|
[1]
|
Weiser, T.G., Haynes, A.B., Molina, G., Lipsitz, S.R., Esquivel, M.M., Uribe-Leitz, T., et al. (2016) Size and Distribution of the Global Volume of Surgery in 2012. Bulletin of the World Health Organization, 94, 201-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Etzioni, D.A., Liu, J.H., Maggard, M.A. and Ko, C.Y. (2003) The Aging Population and Its Impact on the Surgery Workforce. Annals of Surgery, 238, 170-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhao, Q., Wan, H., Pan, H. and Xu, Y. (2024) Postoperative Cognitive Dysfunction—Current Research Progress. Frontiers in Behavioral Neuroscience, 18, Article ID: 1328790. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Needham, M.J., Webb, C.E. and Bryden, D.C. (2017) Postoperative Cognitive Dysfunction and Dementia: What We Need to Know and Do. British Journal of Anaesthesia, 119, i115-i125. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yang, X., Huang, X., Li, M., Jiang, Y. and Zhang, H. (2022) Identification of Individuals at Risk for Postoperative Cognitive Dysfunction (POCD). Therapeutic Advances in Neurological Disorders, 15.
|
|
[6]
|
Travica, N., Lotfaliany, M., Marriott, A., Safavynia, S.A., Lane, M.M., Gray, L., et al. (2023) Peri-Operative Risk Factors Associated with Post-Operative Cognitive Dysfunction (POCD): An Umbrella Review of Meta-Analyses of Observational Studies. Journal of Clinical Medicine, 12, Article No. 1610. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Liu, Y., Yang, W., Xue, J., Chen, J., Liu, S., Zhang, S., et al. (2023) Neuroinflammation: The Central Enabler of Postoperative Cognitive Dysfunction. Biomedicine & Pharmacotherapy, 167, Article ID: 115582. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, C., Chen, W., Zhang, Y., Lin, S. and He, H. (2021) Update on the Mechanism and Treatment of Sevoflurane-Induced Postoperative Cognitive Dysfunction. Frontiers in Aging Neuroscience, 13, Article ID: 702231. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Alam, A., Hana, Z., Jin, Z., Suen, K.C. and Ma, D. (2018) Surgery, Neuroinflammation and Cognitive Impairment. EBioMedicine, 37, 547-556. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jin, H., Li, M., Jeong, E., Castro-Martinez, F. and Zuker, C.S. (2024) A Body-Brain Circuit That Regulates Body Inflammatory Responses. Nature, 630, 695-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ma, G., Chen, C., Jiang, H., Qiu, Y., Li, Y., Li, X., et al. (2017) Ribonuclease Attenuates Hepatic Ischemia Reperfusion Induced Cognitive Impairment through the Inhibition of Inflammatory Cytokines in Aged Mice. Biomedicine & Pharmacotherapy, 90, 62-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Leal, G., Comprido, D. and Duarte, C.B. (2014) BDNF-Induced Local Protein Synthesis and Synaptic Plasticity. Neuropharmacology, 76, 639-656. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sierra, A., Beccari, S., Diaz-Aparicio, I., Encinas, J.M., Comeau, S. and Tremblay, M. (2014) Surveillance, Phagocytosis, and Inflammation: How Never-Resting Microglia Influence Adult Hippocampal Neurogenesis. Neural Plasticity, 2014, Article ID: 610343. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, B., Li, S., Cao, X., Dou, X., Li, J., Wang, L., et al. (2018) Blood-Brain Barrier Disruption Leads to Postoperative Cognitive Dysfunction. Current Neurovascular Research, 14, 359-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Qiu, Y., Mo, C., Xu, S., Chen, L., Ye, W., Kang, Y., et al. (2023) Research Progress on Perioperative Blood-Brain Barrier Damage and Its Potential Mechanism. Frontiers in Cell and Developmental Biology, 11, Article ID: 1174043. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Safavynia, S.A. and Goldstein, P.A. (2019) The Role of Neuroinflammation in Postoperative Cognitive Dysfunction: Moving from Hypothesis to Treatment. Frontiers in Psychiatry, 9, Article No. 752. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Taylor, J., Parker, M., Casey, C.P., Tanabe, S., Kunkel, D., Rivera, C., et al. (2022) Postoperative Delirium and Changes in the Blood-Brain Barrier, Neuroinflammation, and Cerebrospinal Fluid Lactate: A Prospective Cohort Study. British Journal of Anaesthesia, 129, 219-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dilmen, O.K., Meco, B.C., Evered, L.A. and Radtke, F.M. (2024) Postoperative Neurocognitive Disorders: A Clinical Guide. Journal of Clinical Anesthesia, 92, Article ID: 111320. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lin, X., Chen, Y., Zhang, P., Chen, G., Zhou, Y. and Yu, X. (2020) The Potential Mechanism of Postoperative Cognitive Dysfunction in Older People. Experimental Gerontology, 130, Article ID: 110791. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Andersen, J.V. and Schousboe, A. (2022) Glial Glutamine Homeostasis in Health and Disease. Neurochemical Research, 48, 1100-1128. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
He, L., Duan, X., Li, S., Zhang, R., Dai, X. and Lu, M. (2024) Unveiling the Role of Astrocytes in Postoperative Cognitive Dysfunction. Ageing Research Reviews, 95, Article ID: 102223. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Netto, M.B., de Oliveira Junior, A.N., Goldim, M., Mathias, K., Fileti, M.E., da Rosa, N., et al. (2018) Oxidative Stress and Mitochondrial Dysfunction Contributes to Postoperative Cognitive Dysfunction in Elderly Rats. Brain, Behavior, and Immunity, 73, 661-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kong, H., Xu, L. and Wang, D. (2022) Perioperative Neurocognitive Disorders: A Narrative Review Focusing on Diagnosis, Prevention, and Treatment. CNS Neuroscience & Therapeutics, 28, 1147-1167. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zeng, K., Long, J., Li, Y. and Hu, J. (2023) Preventing Postoperative Cognitive Dysfunction Using Anesthetic Drugs in Elderly Patients Undergoing Noncardiac Surgery: A Systematic Review and Meta-Analysis. International Journal of Surgery, 109, 21-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Deng, M., Wang, Y. and Zheng, B. (2024) Advances in the Use of Dexmedetomidine for Postoperative Cognitive Dysfunction. Anesthesiology and Perioperative Science, 2, Article No. 38. [Google Scholar] [CrossRef]
|
|
[26]
|
Yang, Y., Zhao, X., Gao, L., Wang, Y. and Wang, J. (2020) Incidence and Associated Factors of Delirium after Orthopedic Surgery in Elderly Patients: A Systematic Review and Meta-Analysis. Aging Clinical and Experimental Research, 33, 1493-1506. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Curley, G.F., Laffey, J.G. and Kavanagh, B.P. (2013) Crosstalk Proposal: There Is Added Benefit to Providing Permissive Hypercapnia in the Treatment of Ards. The Journal of Physiology, 591, 2763-2765. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hickling, K.G., Henderson, S.J. and Jackson, R. (1990) Low Mortality Associated with Low Volume Pressure Limited Ventilation with Permissive Hypercapnia in Severe Adult Respiratory Distress Syndrome. Intensive Care Medicine, 16, 372-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Contreras, M., Masterson, C. and Laffey, J.G. (2015) Permissive Hypercapnia. Current Opinion in Anaesthesiology, 28, 26-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xi, Y., Jia, X., Wei, X. and Zhou, Q. (2024) Progress on the Effects of Permissive Hypercapnia on the CNS during the Intraoperative Period: A Narrative Review. Cureus, 16, e68087. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ahrens, E., Tartler, T.M., Suleiman, A., Wachtendorf, L.J., Ma, H., Chen, G., et al. (2023) Dose-Dependent Relationship between Intra-Procedural Hypoxaemia or Hypocapnia and Postoperative Delirium in Older Patients. British Journal of Anaesthesia, 130, e298-e306. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gao, W., Liu, D., Li, D. and Cui, G. (2015) Effect of Therapeutic Hypercapnia on Inflammatory Responses to One-Lung Ventilation in Lobectomy Patients. Anesthesiology, 122, 1235-1252. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhu, L., Shi, H., Zhu, C., Liu, H., Su, Z. and Zhao, Y. (2020) Impact of Permissive Hypercapnia on Regional Cerebral Oxygen Saturation and Postoperative Cognitive Function in Patients Undergoing Cardiac Valve Replacement. Annals of Palliative Medicine, 9, 4066-4073. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wong, C., Churilov, L., Cowie, D., Tan, C.O., Hu, R., Tremewen, D., et al. (2020) Randomised Controlled Trial to Investigate the Relationship between Mild Hypercapnia and Cerebral Oxygen Saturation in Patients Undergoing Major Surgery. BMJ Open, 10, e029159. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Cheng, Q., Li, L., Lin, D., Li, R., Yue, Y., Wei, H., et al. (2019) Effects of Acute Hypercapnia on Cognitive Function in Patients Undergoing Bronchoscope Intervention. Journal of Thoracic Disease, 11, 1065-1071. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Song, J., Shao, Y., Zhang, G., Fan, B., Tao, W., Liu, X., et al. (2024) Examining the Impact of Permissibility Hypercapnia on Postoperative Delirium among Elderly Patients Undergoing Thoracoscopic-Laparoscopic Esophagectomy: A Single-Center Investigative Study. Shock, 62, 319-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhou, Q., Cao, B., Niu, L., Cui, X., Yu, H., Liu, J., et al. (2010) Effects of Permissive Hypercapnia on Transient Global Cerebral Ischemia-Reperfusion Injury in Rats. Anesthesiology, 112, 288-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yang, T., Velagapudi, R. and Terrando, N. (2020) Neuroinflammation after Surgery: From Mechanisms to Therapeutic Targets. Nature Immunology, 21, 1319-1326. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ijland, M.M., Heunks, L.M. and van der Hoeven, J.G. (2010) Bench-to-Bedside Review: Hypercapnic Acidosis in Lung Injury—From “Permissive” to “Therapeutic”. Critical Care, 14, Article No. 137. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
O’Toole, D., Hassett, P., Contreras, M., Higgins, B.D., McKeown, S.T.W., McAuley, D.F., et al. (2009) Hypercapnic Acidosis Attenuates Pulmonary Epithelial Wound Repair by an NF-B Dependent Mechanism. Thorax, 64, 976-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Morales-Quinteros, L., Camprubí-Rimblas, M., Bringué, J., Bos, L.D., Schultz, M.J. and Artigas, A. (2019) The Role of Hypercapnia in Acute Respiratory Failure. Intensive Care Medicine Experimental, 7, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Gao, Q. and Hernandes, M.S. (2021) Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation, 44, 2143-2150. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yang, W., Wang, Q., Chi, L., Wang, Y., Cao, H. and Li, W. (2019) Therapeutic Hypercapnia Reduces Blood-Brain Barrier Damage Possibly via Protein Kinase Cε in Rats with Lateral Fluid Percussion Injury. Journal of Neuroinflammation, 16, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Tregub, P.P., Kulikov, V.P., Ibrahimli, I., Tregub, O.F., Volodkin, A.V., Ignatyuk, M.A., et al. (2024) Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. International Journal of Molecular Sciences, 25, Article No. 3665. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Eastwood, G.M., Schneider, A.G., Suzuki, S., Peck, L., Young, H., Tanaka, A., et al. (2016) Targeted Therapeutic Mild Hypercapnia after Cardiac Arrest: A Phase II Multi-Centre Randomised Controlled Trial (the CCC Trial). Resuscitation, 104, 83-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Meng, L. and Gelb, A.W. (2015) Regulation of Cerebral Autoregulation by Carbon Dioxide. Anesthesiology, 122, 196-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kumar, G.K. (2011) Hypoxia. 3. Hypoxia and Neurotransmitter Synthesis. American Journal of Physiology-Cell Physiology, 300, C743-C751. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Androsova, G., Krause, R., Winterer, G. and Schneider, R. (2015) Biomarkers of Postoperative Delirium and Cognitive Dysfunction. Frontiers in Aging Neuroscience, 7, Article No. 112. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Vannucci, R.C., Brucklacher, R.M. and Vannucci, S.J. (1997) Effect of Carbon Dioxide on Cerebral Metabolism during Hypoxia-Ischemia in the Immature Rat. Pediatric Research, 42, 24-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kniffin, C.D., Burnett, L.E. and Burnett, K.G. (2014) Recovery from Hypoxia and Hypercapnic Hypoxia: Impacts on the Transcription of Key Antioxidants in the Shrimp Litopenaeus vannamei. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 170, 43-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ozawa, Y., Miyake, F. and Isayama, T. (2022) Efficacy and Safety of Permissive Hypercapnia in Preterm Infants: A Systematic Review. Pediatric Pulmonology, 57, 2603-2613. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Joe, Y., Lee, C.Y., Kim, N., Lee, K., Kang, S.J. and Oh, Y.J. (2023) Effect of Permissive Hypercarbia on Lung Oxygenation during One-Lung Ventilation and Postoperative Pulmonary Complications in Patients Undergoing Thoracic Surgery. European Journal of Anaesthesiology, 40, 691-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Nassar, B. (2022) Should We Be Permissive with Hypercapnia? Annals of the American Thoracic Society, 19, 165-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Madotto, F., Rezoagli, E., McNicholas, B.A., Pham, T., Slutsky, A.S., Bellani, G., et al. (2020) Patterns and Impact of Arterial CO2 Management in Patients with Acute Respiratory Distress Syndrome. Chest, 158, 1967-1982. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Palmer, B.F. and Clegg, D.J. (2023) Respiratory Acidosis and Respiratory Alkalosis: Core Curriculum 2023. American Journal of Kidney Diseases, 82, 347-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Godoy, D.A., Rovegno, M., Lazaridis, C. and Badenes, R. (2021) The Effects of Arterial CO2 on the Injured Brain: Two Faces of the Same Coin. Journal of Critical Care, 61, 207-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Almanza-Hurtado, A., Polanco Guerra, C., Martínez-Ávila, M.C., Borré-Naranjo, D., Rodríguez-Yanez, T. and Dueñas-Castell, C. (2022) Hypercapnia from Physiology to Practice. International Journal of Clinical Practice, 2022, Article ID: 2635616. [Google Scholar] [CrossRef] [PubMed]
|