|
[1]
|
Xu, C., Ou, E., Li, Z., Chen, Z., Jia, Q., Xu, X., et al. (2022) Synthesis and in Vivo Evaluation of New Steviol Derivatives That Protect against Cardiomyopathy by Inhibiting Ferroptosis. Bioorganic Chemistry, 129, Article ID: 106142. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhang, T., Deng, W., Deng, Y., Liu, Y., Xiao, S., Luo, Y., et al. (2023) Mechanisms of Ferroptosis Regulating Oxidative Stress and Energy Metabolism in Myocardial Ischemia-Reperfusion Injury and a Novel Perspective of Natural Plant Active Ingredients for Its Treatment. Biomedicine & Pharmacotherapy, 165, Article ID: 114706. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wilcox, N.S., Amit, U., Reibel, J.B., Berlin, E., Howell, K. and Ky, B. (2024) Cardiovascular Disease and Cancer: Shared Risk Factors and Mechanisms. Nature Reviews Cardiology, 21, 617-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ju, J., Li, X., Zhao, X., Li, F., Wang, S., Wang, K., et al. (2023) Circular RNA FEACR Inhibits Ferroptosis and Alleviates Myocardial Ischemia/reperfusion Injury by Interacting with NAMPT. Journal of Biomedical Science, 30, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, N., Jiang, W., Wang, W., Xiong, R., Wu, X. and Geng, Q. (2021) Ferroptosis and Its Emerging Roles in Cardiovascular Diseases. Pharmacological Research, 166, Article ID: 105466. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, D., Pi, W., Sun, Z., Liu, X. and Jiang, J. (2022) Ferroptosis and Its Role in Cardiomyopathy. Biomedicine & Pharmacotherapy, 153, Article ID: 113279. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Xie, L., Fefelova, N., Pamarthi, S.H. and Gwathmey, J.K. (2022) Molecular Mechanisms of Ferroptosis and Relevance to Cardiovascular Disease. Cells, 11, Article 2726. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Guo, Y., Lu, C., Hu, K., Cai, C. and Wang, W. (2022) Ferroptosis in Cardiovascular Diseases: Current Status, Challenges, and Future Perspectives. Biomolecules, 12, Article 390. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ahola, S., Rivera Mejías, P., Hermans, S., Chandragiri, S., Giavalisco, P., Nolte, H., et al. (2022) OMA1-Mediated Integrated Stress Response Protects against Ferroptosis in Mitochondrial Cardiomyopathy. Cell Metabolism, 34, 1875-1891.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Komai, K., Kawasaki, N.K., Higa, J.K. and Matsui, T. (2022) The Role of Ferroptosis in Adverse Left Ventricular Remodeling Following Acute Myocardial Infarction. Cells, 11, Article 1399. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xiang, Q., Yi, X., Zhu, X.H., Wei, X. and Jiang, D.S. (2023) Regulated Cell Death in Myocardial Ischemia-Reperfusion Injury. Trends in Endocrinology & Metabolism, 35, 219-234.
|
|
[13]
|
Zhang, K., Tian, X., Li, W. and Hao, L. (2023) Ferroptosis in Cardiac Hypertrophy and Heart Failure. Biomedicine & Pharmacotherapy, 168, Article ID: 115765. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, X., Li, Y., Zhang, S. and Zhou, X. (2021) Ferroptosis as a Novel Therapeutic Target for Cardiovascular Disease. Theranostics, 11, 3052-3059. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, Y., Li, X., Wang, S., Miao, R. and Zhong, J. (2023) Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic Approaches in Cardiovascular Diseases. Nutrients, 15, Article 591. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., et al. (2020) Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circulation Research, 127, 486-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Duan, J., Lin, X., Xu, F., Shan, S., Guo, B., Li, F., et al. (2021) Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Frontiers in Cell and Developmental Biology, 9, Article 701788. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, Y., Xin, L., Xiang, M., Shang, C., Wang, Y., Wang, Y., et al. (2022) The Molecular Mechanisms of Ferroptosis and Its Role in Cardiovascular Disease. Biomedicine & Pharmacotherapy, 145, Article ID: 112423. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fratta Pasini, A.M., Stranieri, C., Busti, F., Di Leo, E.G., Girelli, D. and Cominacini, L. (2023) New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells, 12, Article 867. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Han, X., Zhang, J., Liu, J., Wang, H., Du, F., Zeng, X., et al. (2022) Targeting Ferroptosis: A Novel Insight against Myocardial Infarction and Ischemia-Reperfusion Injuries. Apoptosis, 28, 108-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sun, H., Chen, D., Xin, W., Ren, L., LI, Q. and Han, X. (2023) Targeting Ferroptosis as a Promising Therapeutic Strategy to Treat Cardiomyopathy. Frontiers in Pharmacology, 14, Article 1146651. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chen, W., Zhang, Y., Wang, Z., Tan, M., Lin, J., Qian, X., et al. (2023) Dapagliflozin Alleviates Myocardial Ischemia/Reperfusion Injury by Reducing Ferroptosis via MAPK Signaling Inhibition. Frontiers in Pharmacology, 14, Article 1078205. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ferdinandy, P., Andreadou, I., Baxter, G.F., Bøtker, H.E., Davidson, S.M., Dobrev, D., et al. (2023) Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacological Reviews, 75, 159-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ma, X., Liu, J., Liu, C., Sun, W., Duan, W., Wang, G., et al. (2022) ALOX15-launched PUFA-Phospholipids Peroxidation Increases the Susceptibility of Ferroptosis in Ischemia-Induced Myocardial Damage. Signal Transduction and Targeted Therapy, 7, Article No. 288. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Moon, B.F., Iyer, S.K., Hwuang, E., Solomon, M.P., Hall, A.T., Kumar, R., et al. (2020) Iron Imaging in Myocardial Infarction Reperfusion Injury. Nature Communications, 11, Article No. 3273. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ye, J., Lyu, T., Li, L., Liu, Y., Zhang, H., Wang, X., et al. (2023) Ginsenoside Re Attenuates Myocardial Ischemia/Reperfusion Induced Ferroptosis via miR-144-3p/SLC7A11. Phytomedicine, 113, Article ID: 154681. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lin, J., Yang, K., Ting, P., Luo, Y., Lin, D., Wang, Y., et al. (2021) Gossypol Acetic Acid Attenuates Cardiac Ischemia/Reperfusion Injury in Rats via an Antiferroptotic Mechanism. Biomolecules, 11, Article 1667. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huang, Q., Tian, L., Zhang, Y., Qiu, Z., Lei, S. and Xia, Z. (2023) Nobiletin Alleviates Myocardial Ischemia-Reperfusion Injury via Ferroptosis in Rats with Type-2 Diabetes Mellitus. Biomedicine & Pharmacotherapy, 163, Article ID: 114795. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Qian, W., Liu, D., Han, Y., Liu, M., Liu, B., Ji, Q., et al. (2023) Cyclosporine A-Loaded Apoferritin Alleviates Myocardial Ischemia-Reperfusion Injury by Simultaneously Blocking Ferroptosis and Apoptosis of Cardiomyocytes. Acta Biomaterialia, 160, 265-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, Y., Ren, X., Wang, Y., Chen, D., Jiang, L., Li, X., et al. (2021) Targeting Ferroptosis by Polydopamine Nanoparticles Protects Heart against Ischemia/reperfusion Injury. ACS Applied Materials & Interfaces, 13, 53671-53682. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ravingerová, T., Kindernay, L., Barteková, M., Ferko, M., Adameová, A., Zohdi, V., et al. (2020) The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. International Journal of Molecular Sciences, 21, Article 7889. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ichihara, G., Katsumata, Y., Sugiura, Y., Matsuoka, Y., Maeda, R., Endo, J., et al. (2023) MRP1-Dependent Extracellular Release of Glutathione Induces Cardiomyocyte Ferroptosis after Ischemia-Reperfusion. Circulation Research, 133, 861-876. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Davidson, S.M., Ferdinandy, P., Andreadou, I., Bøtker, H.E., Heusch, G., Ibáñez, B., et al. (2019) Multitarget Strategies to Reduce Myocardial Ischemia/reperfusion Injury. Journal of the American College of Cardiology, 73, 89-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, K., Liu, P., Han, L., Tian, J., Zheng, Z., Sha, M., et al. (2024) Elucidating Ferroptosis Mechanisms in Heart Failure through Transcriptomics, Single-Cell Sequencing, and Experimental Validation. Cellular Signalling, 124, Article ID: 111416. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Xiong, Y., Liu, X., Jiang, L., Hao, T., Wang, Y. and Li, T. (2024) Inhibition of Ferroptosis Reverses Heart Failure with Preserved Ejection Fraction in Mice. Journal of Translational Medicine, 22, Article No. 199. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Bi, X., Wu, X., Chen, J., Li, X., Lin, Y., Yu, Y., et al. (2024) Characterization of Ferroptosis-Triggered Pyroptotic Signaling in Heart Failure. Signal Transduction and Targeted Therapy, 9, Article No. 257. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Packer, M. (2023) Potential Interactions When Prescribing SGLT2 Inhibitors and Intravenous Iron in Combination in Heart Failure. JACC: Heart Failure, 11, 106-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yang, X., Kawasaki, N.K., Min, J., Matsui, T. and Wang, F. (2022) Ferroptosis in Heart Failure. Journal of Molecular and Cellular Cardiology, 173, 141-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, W., Qian, S., Tang, B., Kang, P., Zhang, H. and Shi, C. (2023) Resveratrol Inhibits Ferroptosis and Decelerates Heart Failure Progression via Sirt1/p53 Pathway Activation. Journal of Cellular and Molecular Medicine, 27, 3075-3089. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Su, H., Cantrell, A.C., Chen, J., Gu, W. and Zeng, H. (2023) SIRT3 Deficiency Enhances Ferroptosis and Promotes Cardiac Fibrosis via P53 Acetylation. Cells, 12, Article 1428. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kobashigawa, J., Zuckermann, A., Macdonald, P., Leprince, P., Esmailian, F., Luu, M., et al. (2014) Report from a Consensus Conference on Primary Graft Dysfunction after Cardiac Transplantation. The Journal of Heart and Lung Transplantation, 33, 327-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, W., Feng, G., Gauthier, J.M., Lokshina, I., Higashikubo, R., Evans, S., et al. (2019) Ferroptotic Cell Death and TLR4/Trif Signaling Initiate Neutrophil Recruitment after Heart Transplantation. Journal of Clinical Investigation, 129, 2293-2304. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jin, E., Jo, Y., Wei, S., Rizzo, M., Ryu, D. and Gariani, K. (2024) Ferroptosis and Iron Metabolism in Diabetes: Pathogenesis, Associated Complications, and Therapeutic Implications. Frontiers in Endocrinology, 15, Article 1447148. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wei, J., Zhao, Y., Liang, H., Du, W. and Wang, L. (2022) Preliminary Evidence for the Presence of Multiple Forms of Cell Death in Diabetes Cardiomyopathy. Acta Pharmaceutica Sinica B, 12, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Cheng, Z., Fang, T., Huang, J., Guo, Y., Alam, M. and Qian, H. (2021) Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Frontiers in Cardiovascular Medicine, 8, Article 722340. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, Z., Xia, Q., Su, W., Cao, M., Sun, Y., Zhang, M., et al. (2022) Exploring the Communal Pathogenesis, Ferroptosis Mechanism, and Potential Therapeutic Targets of Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy via a Microarray Data Analysis. Frontiers in Cardiovascular Medicine, 9, Article 824756. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Oudit, G.Y., Sun, H., Trivieri, M.G., Koch, S.E., Dawood, F., Ackerley, C., et al. (2003) L-Type Ca2+ Channels Provide a Major Pathway for Iron Entry into Cardiomyocytes in Iron-Overload Cardiomyopathy. Nature Medicine, 9, 1187-1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Link, G., Pinson, A. and Hershko, C. (1985) Heart Cells in Culture: A Model of Myocardial Iron Overload and Chelation. Journal of Laboratory and Clinical Medicine, 106, 147-153.
|
|
[50]
|
Liu, P., Zhang, Z., Cai, Y., Li, Z., Zhou, Q. and Chen, Q. (2024) Ferroptosis: Mechanisms and Role in Diabetes Mellitus and Its Complications. Ageing Research Reviews, 94, Article ID: 102201. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., Okabe, K., et al. (2020) Mitochondria-Dependent Ferroptosis Plays a Pivotal Role in Doxorubicin Cardiotoxicity. JCI Insight, 5, e132747. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ta, N., Qu, C., Wu, H., Zhang, D., Sun, T., Li, Y., et al. (2022) Mitochondrial Outer Membrane Protein FUNDC2 Promotes Ferroptosis and Contributes to Doxorubicin-Induced Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117396119. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, Y., Yan, S., Liu, X., Deng, F., Wang, P., Yang, L., et al. (2022) PRMT4 Promotes Ferroptosis to Aggravate Doxorubicin-Induced Cardiomyopathy via Inhibition of the Nrf2/GPX4 Pathway. Cell Death & Differentiation, 29, 1982-1995. [Google Scholar] [CrossRef] [PubMed]
|