., Lu, J., Chen, D. and Shi, J. (2022) Clinical Significance of Anti-SSA/Ro Antibody in Neuromyelitis Optica Spectrum Disorders. Multiple Sclerosis and Related Disorders, 58, Article ID: 103494.
https://doi.org/10.1016/j.msard.2022.103494
[18] Estiasari, R., Matsushita, T., Masaki, K., Akiyama, T., Yonekawa, T., Isobe, N., et al. (2012) Comparison of Clinical, Immunological and Neuroimaging Features between Anti-Aquaporin-4 Antibody-Positive and Antibody-Negative Sjögren’s Syndrome Patients with Central Nervous System Manifestations. Multiple Sclerosis Journal, 18, 807-816.
https://doi.org/10.1177/1352458511431727
[19] Tani, J., Liao, H., Hsu, H., Chen, L., Chang, T., Shin‐Yi Lin, C., et al. (2020) Immune‐Mediated Axonal Dysfunction in Seropositive and Seronegative Primary Sjögren’s Syndrome. Annals of Clinical and Translational Neurology, 7, 819-828.
https://doi.org/10.1002/acn3.51053
[20] Lisi, S., Sisto, M., Lofrumento, D.D. and D’Amore, M. (2012) Sjögren’s Syndrome Autoantibodies Provoke Changes in Gene Expression Profiles of Inflammatory Cytokines Triggering a Pathway Involving TACE/NF-κB. Laboratory Investigation, 92, 615-624.
https://doi.org/10.1038/labinvest.2011.190
[21] Ben-Chetrit, E., Chan, E.K., Sullivan, K.F. and Tan, E.M. (1988) A 52-Kd Protein Is a Novel Component of the SSA/Ro Antigenic Particle. The Journal of experimental medicine, 167, 1560-1571.
https://doi.org/10.1084/jem.167.5.1560
[22] Peene, I., Meheus, L., De Keyser, S., Humbel, R., Veys, E.M. and De Keyser, F. (2002) Anti-Ro52 Reactivity Is an Independent and Additional Serum Marker in Connective Tissue Disease. Annals of the Rheumatic Diseases, 61, 929-933.
https://doi.org/10.1136/ard.61.10.929
[23] Brauner, S., Ivanchenko, M., Thorlacius, G.E., Ambrosi, A. and Wahren-Herlenius, M. (2018) The Sjögren’s Syndrome-Associated Autoantigen Ro52/TRIM21 Modulates Follicular B Cell Homeostasis and Immunoglobulin Production. Clinical and Experimental Immunology, 194, 315-326.
https://doi.org/10.1111/cei.13211
[24] Espinosa, A., Zhou, W., Ek, M., Hedlund, M., Brauner, S., Popovic, K., et al. (2006) The Sjögren’s Syndrome-Associated Autoantigen Ro52 Is an E3 Ligase That Regulates Proliferation and Cell Death. The Journal of Immunology, 176, 6277-6285.
https://doi.org/10.4049/jimmunol.176.10.6277
[25] Oke, V., Vassilaki, I., Espinosa, A., Strandberg, L., Kuchroo, V.K., Nyberg, F., et al. (2009) High Ro52 Expression in Spontaneous and UV-Induced Cutaneous Inflammation. Journal of Investigative Dermatology, 129, 2000-2010.
https://doi.org/10.1038/jid.2008.453
[26] Chan, E.K.L. (2022) Anti-Ro52 Autoantibody Is Common in Systemic Autoimmune Rheumatic Diseases and Correlating with Worse Outcome When Associated with Interstitial Lung Disease in Systemic Sclerosis and Autoimmune Myositis. Clinical Reviews in Allergy & Immunology, 63, 178-193.
https://doi.org/10.1007/s12016-021-08911-z
[27] Decker, P., Moulinet, T., Pontille, F., Cravat, M., De Carvalho Bittencourt, M. and Jaussaud, R. (2022) An Updated Review of Anti-Ro52 (TRIM21) Antibodies Impact in Connective Tissue Diseases Clinical Management. Autoimmunity Reviews, 21, Article ID: 103013.
https://doi.org/10.1016/j.autrev.2021.103013
[28] Buvry, C., Cassagnes, L., Tekath, M., Artigues, M., Pereira, B., Rieu, V., et al. (2020) Anti-Ro52 Antibodies Are a Risk Factor for Interstitial Lung Disease in Primary Sjögren Syndrome. Respiratory Medicine, 163, Article ID: 105895.
https://doi.org/10.1016/j.rmed.2020.105895
[29] Lin, W., Xin, Z., Zhang, J., Liu, N., Ren, X., Liu, M., et al. (2022) Interstitial Lung Disease in Primary Sjögren’s Syndrome. BMC Pulmonary Medicine, 22, Article No. 73.
https://doi.org/10.1186/s12890-022-01868-5
[30] Palm, O., Garen, T., Berge Enger, T., Jensen, J.L., Lund, M., Aalokken, T.M., et al. (2012) Clinical Pulmonary Involvement in Primary Sjögren’s Syndrome: Prevalence, Quality of Life and Mortality—A Retrospective Study Based on Registry Data. Rheumatology, 52, 173-179.
https://doi.org/10.1093/rheumatology/kes311
[31] Tzioufas, A.G., Wassmuth, R., Dafni, U.G., Guialis, A., Haga, H., Isenberg, D.A., et al. (2002) Clinical, Immunological, and Immunogenetic Aspects of Autoantibody Production against Ro/SSA, La/SSB and Their Linear Epitopes in Primary Sjögren’s Syndrome (PSS): A European Multicentre Study. Annals of the Rheumatic Diseases, 61, 398-404.
https://doi.org/10.1136/ard.61.5.398
[32] Li, B. (2015) Autoantibodies in Chinese Patients with Chronic Hepatitis B: Prevalence and Clinical Associations. World Journal of Gastroenterology, 21, 283-291.
https://doi.org/10.3748/wjg.v21.i1.283
[33] Jordà, F.D., Ginestar, J.F., Balén, M.B., Cortés, J.O., Hariri, A.B., Ñíguez, J.A.R., et al. (2003) Hepatitis autoinmune y anticuerpos anti-Ro positivos. ¿Alguna relación? Gastroenterología y Hepatología, 26, 475-479.
https://doi.org/10.1016/s0210-5705(03)70397-5
[34] Tan, E.M., Rodnan, G.P., Garcia, I., Moroi, Y., Fritzler, M.J. and Peebles, C. (1980) Diversity of Antinuclear Antibodies in Progressive Systemic Sclerosis. Arthritis & Rheumatism, 23, 617-625.
https://doi.org/10.1002/art.1780230602
[35] Baer, A.N., Medrano, L., McAdams‐DeMarco, M. and Gniadek, T.J. (2016) Association of Anticentromere Antibodies with More Severe Exocrine Glandular Dysfunction in Sjögren’s Syndrome: Analysis of the Sjögren’s International Collaborative Clinical Alliance Cohort. Arthritis Care & Research, 68, 1554-1559.
https://doi.org/10.1002/acr.22859
[36] Nakamura, H., Kawakami, A., Hayashi, T., Iwamoto, N., Okada, A., Tamai, M., et al. (2010) Anti-Centromere Antibody-Seropositive Sjögren’s Syndrome Differs from Conventional Subgroup in Clinical and Pathological Study. BMC Musculoskeletal Disorders, 11, Article No. 140.
https://doi.org/10.1186/1471-2474-11-140
[37] Gulati, D., Kushner, I., File, E. and Magrey, M. (2010) Primary Sjögren’s Syndrome with Anticentromere Antibodies—A Clinically Distinct Subset. Clinical Rheumatology, 29, 789-791.
https://doi.org/10.1007/s10067-009-1359-9
[38] Sumida, T., Iizuka, M., Asashima, H., Tsuboi, H. and Matsumoto, I. (2012) Pathogenic Role of Anti-M3 Muscarinic Acetylcholine Receptor Immune Response in Sjögren’s Syndrome. La Presse Médicale, 41, e461-e466.
https://doi.org/10.1016/j.lpm.2012.05.019
[39] Iizuka, M., Wakamatsu, E., Tsuboi, H., Nakamura, Y., Hayashi, T., Matsui, M., et al. (2010) Pathogenic Role of Immune Response to M3 Muscarinic Acetylcholine Receptor in Sjögren’s Syndrome-Like Sialoadenitis. Journal of Autoimmunity, 35, 383-389.
https://doi.org/10.1016/j.jaut.2010.08.004
[40] Jayakanthan, K., Ramya, J., Mandal, S.K., Sandhya, P., Gowri, M. and Danda, D. (2016) Younger Patients with Primary Sjögren’s Syndrome Are More Likely to Have Salivary Igg Anti-Muscarinic Acetylcholine Receptor Type 3 Antibodies. Clinical Rheumatology, 35, 657-662.
https://doi.org/10.1007/s10067-016-3186-0
[41] He, J., Guo, J., Ding, Y., Li, Y., Pan, S., Liu, Y., et al. (2011) Diagnostic Significance of Measuring Antibodies to Cyclic Type 3 Muscarinic Acetylcholine Receptor Peptides in Primary Sjögren’s Syndrome. Rheumatology, 50, 879-884.
https://doi.org/10.1093/rheumatology/keq420
[42] Kovács, L., Marczinovits, I., György, A., Tóth, G.K., Dorgai, L., Pál, J., et al. (2005) Clinical Associations of Autoantibodies to Human Muscarinic Acetylcholine Receptor 3213-228 in Primary Sjögren’s Syndrome. Rheumatology, 44, 1021-1025.
https://doi.org/10.1093/rheumatology/keh672
[43] Magouliotis, D.E., Tasiopoulou, V.S., Svokos, A.A. and Svokos, K.A. (2020) Aquaporins in Health and Disease. Advances in Clinical Chemistry, 98, 149-171.
https://doi.org/10.1016/bs.acc.2020.02.005
[44] Pust, A., Kylies, D., Hube-Magg, C., Kluth, M., Minner, S., Koop, C., et al. (2016) Aquaporin 5 Expression Is Frequent in Prostate Cancer and Shows a Dichotomous Correlation with Tumor Phenotype and PSA Recurrence. Human Pathology, 48, 102-110.
https://doi.org/10.1016/j.humpath.2015.09.026
[45] Alam, J., Koh, J.H., Kim, N., Kwok, S., Park, S., Song, Y.W., et al. (2016) Detection of Autoantibodies against Aquaporin-5 in the Sera of Patients with Primary Sjögren’s Syndrome. Immunologic Research, 64, 848-856.
https://doi.org/10.1007/s12026-016-8786-x
[46] 罗慧臣, 李萍, 肖卫国. M3R与AQP5在干燥综合征患者唇腺中的表达与意义[J]. 中国免疫学杂志, 2011, 27(1): 79-81, 87.
[47] Ma, T., Song, Y., Gillespie, A., Carlson, E.J., Epstein, C.J. and Verkman, A.S. (1999) Defective Secretion of Saliva in Transgenic Mice Lacking Aquaporin-5 Water Channels. Journal of Biological Chemistry, 274, 20071-20074.
https://doi.org/10.1074/jbc.274.29.20071
[48] Soyfoo, M., Konno, A., Bolaky, N., Oak, J., Fruman, D., Nicaise, C., et al. (2012) Link between Inflammation and Aquaporin‐5 Distribution in Submandibular Gland in Sjögren’s Syndrome? Oral Diseases, 18, 568-574.
https://doi.org/10.1111/j.1601-0825.2012.01909.x
[49] Shen, L., Suresh, L., Lindemann, M., Xuan, J., Kowal, P., Malyavantham, K., et al. (2012) Novel autoantibodies in Sjögren’s syndrome. Clinical Immunology, 145, 251-255.
https://doi.org/10.1016/j.clim.2012.09.013
[50] De Langhe, E., Bossuyt, X., Shen, L., Malyavantham, K., Ambrus, J.L. and Suresh, L. (2017) Evaluation of Autoantibodies in Patients with Primary and Secondary Sjögren’s Syndrome. The Open Rheumatology Journal, 11, 10-15.
https://doi.org/10.2174/1874312901711010010
[51] 李子轲. SP1在干燥综合征中的作用的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021.
[52] Suresh, L., Malyavantham, K., Shen, L. and Ambrus, J.L. (2015) Investigation of Novel Autoantibodies in Sjögren’s Syndrome Utilizing Sera from the Sjögren’s International Collaborative Clinical Alliance Cohort. BMC Ophthalmology, 15, Article No. 38.
https://doi.org/10.1186/s12886-015-0023-1
[53] Shen, L., Kapsogeorgou, E.K., Yu, M., Suresh, L., Malyavantham, K., Tzioufas, A.G., et al. (2014) Evaluation of Salivary Gland Protein 1 Antibodies in Patients with Primary and Secondary Sjögren’s Syndrome. Clinical Immunology, 155, 42-46.
https://doi.org/10.1016/j.clim.2014.08.009