肝硬化门静脉高压无创评估进展
Progress in Non-Invasive Assessment of Portal Hypertension in Cirrhosis
摘要: 门静脉高压(Portal hypertension, PH)作为肝硬化失代偿的核心病理生理特征,其特征性临床表现包括侧枝循环形成、脾功能亢进、腹水形成。尤其是临床显著性门静脉高压(clinically significant portal hypertension, CSPH),标志着肝硬化病程进入失代偿拐点,预后显著恶化。当前肝静脉压力梯度检测(Hepatic Venous Pressure Gradient, HVPG)是评估门脉压力的金标准,虽能精准量化门脉压力,但受限于侵入性操作风险、穿刺并发症及单次检测费用高等现实因素,在临床诊疗工作中受到限制。随着无创评估技术的发展,血清学生物标志物分析、超声肝脾硬度测定和CT影像组学等无创模型取得突破。有效的无创评估门静脉压力的方法,能使医生更好地评估肝硬化患者病情及其并发症管理,改善患者的预后。
Abstract: Portal hypertension (PH), as the core pathophysiological feature of decompensated cirrhosis, is characterized by clinical manifestations such as collateral circulation formation, hypersplenism, and ascites. Clinically significant portal hypertension (CSPH), in particular, marks a critical turning point in the progression of cirrhosis toward decompensation and is associated with significantly worsened prognosis. Currently, hepatic venous pressure gradient (HVPG) measurement remains the gold standard for assessing portal pressure. While it provides precise quantification of portal pressure, its clinical application is limited by practical challenges including invasive procedural risks, puncture-related complications, and high costs of single measurements. With advancements in non-invasive evaluation techniques, breakthroughs have been achieved in non-invasive models such as serum biomarker analysis, ultrasound-based liver and spleen stiffness measurements, and CT radiomics. Effective non-invasive methods for assessing portal pressure enable clinicians to better evaluate disease progression and complication management in cirrhosis patients, ultimately improving clinical outcomes.
文章引用:吴小倩, 吴蓉. 肝硬化门静脉高压无创评估进展[J]. 临床医学进展, 2025, 15(4): 1479-1486. https://doi.org/10.12677/acm.2025.1541082

1. 引言

肝硬化作为慢性肝病的终末阶段,分为代偿期与失代偿期两个病程,代偿期患者通常缺乏典型临床症状,而失代偿期则以肝功能受损及门静脉高压(Portal Hypertension, PH)为突出特征。门脉高压的核心病理机制为门脉系统血流动力学异常,包括血管阻力升高和/或血流量增加,继而导致门静脉及其属支血管内静力压升高并伴侧支循环形成[1],可引发致命性并发症如上消化道大出血、肝性脑病。因此精确评估门脉压力及其并发症管理具有重要临床价值。目前肝静脉压力梯度(Hepatic Venous Pressure Gradient, HVPG)仍是评估门脉压力的国际金标准[2],指通过颈静脉插管测定肝静脉楔压与游离压之差,正常范围为3~5 mmHg,当HVPG > 5 mmHg即提示存在门脉高压,当HVPG ≥ 10 mmHg时称为临床显著性门静脉高压(Clinically Significant Portal Hypertension, CSPH),此时患者出现腹水、食管胃底静脉曲张破裂出血和肝性脑病等风险显著增高[3]。尽管HVPG检测具有诊断权威性,但其作为侵入性检查,具有创伤性、操作复杂等局限,限制了临床应用,这一现状推动了无创检测技术快速发展,包括血清标志物检测、影像学评估等无创性门脉压力评估系统。本文将系统综述近年来非侵入性检测技术在PH评估中的研究进展。

2. 血清学指标

在肝硬化进程中,肝细胞进行性坏死与异常修复导致纤维隔形成即再生结节增生。这些病理性结构通过机械性挤压肝窦和中央静脉,显著提升肝内血管阻力。肝星状细胞活化后转化为肌成纤维细胞,通过过量分泌细胞外基质成分,成为驱动门脉高压的关键分子机制。基于此病理生理过程,目前无创评估系统主要聚焦这几类生物标志物:肝纤维化相关指标、血管生成因子、内皮损伤因子以及肝脏炎症损伤标志物。这些指标的组合应用为动态检测门脉压力提供了新思路。

2.1. 血管性血友病因子抗原与VITRO评分

血管性血友病因子(von Willbrand Factor, vWF)作为内皮细胞活化的重要标记物,其生物合成受血管损伤信号(如TNF-α、IL-1β)调控。当血管内皮细胞受到炎症因子刺激后激活,通过Willbrand因子多聚酶介导,分泌具有多聚体结构的vWF。该蛋白通过桥接血小板表面糖蛋白lb与内皮下胶原,不仅启动血小板黏附级联反映,更通过促进肝窦微血栓形成加剧门脉系统血流阻力。临床采用血管性血友病因子抗原(vWF-Ag)定量检测(ELISA法)评估其血浆浓度。研究显示肝硬化门脉高压患者vWF-Ag水平显著升高,较高的vWF-Ag水平与肝硬化食管胃底静脉曲张、腹水、死亡率均高度相关[4]-[7]。当临界值设定为241%时,其诊断CSPH的AUC为0.85 [8]。Simbrunner团队[9]对229名肝硬化门静脉高压患者的前瞻性队列研究证实VWF-Ag水平及其前肽VWF-N诊断CSPH的AUC分别为0.748、0.728,提示其在门脉高压分层管理中的应用潜力。

VITRO评分即vWF-Ag与血小板计数比值,其创新性在于整合了门脉高压的两种关键病理要素:内皮损伤(vWF-Ag)与脾功能亢进(血小板减少)。血小板计数作为肝硬化进展的经典预后指标,与门脉高压成负相关,在一定程度上可以反映肝脏疾病的严重程度[10] [11]。多项研究证实,VITRO评分对CSPH具有较好的诊断效能[12]。Baveno-Ⅶ标准[3]中建议LSM < 15 kpa和血小板 > 150 × 109/L排除CSPH,LSM ≥ 25 kpa确诊CSPH,但仍有部分患者处于“诊断灰区”。Jachs等人[13]证实VITRO评分对这类“灰区”患者CSPH具有补充诊断价值(AUC为0.909)。Semmler团队[14]再次验证了VITRO评分对CSPH的诊断性能(AUC为0.889),并提出诊断阈值(≥2.5)。值得注意的是,VITRO评分 ≥ 5.65的乙肝肝硬化患者发生肝移植、肝硬化相关性死亡不良预后的风险是VITRO评分 < 5.65患者的5.58倍[15]。且最新的研究[16]显示VITRO评分预测代偿期肝硬化患者1~2年内发生失代偿风险(包括腹水、静脉曲张破裂出血、肝性脑病、肝癌、肝移植和死亡)的能力与HVPG的预测能力相当(AUC分别为0.811、0.739),标志着无创评估技术已接近侵入性检测的临床价值。

2.2. 增强的肝纤维化评分(Enhanced Liver Fibrosis Score, ELF)

肝脏慢性修复的过程中,肝星状细胞异常活化引发细胞外基质(ECM)代谢失衡,表现为I/III型胶原、层粘连蛋白等成分病理性沉积,这种“纤维化–硬化”级联反映可通过血清ECM成分定量监测。增强的肝纤维化评分(ELF)通过整合三类关键ECM代谢标志物:透明质酸(HA)、基质金属蛋白酶组织抑制因子-1 (TIMP-1)和氨基末端III型胶原前肽(PIIINP)在非酒精性脂肪性肝病患者的纤维化筛查、评估及管理中展现独特价值[17]。在一项纳入162例非酒精性脂肪性肝炎代偿期肝硬化和门脉高压受试者的研究中显示ELF评分与肝脏不良结局(包括新发腹水、静脉曲张出血和肝性脑病)的短期风险密切相关。当ELF评分 > 9.8时,预测52周肝脏相关不良预后的敏感性、特异性、阳性预测值和阴性预测值分别为87.9%、26.6%、23.6%和89.5%;当ELF评分 ≥ 11.3时,预测52周肝脏相关不良预后的敏感性、特异性、阳性预测值和阴性预测值分别为51.5%、72.7%、32.7%和85.3% [18]。ELF评分的诊断价值已不再局限于非酒精脂肪性肝病,最新证据显示其在多元肝病谱系中具有普适性。Simbrunner B团队的多病因队列研究(201例含病毒性/酒精性/其他病因的晚期慢性肝病患者)提示ELF评分诊断CSPH的AUC为0.833 (P < 0.001),特别在酒精性肝病患者表现出极高的诊断效能(AUC为0.978,P < 0.001);并且提出高特异性截断值,当阈值设为≥11.1时阳性预测值达98%,虽敏感性61%存在局限,但阴性预测值24%提示需联合其他指标补充[19]。sCD163是巨噬细胞激活标志物,sCD163水平与肝脏炎症和免疫激活有关,研究证实将sCD163联合ELF评分可提高对CSPH的诊断性能(ELF评分单独和联合sCD163的AUC分别为0.80、0.91) [20]

2.3. 天冬氨酸转氨酶/血小板比率指数(APRI)

APRI (天冬氨酸氨基转移酶(AST) − 血小板比值指数),是基于AST生物标志物和血小板计数的计算模型,其公式表述为AST实测值/正常值上限 × 100/血小板(109/L)。作为肝细胞炎症损伤的敏感指标,AST的动态变化与血小板减少现象共同构成了该模型的病理生理学基础。现有研究提示该指标与HVPG存在相关性,但诊断效能存在局限。Verma团队[21]通过临床验证发现,当APRI阈值设为1.09时,对HVPG > 12 mmHg的识别敏感度为66%,特异度73%,总体诊断准确率不足70%。值得注意的是,近期一例纳入9项研究2492名患者的荟萃分析[22]显示,该指标对临床显著性门脉高压(CSPH)的检测灵敏度仅为56%,特异度68%。在慢性乙型肝炎肝硬化人群中的研究[23]进一步证实,当APRI > 2时,对CSPH的阳性预测值仅为32.1%。该模型局限性可能源于以下因素:AST指标的生物特异性不足,多种病理状态下(急性重型肝炎、药物性肝损害、横纹肌溶解症等)均可导致AST异常升高;抗炎保肝药物使用可能造成AST水平人为降低,进而影响评分系统的准确性;血小板计数的临床意义具有多向性,除肝纤维化程度外,还受骨髓抑制、脾功能亢进等多因素调控。目前认为,APRI对门脉高压的评估存在一定的辅助诊断价值,但临床应用仍存在病因特异性差异明显,药物干扰因素复杂等争议。这提示该模型需通过多中心、大样本研究进行标准化验证,同时临床解读时需结合其他无创诊断工具进行综合判断。

除传统血清学标志物外,近年来涌现出多个具有门脉高压诊断潜力的新型生物指标物。上皮钙黏蛋白(ECAD)作为细胞间连接的关键调控因子,其表达水平的下调已被证实会破坏细胞间连接结构的完整性,门脉高压患者血浆ECAD浓度较正常HVPG组呈现显著升高趋势[24]。丝氨酸蛋白酶抑制剂Kazal I型(SPINK1)被发现与乙型病毒性肝炎进展存在密切关系,其在PH患者中的异常高表达提示可能参与肝纤维化调控通路[24]。胎盘生长因子(PlGF)作为血管内皮生长因子家族成员,通过激活VEGFR-1信号通路促进病理性血管新生,临床研究[25]显示该因子在临床显著性门脉高压患者外周血中的浓度较对照组显著升高(分别为28.20 pg/ml、17.20 pg/ml,P = 0.006)。轴突生长抑制因子A (Nogo-A)作为网状蛋白4家族新进的血管生成调节介质,其血浆水平与HVPG呈负相关(r = −0.267, P = 0.007),且CSPH患者组检测值较非CSPH组明显降低(分别为1.96 ± 1.39 ng/mL、2.77 ± 1.53 ng/mL,P = 0.011) [25]。尽管这些新型标志物展现出独特的病理生理学价值,但其临床应用仍面临多重挑战。首先,现有研究多局限单中心、小样本队列;其次,生物标志物的检测标准化方案尚未建立;再者,不同病因门脉高压的特异性反映谱仍需系统解析。后续研究应建立多病因大样本验证平台,开发配套检验试剂标准化流程,探索多指标联合诊断模型。

3. 影像学检查

3.1. 瞬态弹性成像(TE)

相较于血清生物标志物,影像学生物力学评估在临床显著性门脉高压的无创诊断中展现出更优的临床价值。瞬态弹性成像(TE)作为当前临床应用最广泛的肝纤维化评估技术,其核心参数肝脏硬度测量(LSM)联合血小板计数已被纳入国际主流指南的CSPH诊断流程:Baveno VII共识[3]提出LSM < 15 kpa和血小板 > 150 × 109/L可作为排除CSPH的可靠标准。2022年AASLD指南[26]和2021年EASL指南[27]共同建议将LSM ≥ 20~25 kPa作为CPSH的诊断阈值。Berzigotti团队[28]的多中心研究验证,LSM对CSPH的鉴别效能显著优于其他单一指标(AUC = 0.883, P < 0.0001)。最新荟萃分析[22]纳入2492例多病因患者数据显示,LSM >25kpa诊断CSPH敏感性为57%~85%,特异性为82%~93%。然而该项技术存在体质特异性误差、病因依赖性阈值差异等局限。肥胖患者(BMI ≥ 30 kg/m2)皮下脂肪层可衰减剪切波信号,从而降低检测的准确性和成功率。研究[29]显示非肥胖非酒精性脂肪性肝病(NAFLD)人群中使用25 kPa阈值时,CSPH的阳性预测值 > 90%,而肥胖非酒精性脂肪性肝炎(NASH)患者阳性预测值骤降至62.8%。Lemoine [30]等人对比研究揭示,酒精性肝病患者诊断CSPH最佳诊断阈值为34.9 kPa (AUC= 0.94, P = 0.03),显著高于丙型肝炎肝硬化患者的20.5 kPa (AUC = 0.76, P = 0.07)。为突破TE技术瓶颈,新型复合参数不断涌现。肝–脾联合参数(LSPS)是指肝脏硬度 × 脾脏大小/血小板计数。Abraldes JG等人[31]建立的风险预测模型显示,LSPS > 2.65时CSPH的发生概率超过80%。脾脏硬度测量(SSM)对CSPH的诊断效能也被证实,2021年纳入3952例患者荟萃分析[32]证实SSM诊断CSPH的敏感度/特异度达85%/86% (AUC = 0.92)。其病理生理优势在于当门脉压力 > 10 mmHg时,脾脏被动充血引发的组织重构使SSM与HVPG的相关性强于LSM [33]-[35],且不受肝脏炎症活动、胆汁淤积等干扰[36]

作为门脉高压无创评估的常用技术,瞬态弹性成像(TE)虽可通过肝脾硬度测量实现临床诊断,但其缺乏可视化功能、对肥胖(BMI ≥ 30kg/m2)及腹腔积液患者检测失败率高、单点采样易受肝脏异质性影响的技术局限性不容忽视。基于声辐射力脉冲成像(ARFI)的二维剪切波弹性成像(2D-SWE)技术采用矩阵式超声探头发射多组剪切波束,结合超高速成像系统,在实现弹性模量分布图可视化分析的同时支持多个感兴趣区同步量化评估,显著提升检测可靠性。该技术的自适应聚焦脉冲算法使超声波穿透力比传统TE显著升高,可穿透皮下脂肪和腹腔积液,实现对肥胖和腹腔积液患者的测量。研究证实其诊断CSPH的AUC达0.818 [37],与CSPH相关性为0.646 (P < 0.001) [38]。一项纳入9项研究746例肝硬化患者的荟萃分析[39]显示,2D-SWE通过测量肝脏硬度诊断CSPH的敏感性/特异性达到85%/85% (AUC = 0.88)。除此之外,磁共振弹性成像(Magnetic Resonance Elastography, MRE)在HVPG评估中的应用日益受到关注,MRE通过机械波在组织中的传播特性生成弹性图,量化肝脾硬度,反映肝脏纤维化程度,通过MRE测量脾脏硬度可评估肝硬化食管胃底静脉曲张程度及门静脉压力[40]-[42]。其中3D-MRE可支持多方向波传播分析,减少因解剖结构或波传播方向偏差导致的测量误差,实现全器官覆盖,避免单平面采样导致的局部信息丢失。研究揭示[43]通过3D MRE测量脾脏硬度与HVPG有较强相关性(r = 0.686, P < 0.001),且较2D MRE、SWE在诊断CSPH方面表现出更佳性能(AUC 0.911 vs 0.845 vs 0.583)。但因3D-MRE存在扫描时间较长、数据处理复杂、临床标准化不足的局限,限制了临床应用。

3.2. 计算机体层成像(CT)

CT技术凭借其经济性优势及亚毫米级空间分辨率,已成为门脉高压放射学评估的首选成像模态。其核心价值体现在多平面建模技术可精准量化门静脉直径及侧枝循环解剖特征,且不受患者腹水、肥胖等体质因素干扰,具有客观性强、可重复性佳的技术优势。目前,基于CT影像组学的预测模型开发取得突破性进展。Sartoris团队[44]通过深度学习法提取肝包膜形态特征,建立肝脏表面结节(liver surface nodularity, LSN)评分系统,其最佳阈值为2.8,对CSPH的阳性预测值为86% (AUC = 0.87)。我国一项多中心研究[45]创新性整合增强CT血管三维重建与计算流体动力学(CFD)技术,实现虚拟肝静脉压力梯度(vHVPG)无创测量,验证组AUC达0.89(Kappa值:操作者间0.88,操作者内0.96),与有创HVPG显著相关(r = 0.61, P < 0.001)。此外,肝脾体积(VI)指数模型在175名肝硬化肝细胞癌人群中验证显示,VI指数(脾体积 × 肝段I~III/IV~VIII体积比)诊断CSPH的AUC为0.83 [46]。当前影像组学模型虽展现临床巨大转化潜力,但面临不同CT机型影像组学特征的可比性差异、病因异质性等问题影响模型泛化能力,需进一步开展多中心验证及临床工作整合研究。

4. 总结与展望

门静脉压力无创评估评估系统呈现多模态协同发展态势,血清学生物标志物通过整合肝纤维化指数、血管生成因子及内皮损伤标记物构建的多维度模型,在临床显著性门静脉高压诊断中展现出高度的敏感性与特异性,但受限于个体生物变异度及检测成本差异等技术经济学瓶颈;弹性成像技术中,瞬态弹性成像与二维剪切波弹性成像分别通过单点瞬时测量和动态矩阵扫描实现肝脾硬度量化,对门脉高压具有较高的诊断效能,但受到肥胖、腹水患者诊断准确性低及不同病因最佳截断值差异大等限制;CT影像组学创新性融合肝表面结节量化、虚拟血流动力学及肝脾体积指数,实现多参数诊断,但其累积辐射计量及影像医师操作依赖性制约了临床普及。当前技术均未突破HVPG金标准地位,未来研究需聚焦于开发不同病因特异性诊断阈值,构建多中心标准验证平台,推进辐射零剂量MRI弹性成像(如3D-MRE联合4D血流分析)技术创新,通过血清–影像-AI三元融合策略,最终实现门脉高压评估从“替代指标”向“个体化诊疗决策系统”的转变。

NOTES

*通讯作者。

参考文献

[1] 中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会消化内镜学分会. 肝硬化门静脉高压食管胃静脉曲张出血的防治指南[J]. 中华内科杂志, 2023, 62(1): 7-22.
[2] Bosch, J., Abraldes, J.G., Berzigotti, A. and García-Pagan, J.C. (2009) The Clinical Use of HVPG Measurements in Chronic Liver Disease. Nature Reviews Gastroenterology & Hepatology, 6, 573-582.
https://doi.org/10.1038/nrgastro.2009.149
[3] de Franchis, R., Bosch, J., Garcia-Tsao, G., Reiberger, T., Ripoll, C., Abraldes, J.G., et al. (2022) Baveno VII—Renewing Consensus in Portal Hypertension. Journal of Hepatology, 76, 959-974.
https://doi.org/10.1016/j.jhep.2021.12.022
[4] Königshofer, P., Hofer, B.S., Brusilovskaya, K., Simbrunner, B., Petrenko, O., Wöran, K., et al. (2021) Distinct Structural and Dynamic Components of Portal Hypertension in Different Animal Models and Human Liver Disease Etiologies. Hepatology, 75, 610-622.
https://doi.org/10.1002/hep.32220
[5] La Mura, V., Reverter, J.C., Flores-Arroyo, A., Raffa, S., Reverter, E., Seijo, S., et al. (2011) Von Willebrand Factor Levels Predict Clinical Outcome in Patients with Cirrhosis and Portal Hypertension. Gut, 60, 1133-1138.
https://doi.org/10.1136/gut.2010.235689
[6] Kalambokis, G.N., Oikonomou, A., Christou, L., Kolaitis, N.I., Tsianos, E.V., Christodoulou, D., et al. (2016) Von Willebrand Factor and Procoagulant Imbalance Predict Outcome in Patients with Cirrhosis and Thrombocytopenia. Journal of Hepatology, 65, 921-928.
https://doi.org/10.1016/j.jhep.2016.06.002
[7] Mandorfer, M., Schwabl, P., Paternostro, R., Pomej, K., Bauer, D., Thaler, J., et al. (2018) Von Willebrand Factor Indicates Bacterial Translocation, Inflammation, and Procoagulant Imbalance and Predicts Complications Independently of Portal Hypertension Severity. Alimentary Pharmacology & Therapeutics, 47, 980-988.
https://doi.org/10.1111/apt.14522
[8] Ferlitsch, M., Reiberger, T., Hoke, M., Salzl, P., Schwengerer, B., Ulbrich, G., et al. (2012) Von Willebrand Factor as New Noninvasive Predictor of Portal Hypertension, Decompensation and Mortality in Patients with Liver Cirrhosis. Hepatology, 56, 1439-1447.
https://doi.org/10.1002/hep.25806
[9] Simbrunner, B., Villesen, I.F., Scheiner, B., Paternostro, R., Schwabl, P., Stättermayer, A.F., et al. (2023) Von Willebrand Factor Processing in Patients with Advanced Chronic Liver Disease and Its Relation to Portal Hypertension and Clinical Outcome. Hepatology International, 17, 1532-1544.
https://doi.org/10.1007/s12072-023-10577-y
[10] Wang, L., Feng, Y., Ma, X., Wang, G., Wu, H., Xie, X., et al. (2017) Diagnostic Efficacy of Noninvasive Liver Fibrosis Indexes in Predicting Portal Hypertension in Patients with Cirrhosis. PLOS ONE, 12, e0182969.
https://doi.org/10.1371/journal.pone.0182969
[11] Park, S.H., Park, T.E., Kim, Y.M., Kim, S.J., Baik, G.H., Kim, J.B., et al. (2009) Non‐Invasive Model Predicting Clinically‐Significant Portal Hypertension in Patients with Advanced Fibrosis. Journal of Gastroenterology and Hepatology, 24, 1289-1293.
https://doi.org/10.1111/j.1440-1746.2009.05904.x
[12] Hametner, S., Ferlitsch, A., Ferlitsch, M., Etschmaier, A., Schöfl, R., Ziachehabi, A., et al. (2016) The VITRO Score (von Willebrand Factor Antigen/Thrombocyte Ratio) as a New Marker for Clinically Significant Portal Hypertension in Comparison to Other Non-Invasive Parameters of Fibrosis Including ELF Test. PLOS ONE, 11, e0149230.
https://doi.org/10.1371/journal.pone.0149230
[13] Jachs, M., Hartl, L., Simbrunner, B., Bauer, D., Paternostro, R., Scheiner, B., et al. (2023) The Sequential Application of Baveno VII Criteria and VITRO Score Improves Diagnosis of Clinically Significant Portal Hypertension. Clinical Gastroenterology and Hepatology, 21, 1854-1863.e10.
https://doi.org/10.1016/j.cgh.2022.09.032
[14] Semmler, G., Hartl, L., Mendoza, Y.P., Simbrunner, B., Jachs, M., Balcar, L., et al. (2024) Simple Blood Tests to Diagnose Compensated Advanced Chronic Liver Disease and Stratify the Risk of Clinically Significant Portal Hypertension. Hepatology, 80, 887-900.
https://doi.org/10.1097/hep.0000000000000829
[15] 庄焱. 血管性血友病因子抗原与VITRO评分对乙型肝炎肝硬化预后的预测价值[J]. 陕西医学杂志, 2023, 52(8): 1059-1062.
[16] Jachs, M., Hartl, L., Simbrunner, B., Semmler, G., Balcar, L., Hofer, B.S., et al. (2024) Prognostic Performance of Non-Invasive Tests for Portal Hypertension Is Comparable to That of Hepatic Venous Pressure Gradient. Journal of Hepatology, 80, 744-752.
https://doi.org/10.1016/j.jhep.2023.12.028
[17] Tincopa, M.A. and Loomba, R. (2023) Non-Invasive Diagnosis and Monitoring of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. The Lancet Gastroenterology & Hepatology, 8, 660-670.
https://doi.org/10.1016/s2468-1253(23)00066-3
[18] Are, V.S., Vuppalanchi, R., Vilar-Gomez, E. and Chalasani, N. (2021) Enhanced Liver Fibrosis Score Can Be Used to Predict Liver-Related Events in Patients with Nonalcoholic Steatohepatitis and Compensated Cirrhosis. Clinical Gastroenterology and Hepatology, 19, 1292-1293.e3.
https://doi.org/10.1016/j.cgh.2020.06.070
[19] Simbrunner, B., Marculescu, R., Scheiner, B., Schwabl, P., Bucsics, T., Stadlmann, A., et al. (2020) Non‐Invasive Detection of Portal Hypertension by Enhanced Liver Fibrosis Score in Patients with Different Aetiologies of Advanced Chronic Liver Disease. Liver International, 40, 1713-1724.
https://doi.org/10.1111/liv.14498
[20] Sandahl, T.D., McGrail, R., Møller, H.J., Reverter, E., Møller, S., Turon, F., et al. (2016) The Macrophage Activation Marker SCD163 Combined with Markers of the Enhanced Liver Fibrosis (elf) Score Predicts Clinically Significant Portal Hypertension in Patients with Cirrhosis. Alimentary Pharmacology & Therapeutics, 43, 1222-1231.
https://doi.org/10.1111/apt.13618
[21] Verma, V., Sarin, S.K., Sharma, P. and Kumar, A. (2014) Correlation of Aspartate Aminotransferase/Platelet Ratio Index with Hepatic Venous Pressure Gradient in Cirrhosis. United European Gastroenterology Journal, 2, 226-231.
https://doi.org/10.1177/2050640614527084
[22] Rockey, D.C., Alsawas, M., Duarte-Rojo, A., Patel, K., Levine, D., Asrani, S.K., et al. (2024) Noninvasive Liver Disease Assessment to Identify Portal Hypertension: Systematic and Narrative Reviews Supporting the AASLD Practice Guideline. Hepatology, 81, 1086-1104.
https://doi.org/10.1097/hep.0000000000000841
[23] Dong, M., Wu, J., Yu, X., Li, J., Yang, S., Qi, X., et al. (2018) Validation and Comparison of Seventeen Noninvasive Models for Evaluating Liver Fibrosis in Chinese Hepatitis B Patients. Liver International, 38, 1562-1570.
https://doi.org/10.1111/liv.13688
[24] Ortega-Ribera, M., Gibert-Ramos, A., Abad-Jordà, L., Magaz, M., Téllez, L., Paule, L., et al. (2023) Increased Sinusoidal Pressure Impairs Liver Endothelial Mechanosensing, Uncovering Novel Biomarkers of Portal Hypertension. JHEP Reports, 5, Article ID: 100722.
https://doi.org/10.1016/j.jhepr.2023.100722
[25] Gelman, S., Salteniene, V., Pranculis, A., Skieceviciene, J., Zykus, R., Petrauskas, D., et al. (2019) Plasma Nogo-A and Placental Growth Factor Levels Are Associated with Portal Hypertension in Patients with Liver Cirrhosis. World Journal of Gastroenterology, 25, 2935-2946.
https://doi.org/10.3748/wjg.v25.i23.2935
[26] Kaplan, D.E., Ripoll, C., Thiele, M., Fortune, B.E., Simonetto, D.A., Garcia-Tsao, G., et al. (2023) AASLD Practice Guidance on Risk Stratification and Management of Portal Hypertension and Varices in Cirrhosis. Hepatology, 79, 1180-1211.
https://doi.org/10.1097/hep.0000000000000647
[27] Berzigotti, A., Tsochatzis, E., Boursier, J., Castera, L., Cazzagon, N., Friedrich-Rust, M., et al. (2021) EASL Clinical Practice Guidelines on Non-Invasive Tests for Evaluation of Liver Disease Severity and Prognosis—2021 Update. Journal of Hepatology, 75, 659-689.
https://doi.org/10.1016/j.jhep.2021.05.025
[28] Berzigotti, A., Seijo, S., Arena, U., Abraldes, J.G., Vizzutti, F., García-Pagán, J.C., et al. (2013) Elastography, Spleen Size, and Platelet Count Identify Portal Hypertension in Patients with Compensated Cirrhosis. Gastroenterology, 144, 102-111.e1.
https://doi.org/10.1053/j.gastro.2012.10.001
[29] Pons, M., Augustin, S., Scheiner, B., Guillaume, M., Rosselli, M., Rodrigues, S.G., et al. (2020) Noninvasive Diagnosis of Portal Hypertension in Patients with Compensated Advanced Chronic Liver Disease. American Journal of Gastroenterology, 116, 723-732.
https://doi.org/10.14309/ajg.0000000000000994
[30] Lemoine, M., Katsahian, S., Ziol, M., Nahon, P., Ganne‐Carrie, N., Kazemi, F., et al. (2008) Liver Stiffness Measurement as a Predictive Tool of Clinically Significant Portal Hypertension in Patients with Compensated Hepatitis C Virus or Alcohol‐related Cirrhosis. Alimentary Pharmacology & Therapeutics, 28, 1102-1110.
https://doi.org/10.1111/j.1365-2036.2008.03825.x
[31] Abraldes, J.G., Bureau, C., Stefanescu, H., Augustin, S., Ney, M., Blasco, H., et al. (2016) Noninvasive Tools and Risk of Clinically Significant Portal Hypertension and Varices in Compensated Cirrhosis: The “Anticipate” Study. Hepatology, 64, 2173-2184.
https://doi.org/10.1002/hep.28824
[32] Hu, X., Huang, X., Hou, J., Ding, L., Su, C. and Meng, F. (2020) Diagnostic Accuracy of Spleen Stiffness to Evaluate Portal Hypertension and Esophageal Varices in Chronic Liver Disease: A Systematic Review and Meta-Analysis. European Radiology, 31, 2392-2404.
https://doi.org/10.1007/s00330-020-07223-8
[33] Colecchia, A., Montrone, L., Scaioli, E., Bacchi-Reggiani, M.L., Colli, A., Casazza, G., et al. (2012) Measurement of Spleen Stiffness to Evaluate Portal Hypertension and the Presence of Esophageal Varices in Patients with HCV-Related Cirrhosis. Gastroenterology, 143, 646-654.
https://doi.org/10.1053/j.gastro.2012.05.035
[34] Gibiino, G., Garcovich, M., Ainora, M.E., et al. (2019) Spleen Ultrasound Elastography: State of the Art and Future Directions—A Systematic Review. European Review for Medical and Pharmacological Sciences, 23, 4368-4381.
[35] Colecchia, A., Colli, A., Casazza, G., Mandolesi, D., Schiumerini, R., Reggiani, L.B., et al. (2014) Spleen Stiffness Measurement Can Predict Clinical Complications in Compensated HCV-Related Cirrhosis: A Prospective Study. Journal of Hepatology, 60, 1158-1164.
https://doi.org/10.1016/j.jhep.2014.02.024
[36] 中华医学会超声医学分会, 中国门静脉高压联盟(CHESS). 中国超声弹性成像技术诊断肝硬化门静脉高压专家共识(2023版) [J]. 中华医学杂志, 2023, 103(32): 2480-2494.
[37] Jeon, S.K., Lee, J.M., Joo, I., Yoon, J.H., Lee, D.H. and Han, J.K. (2020) Two-Dimensional Shear Wave Elastography with Propagation Maps for the Assessment of Liver Fibrosis and Clinically Significant Portal Hypertension in Patients with Chronic Liver Disease: A Prospective Study. Academic Radiology, 27, 798-806.
https://doi.org/10.1016/j.acra.2019.08.006
[38] Kim, T.Y., Jeong, W.K., Sohn, J.H., Kim, J., Kim, M.Y. and Kim, Y. (2015) Evaluation of Portal Hypertension by Real‐time Shear Wave Elastography in Cirrhotic Patients. Liver International, 35, 2416-2424.
https://doi.org/10.1111/liv.12846
[39] Suh, C.H., Kim, K.W., Park, S.H., Lee, S.S., Kim, H.S., Tirumani, S.H., et al. (2018) Shear Wave Elastography as a Quantitative Biomarker of Clinically Significant Portal Hypertension: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 210, W185-W195.
https://doi.org/10.2214/ajr.17.18367
[40] Han, X., Yang, D., Xu, H., Wang, Y., Yin, H. and Yang, Z. (2024) Superiority of Spleen Stiffness on Two-Dimensional Magnetic Resonance Elastography over Liver Stiffness and Serum Tests in Assessing Portal Hypertension in Chronic Liver Disease. Quantitative Imaging in Medicine and Surgery, 14, 1429-1440.
https://doi.org/10.21037/qims-22-1415
[41] Huang, S.Y., Abdelsalam, M.E., Harmoush, S., Ensor, J.E., Chetta, J.A., Hwang, K., et al. (2013) Evaluation of Liver Fibrosis and Hepatic Venous Pressure Gradient with MR Elastography in a Novel Swine Model of Cirrhosis. Journal of Magnetic Resonance Imaging, 39, 590-597.
https://doi.org/10.1002/jmri.24189
[42] Gharib, A.M., Han, M.A.T., Meissner, E.G., Kleiner, D.E., Zhao, X., McLaughlin, M., et al. (2017) Magnetic Resonance Elastography Shear Wave Velocity Correlates with Liver Fibrosis and Hepatic Venous Pressure Gradient in Adults with Advanced Liver Disease. BioMed Research International, 2017, Article ID: 2067479.
https://doi.org/10.1155/2017/2067479
[43] Kennedy, P., Stocker, D., Carbonell, G., Said, D., Bane, O., Hectors, S., et al. (2022) MR Elastography Outperforms Shear Wave Elastography for the Diagnosis of Clinically Significant Portal Hypertension. European Radiology, 32, 8339-8349.
https://doi.org/10.1007/s00330-022-08935-9
[44] Sartoris, R., Rautou, P., Elkrief, L., Pollorsi, G., Durand, F., Valla, D., et al. (2018) Quantification of Liver Surface Nodularity at CT: Utility for Detection of Portal Hypertension. Radiology, 289, 698-707.
https://doi.org/10.1148/radiol.2018181131
[45] Qi, X., An, W., Liu, F., Qi, R., Wang, L., Liu, Y., et al. (2019) Virtual Hepatic Venous Pressure Gradient with CT Angiography (CHESS 1601): A Prospective Multicenter Study for the Noninvasive Diagnosis of Portal Hypertension. Radiology, 290, 370-377.
https://doi.org/10.1148/radiol.2018180425
[46] Romero-Cristóbal, M., Clemente-Sánchez, A., Ramón, E., Téllez, L., Canales, E., Ortega-Lobete, O., et al. (2023) Ct-derived Liver and Spleen Volume Accurately Diagnose Clinically Significant Portal Hypertension in Patients with Hepatocellular Carcinoma. JHEP Reports, 5, Article ID: 100645.
https://doi.org/10.1016/j.jhepr.2022.100645