[1]
|
Xu, C., Ou, E., Li, Z., Chen, Z., Jia, Q., Xu, X., et al. (2022) Synthesis and in Vivo Evaluation of New Steviol Derivatives That Protect against Cardiomyopathy by Inhibiting Ferroptosis. Bioorganic Chemistry, 129, Article ID: 106142. https://doi.org/10.1016/j.bioorg.2022.106142
|
[2]
|
Zhang, T., Deng, W., Deng, Y., Liu, Y., Xiao, S., Luo, Y., et al. (2023) Mechanisms of Ferroptosis Regulating Oxidative Stress and Energy Metabolism in Myocardial Ischemia-Reperfusion Injury and a Novel Perspective of Natural Plant Active Ingredients for Its Treatment. Biomedicine & Pharmacotherapy, 165, Article ID: 114706. https://doi.org/10.1016/j.biopha.2023.114706
|
[3]
|
Wilcox, N.S., Amit, U., Reibel, J.B., Berlin, E., Howell, K. and Ky, B. (2024) Cardiovascular Disease and Cancer: Shared Risk Factors and Mechanisms. Nature Reviews Cardiology, 21, 617-631. https://doi.org/10.1038/s41569-024-01017-x
|
[4]
|
Ju, J., Li, X., Zhao, X., Li, F., Wang, S., Wang, K., et al. (2023) Circular RNA FEACR Inhibits Ferroptosis and Alleviates Myocardial Ischemia/reperfusion Injury by Interacting with NAMPT. Journal of Biomedical Science, 30, Article No. 45. https://doi.org/10.1186/s12929-023-00927-1
|
[5]
|
Li, N., Jiang, W., Wang, W., Xiong, R., Wu, X. and Geng, Q. (2021) Ferroptosis and Its Emerging Roles in Cardiovascular Diseases. Pharmacological Research, 166, Article ID: 105466. https://doi.org/10.1016/j.phrs.2021.105466
|
[6]
|
Li, D., Pi, W., Sun, Z., Liu, X. and Jiang, J. (2022) Ferroptosis and Its Role in Cardiomyopathy. Biomedicine & Pharmacotherapy, 153, Article ID: 113279. https://doi.org/10.1016/j.biopha.2022.113279
|
[7]
|
Xie, L., Fefelova, N., Pamarthi, S.H. and Gwathmey, J.K. (2022) Molecular Mechanisms of Ferroptosis and Relevance to Cardiovascular Disease. Cells, 11, Article 2726. https://doi.org/10.3390/cells11172726
|
[8]
|
Guo, Y., Lu, C., Hu, K., Cai, C. and Wang, W. (2022) Ferroptosis in Cardiovascular Diseases: Current Status, Challenges, and Future Perspectives. Biomolecules, 12, Article 390. https://doi.org/10.3390/biom12030390
|
[9]
|
Ahola, S., Rivera Mejías, P., Hermans, S., Chandragiri, S., Giavalisco, P., Nolte, H., et al. (2022) OMA1-Mediated Integrated Stress Response Protects against Ferroptosis in Mitochondrial Cardiomyopathy. Cell Metabolism, 34, 1875-1891.e7. https://doi.org/10.1016/j.cmet.2022.08.017
|
[10]
|
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680. https://doi.org/10.1073/pnas.1821022116
|
[11]
|
Komai, K., Kawasaki, N.K., Higa, J.K. and Matsui, T. (2022) The Role of Ferroptosis in Adverse Left Ventricular Remodeling Following Acute Myocardial Infarction. Cells, 11, Article 1399. https://doi.org/10.3390/cells11091399
|
[12]
|
Xiang, Q., Yi, X., Zhu, X.H., Wei, X. and Jiang, D.S. (2023) Regulated Cell Death in Myocardial Ischemia-Reperfusion Injury. Trends in Endocrinology & Metabolism, 35, 219-234.
|
[13]
|
Zhang, K., Tian, X., Li, W. and Hao, L. (2023) Ferroptosis in Cardiac Hypertrophy and Heart Failure. Biomedicine & Pharmacotherapy, 168, Article ID: 115765. https://doi.org/10.1016/j.biopha.2023.115765
|
[14]
|
Wu, X., Li, Y., Zhang, S. and Zhou, X. (2021) Ferroptosis as a Novel Therapeutic Target for Cardiovascular Disease. Theranostics, 11, 3052-3059. https://doi.org/10.7150/thno.54113
|
[15]
|
Chen, Y., Li, X., Wang, S., Miao, R. and Zhong, J. (2023) Targeting Iron Metabolism and Ferroptosis as Novel Therapeutic Approaches in Cardiovascular Diseases. Nutrients, 15, Article 591. https://doi.org/10.3390/nu15030591
|
[16]
|
Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., et al. (2020) Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circulation Research, 127, 486-501. https://doi.org/10.1161/circresaha.120.316509
|
[17]
|
Duan, J., Lin, X., Xu, F., Shan, S., Guo, B., Li, F., et al. (2021) Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Frontiers in Cell and Developmental Biology, 9, Article 701788. https://doi.org/10.3389/fcell.2021.701788
|
[18]
|
Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23. https://doi.org/10.1038/s41569-022-00735-4
|
[19]
|
Zhang, Y., Xin, L., Xiang, M., Shang, C., Wang, Y., Wang, Y., et al. (2022) The Molecular Mechanisms of Ferroptosis and Its Role in Cardiovascular Disease. Biomedicine & Pharmacotherapy, 145, Article ID: 112423. https://doi.org/10.1016/j.biopha.2021.112423
|
[20]
|
Fratta Pasini, A.M., Stranieri, C., Busti, F., Di Leo, E.G., Girelli, D. and Cominacini, L. (2023) New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells, 12, Article 867. https://doi.org/10.3390/cells12060867
|
[21]
|
Han, X., Zhang, J., Liu, J., Wang, H., Du, F., Zeng, X., et al. (2022) Targeting Ferroptosis: A Novel Insight against Myocardial Infarction and Ischemia-Reperfusion Injuries. Apoptosis, 28, 108-123. https://doi.org/10.1007/s10495-022-01785-2
|
[22]
|
Sun, H., Chen, D., Xin, W., Ren, L., LI, Q. and Han, X. (2023) Targeting Ferroptosis as a Promising Therapeutic Strategy to Treat Cardiomyopathy. Frontiers in Pharmacology, 14, Article 1146651. https://doi.org/10.3389/fphar.2023.1146651
|
[23]
|
Chen, W., Zhang, Y., Wang, Z., Tan, M., Lin, J., Qian, X., et al. (2023) Dapagliflozin Alleviates Myocardial Ischemia/Reperfusion Injury by Reducing Ferroptosis via MAPK Signaling Inhibition. Frontiers in Pharmacology, 14, Article 1078205. https://doi.org/10.3389/fphar.2023.1078205
|
[24]
|
Ferdinandy, P., Andreadou, I., Baxter, G.F., Bøtker, H.E., Davidson, S.M., Dobrev, D., et al. (2023) Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacological Reviews, 75, 159-216. https://doi.org/10.1124/pharmrev.121.000348
|
[25]
|
Ma, X., Liu, J., Liu, C., Sun, W., Duan, W., Wang, G., et al. (2022) ALOX15-launched PUFA-Phospholipids Peroxidation Increases the Susceptibility of Ferroptosis in Ischemia-Induced Myocardial Damage. Signal Transduction and Targeted Therapy, 7, Article No. 288. https://doi.org/10.1038/s41392-022-01090-z
|
[26]
|
Moon, B.F., Iyer, S.K., Hwuang, E., Solomon, M.P., Hall, A.T., Kumar, R., et al. (2020) Iron Imaging in Myocardial Infarction Reperfusion Injury. Nature Communications, 11, Article No. 3273. https://doi.org/10.1038/s41467-020-16923-0
|
[27]
|
Ye, J., Lyu, T., Li, L., Liu, Y., Zhang, H., Wang, X., et al. (2023) Ginsenoside Re Attenuates Myocardial Ischemia/Reperfusion Induced Ferroptosis via miR-144-3p/SLC7A11. Phytomedicine, 113, Article ID: 154681. https://doi.org/10.1016/j.phymed.2023.154681
|
[28]
|
Lin, J., Yang, K., Ting, P., Luo, Y., Lin, D., Wang, Y., et al. (2021) Gossypol Acetic Acid Attenuates Cardiac Ischemia/Reperfusion Injury in Rats via an Antiferroptotic Mechanism. Biomolecules, 11, Article 1667. https://doi.org/10.3390/biom11111667
|
[29]
|
Huang, Q., Tian, L., Zhang, Y., Qiu, Z., Lei, S. and Xia, Z. (2023) Nobiletin Alleviates Myocardial Ischemia-Reperfusion Injury via Ferroptosis in Rats with Type-2 Diabetes Mellitus. Biomedicine & Pharmacotherapy, 163, Article ID: 114795. https://doi.org/10.1016/j.biopha.2023.114795
|
[30]
|
Qian, W., Liu, D., Han, Y., Liu, M., Liu, B., Ji, Q., et al. (2023) Cyclosporine A-Loaded Apoferritin Alleviates Myocardial Ischemia-Reperfusion Injury by Simultaneously Blocking Ferroptosis and Apoptosis of Cardiomyocytes. Acta Biomaterialia, 160, 265-280. https://doi.org/10.1016/j.actbio.2023.02.025
|
[31]
|
Zhang, Y., Ren, X., Wang, Y., Chen, D., Jiang, L., Li, X., et al. (2021) Targeting Ferroptosis by Polydopamine Nanoparticles Protects Heart against Ischemia/reperfusion Injury. ACS Applied Materials & Interfaces, 13, 53671-53682. https://doi.org/10.1021/acsami.1c18061
|
[32]
|
Ravingerová, T., Kindernay, L., Barteková, M., Ferko, M., Adameová, A., Zohdi, V., et al. (2020) The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. International Journal of Molecular Sciences, 21, Article 7889. https://doi.org/10.3390/ijms21217889
|
[33]
|
Ichihara, G., Katsumata, Y., Sugiura, Y., Matsuoka, Y., Maeda, R., Endo, J., et al. (2023) MRP1-Dependent Extracellular Release of Glutathione Induces Cardiomyocyte Ferroptosis after Ischemia-Reperfusion. Circulation Research, 133, 861-876. https://doi.org/10.1161/circresaha.123.323517
|
[34]
|
Davidson, S.M., Ferdinandy, P., Andreadou, I., Bøtker, H.E., Heusch, G., Ibáñez, B., et al. (2019) Multitarget Strategies to Reduce Myocardial Ischemia/reperfusion Injury. Journal of the American College of Cardiology, 73, 89-99. https://doi.org/10.1016/j.jacc.2018.09.086
|
[35]
|
Li, K., Liu, P., Han, L., Tian, J., Zheng, Z., Sha, M., et al. (2024) Elucidating Ferroptosis Mechanisms in Heart Failure through Transcriptomics, Single-Cell Sequencing, and Experimental Validation. Cellular Signalling, 124, Article ID: 111416. https://doi.org/10.1016/j.cellsig.2024.111416
|
[36]
|
Xiong, Y., Liu, X., Jiang, L., Hao, T., Wang, Y. and Li, T. (2024) Inhibition of Ferroptosis Reverses Heart Failure with Preserved Ejection Fraction in Mice. Journal of Translational Medicine, 22, Article No. 199. https://doi.org/10.1186/s12967-023-04734-y
|
[37]
|
Bi, X., Wu, X., Chen, J., Li, X., Lin, Y., Yu, Y., et al. (2024) Characterization of Ferroptosis-Triggered Pyroptotic Signaling in Heart Failure. Signal Transduction and Targeted Therapy, 9, Article No. 257. https://doi.org/10.1038/s41392-024-01962-6
|
[38]
|
Packer, M. (2023) Potential Interactions When Prescribing SGLT2 Inhibitors and Intravenous Iron in Combination in Heart Failure. JACC: Heart Failure, 11, 106-114. https://doi.org/10.1016/j.jchf.2022.10.004
|
[39]
|
Yang, X., Kawasaki, N.K., Min, J., Matsui, T. and Wang, F. (2022) Ferroptosis in Heart Failure. Journal of Molecular and Cellular Cardiology, 173, 141-153. https://doi.org/10.1016/j.yjmcc.2022.10.004
|
[40]
|
Zhang, W., Qian, S., Tang, B., Kang, P., Zhang, H. and Shi, C. (2023) Resveratrol Inhibits Ferroptosis and Decelerates Heart Failure Progression via Sirt1/p53 Pathway Activation. Journal of Cellular and Molecular Medicine, 27, 3075-3089. https://doi.org/10.1111/jcmm.17874
|
[41]
|
Su, H., Cantrell, A.C., Chen, J., Gu, W. and Zeng, H. (2023) SIRT3 Deficiency Enhances Ferroptosis and Promotes Cardiac Fibrosis via P53 Acetylation. Cells, 12, Article 1428. https://doi.org/10.3390/cells12101428
|
[42]
|
Kobashigawa, J., Zuckermann, A., Macdonald, P., Leprince, P., Esmailian, F., Luu, M., et al. (2014) Report from a Consensus Conference on Primary Graft Dysfunction after Cardiac Transplantation. The Journal of Heart and Lung Transplantation, 33, 327-340. https://doi.org/10.1016/j.healun.2014.02.027
|
[43]
|
Li, W., Feng, G., Gauthier, J.M., Lokshina, I., Higashikubo, R., Evans, S., et al. (2019) Ferroptotic Cell Death and TLR4/Trif Signaling Initiate Neutrophil Recruitment after Heart Transplantation. Journal of Clinical Investigation, 129, 2293-2304. https://doi.org/10.1172/jci126428
|
[44]
|
Jin, E., Jo, Y., Wei, S., Rizzo, M., Ryu, D. and Gariani, K. (2024) Ferroptosis and Iron Metabolism in Diabetes: Pathogenesis, Associated Complications, and Therapeutic Implications. Frontiers in Endocrinology, 15, Article 1447148. https://doi.org/10.3389/fendo.2024.1447148
|
[45]
|
Wei, J., Zhao, Y., Liang, H., Du, W. and Wang, L. (2022) Preliminary Evidence for the Presence of Multiple Forms of Cell Death in Diabetes Cardiomyopathy. Acta Pharmaceutica Sinica B, 12, 1-17. https://doi.org/10.1016/j.apsb.2021.08.026
|
[46]
|
Cheng, Z., Fang, T., Huang, J., Guo, Y., Alam, M. and Qian, H. (2021) Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Frontiers in Cardiovascular Medicine, 8, Article 722340. https://doi.org/10.3389/fcvm.2021.722340
|
[47]
|
Wang, Z., Xia, Q., Su, W., Cao, M., Sun, Y., Zhang, M., et al. (2022) Exploring the Communal Pathogenesis, Ferroptosis Mechanism, and Potential Therapeutic Targets of Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy via a Microarray Data Analysis. Frontiers in Cardiovascular Medicine, 9, Article 824756. https://doi.org/10.3389/fcvm.2022.824756
|
[48]
|
Oudit, G.Y., Sun, H., Trivieri, M.G., Koch, S.E., Dawood, F., Ackerley, C., et al. (2003) L-Type Ca2+ Channels Provide a Major Pathway for Iron Entry into Cardiomyocytes in Iron-Overload Cardiomyopathy. Nature Medicine, 9, 1187-1194. https://doi.org/10.1038/nm920
|
[49]
|
Link, G., Pinson, A. and Hershko, C. (1985) Heart Cells in Culture: A Model of Myocardial Iron Overload and Chelation. Journal of Laboratory and Clinical Medicine, 106, 147-153.
|
[50]
|
Liu, P., Zhang, Z., Cai, Y., Li, Z., Zhou, Q. and Chen, Q. (2024) Ferroptosis: Mechanisms and Role in Diabetes Mellitus and Its Complications. Ageing Research Reviews, 94, Article ID: 102201. https://doi.org/10.1016/j.arr.2024.102201
|
[51]
|
Tadokoro, T., Ikeda, M., Ide, T., Deguchi, H., Ikeda, S., Okabe, K., et al. (2020) Mitochondria-Dependent Ferroptosis Plays a Pivotal Role in Doxorubicin Cardiotoxicity. JCI Insight, 5, e132747. https://doi.org/10.1172/jci.insight.132747
|
[52]
|
Ta, N., Qu, C., Wu, H., Zhang, D., Sun, T., Li, Y., et al. (2022) Mitochondrial Outer Membrane Protein FUNDC2 Promotes Ferroptosis and Contributes to Doxorubicin-Induced Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117396119. https://doi.org/10.1073/pnas.2117396119
|
[53]
|
Wang, Y., Yan, S., Liu, X., Deng, F., Wang, P., Yang, L., et al. (2022) PRMT4 Promotes Ferroptosis to Aggravate Doxorubicin-Induced Cardiomyopathy via Inhibition of the Nrf2/GPX4 Pathway. Cell Death & Differentiation, 29, 1982-1995. https://doi.org/10.1038/s41418-022-00990-5
|