胸引管在胸外科的临床应用进展
Clinical Application Progress of Chest Drainage Tube in Thoracic Surgery
DOI: 10.12677/acm.2025.1541084, PDF, HTML, XML,   
作者: 罗一凌*, 葛明建#:重庆医科大学附属第一医院胸心外科,重庆
关键词: 胸引管胸腔引流胸外科Chest Tube Chest Drainage Thoracic Surgery
摘要: 胸引管是经皮置入或者手术后放置在胸膜腔中的引流管,用于引流胸腔内异常液体或空气。其在胸外科应用非常普遍。随着时间的推移,胸引管在胸外科的应用已经有了很大发展,本文将结合国内外文献对胸引管的类型、安放、固定、引流装置、适应症、拔出时机、并发症及免放胸引管进行综述。
Abstract: A chest drainage tube is a catheter that is percutaneously inserted or placed post-surgically into the pleural cavity to drain abnormal fluids or air. It is widely used in thoracic surgery. Over time, the application of chest drainage tubes in thoracic surgery has significantly evolved. This article provides a comprehensive review of the types, placement, fixation, drainage systems, indications, timing for removal, complications, and the possibility of avoiding chest drainage tubes, based on both domestic and international literature.
文章引用:罗一凌, 葛明建. 胸引管在胸外科的临床应用进展[J]. 临床医学进展, 2025, 15(4): 1494-1503. https://doi.org/10.12677/acm.2025.1541084

1. 胸引管的类型

胸引管的应用最早可追溯至希波克拉底时代,当时已采用空心芦苇管治疗脓胸患者,这标志着胸腔引流技术的初步探索[1]。随着医学技术的进步,现代胸引管的材质已发展为聚氯乙烯或硅胶,这些材料不仅具有良好的生物相容性,还能在柔软度与支撑性之间达到平衡,以满足临床需求[2]

根据引流通道的设计差异,胸引管可分为多种类型:中央通道引流管在侧面设有多个引流孔,Blake引流管则采用多个侧面引流通道的设计,而双腔引流管则兼具引流与输注功能[3]。近年来,Bassi等认为智能同轴引流管可进一步降低患者疼痛和加快患者出院,其独特的同轴设计与智能检测系统使其在引流位置调整和实时监测引流量方面具有优势[4]。Han等验证了带金属支撑结构的新型多孔超细引流管可降低单孔胸腔镜肺上叶切除术后胸腔残腔发生率,有助于其在临床进一步推广[5]

根据口径的大小,胸引管可分为小口径和大口径胸引管。胸引管的口径通常以法语单位(Fr)表示,该单位对应胸引管的周长,其直径可通过Fr/3进行估算[6]。关于小口径与大口径胸引管的分类标准,学术界存在一定分歧,部分研究以20 Fr为界,另有研究采用14 Fr作为分界标准[7]。大口径胸引管通常适用于易堵塞导管的情况,如血胸、脓胸及复杂性胸腔积液,或需快速排出气体的长期漏气病例[8]。然而,较大口径的导管可能增加患者疼痛及并发症风险[9]。Mortman等的研究指出,小口径胸引管在气胸、血胸治疗中的应用普遍[10]。Kulvatunyou等的研究进一步证实了小口径胸引管在血胸治疗中的有效性[11]。此外,多项研究表明,在肺部手术后,小口径胸引管在围术期具有足够的安全性和引流效果[12] [13]。因此,小口径胸引管因其广泛的应用范围(如气胸和一般性胸腔积液的引流)及较低的不适感,更受胸外科医生青睐[9]

2. 胸引管的安放

胸引管的放置位置根据其适应症的不同而有所不同。通常情况下,对于气体引流置入点一般选择锁骨中线第二肋间;对于液体引流选择胸侧壁的第五肋间或肩胛下线的第七肋间。理想的安放点被称为安全三角,这个三角是指第五肋间或以上肋间水平,由后方的背阔肌、前方的胸大肌和上方的腋窝底部围成的区域[14]

胸引管的安放方式有四种:穿刺器插入、钝性分离、Seldinger技术及胸部手术后安放。在所有胸腔积液穿刺前均建议进行超声检查定位,以确定插入位置和深度确保穿刺的安全性[15]。行低位穿刺需要特别注意,以避免穿透横膈膜进入腹腔并损伤右侧肝脏或左侧脾脏[8]。因此,穿刺器技术由于其尖端坚硬,容易导致肺组织损伤,可能有更多的并发症,因此现在已不推荐使用[16]

钝性分离是标准的置入方式,通常用于大口径胸引管的安放。在局麻后,切开皮肤使用血管钳钝性分离皮下、胸壁肌肉以及肋间肌肉直至突破壁层胸膜进入胸腔,然后使用血管钳夹持胸引管头端并引导引流管前端进入胸腔,此时应保证引流管尖端开口及前端侧孔完全进入胸腔内以形成密闭引流环境[14]

Seldinger术是指行血管穿刺过程中使用带有针芯的穿刺针穿透血管壁,然后拔出针芯,缓慢向外拔针,直到血液从针尾喷出,然后迅速插入导丝,拔出穿刺针,通过导丝引入导管,将导管放至血管腔。Seldinger技术操作简便、安全,损伤较小,因此也被广泛应用于其它经皮穿刺的介入操作,在胸外科,应用Seldinger技术使用导丝和导管扩张器来协助导管进入胸膜腔,将小口径胸引管留置在胸腔内以达到引流气体或液体的目的[8]。与钝性分离相比,此法对胸壁肌肉的损伤更小,患者的舒适度及体验度更好[17]

在胸部手术后,常见的置管方式是经切口置入胸引管。传统粗引流管经切口置入胸腔,与切口之间存在间隙,易导致管周气体和液体的渗漏,从而增加感染风险,影响术后恢复[18]。Xu等将12F胸引管放置在单孔切口同一肋间隙旁,Yun等将22F胸引管放置在镜孔上一肋间,均降低了管周漏气和漏液的发生率[18] [19]。改良的置管方式较传统方法能加快患者康复,但最佳的置管位置仍在探索当中。

无论采用何种置入方式,在选择置入方向时,应注意保护相关解剖结构尤其是肋间血管神经束。胸引管需要在肋骨的上缘进入,以避免损伤神经血管。在选择置入方向时,应选择向上或向后置入,以尽可能将胸引管置入胸顶或背部,避免垂直置入,以防胸引管插入叶间隙导致肺扩张后堵塞[17]

3. 胸引管的固定

胸引管的妥善固定在预防局部感染、移位及脱落方面十分关键。Hooper等关于胸引管的报告中提到,7.3%的患者发生了胸引管移位[20]。如果发生意外移位,往往导致皮下气肿或者气胸,甚至胸引管脱落,这时就需要重新插管[20]

固定胸引管的方法包括简单的扎紧胸引管、罗马凉鞋技术、钱包缝合、留置胸膜导管[21]。Mercer等的一项多中心试验将球囊状12 Fr肋间引流管与用单缝合线固定的类似尺寸的导管进行了比较,集成到引流管中的球囊就像膀胱导管一样固定于胸腔内,但位移率分析显示没有统计学意义(3.9%对10.1%),并且这种新式球囊胸引管移除困难患者占36.6%,且出现疼痛率为16% [22]。相较于传统固定方式,新型引流管并无明显优势。出人意料的是,Asciak等的研究表明,直接缝合胸引管可以降低胸腔外意外移出的几率(6.6% vs 14.8%) [23]。也许,这种直接而有效的方法可以值得参考。除了通过缝线对胸引管的固定,使用导管固定敷贴,可以为固定胸引管提供辅助作用,加强缝线的稳定性。

4. 引流装置

现阶段的引流装置有三种,包括海姆立克(Heimlich)阀装置,水封装置,数字引流装置。

单向Heimlich阀是一种简单的装置,它包含一个橡胶瓣膜,该瓣膜在吸气时关闭从而防止空气进入胸膜腔;同时在呼气时保持打开状态,允许空气或液体从胸膜腔流出[24]

水封装置由单腔、双腔或三腔的塑料装置组成,其发展源于Bulau最初设计的原始单瓶系统,其将胸引管的出口浸入水封液面以下,并通过单向Heimlich阀引流出空气,同时防止液体反流[25]。在气胸治疗中,单瓶系统的疗效很好,但是对于胸腔积液的治疗,随着引流液体的不断增加,外在的液压将会增加从而降低引流效率。在双腔系统中,第一个腔室负责收集液体,第二个腔室包含水封。当引流大量液体时,双腔系统优于单腔系统,因为其液体引流并不会影响外在的液压[26]。三腔系统则额外具有第三个腔室,通过这个腔室,外科医生可以进行外部负压抽吸的治疗,从而解决单纯重力引流难以解决的情况,如肺不张及大量气体、液体的引流[27]

数字引流系统(Digital drainage system, DDS),是一种新型智能集合功能引流装置,其可以提供漏气、引流量及胸膜腔内压的连续记录,并且可以在患者自由活动时提供稳定的负压抽吸[28]。数字引流系统已逐渐用于胸部手术术后,通过其实时监测可以缩短患者住院时间[29]。多个mate分析已表明应用数字引流系统可以减少胸引管留置时间[30] [31]。一项前瞻性、多中心的研究也表明,与传统引流方式相比,应用数字引流系统可以缩短住院时间[32]

对于三腔水封装置和数字引流系统,其最大的优势在于可通过外部负压抽吸功能,关于主动抽吸的总体益处和风险目前仍然存在争议。一些观点认为,负压抽吸可以通过主动排出空气并且促进胸膜间粘连形成来减少积气和缩短漏气时间[33]。然而,也有其他观点认为负压抽吸可能会阻碍愈合过程,通过维持肺泡胸膜瘘通畅来延长漏气时间[34]。传统的观点认为主动抽吸优于水封。Coughlin等的研究表明,在胸外科手术后,抽吸与水封相比无优势[35]。Feenstra等的研究显示,低压抽吸优于水封[36]。一项初步研究表明通过胸膜内压实施检测,智能动态调整抽吸压力,可在漏气时调整胸管抽吸[37]。总体上讲,主动抽吸的总体收益仍存在争议,也许未来通过智能数字引流系统动态调整抽吸压力,可以在一定程度上有助于患者恢复。

5. 适应症

5.1. 胸腔积液

漏出性胸腔积液,通常是全身性疾病导致,如心力衰竭、肝硬化等。渗出性胸腔积液,通常是感染、炎性疾病或恶性肿瘤导致,如果出现呼吸困难等症状,通过胸引管引流可以缓解症状,同时提供标本以明确诊断,指导进一步治疗,但其治疗的重点应是解决根本原因[38] [39]

对于复发性胸腔积液,胸膜固定术是降低其复发可能的选择,其将硬化剂,如滑石粉、自体血、四环素、多西环素或博来霉素等,通过胸引管注入胸膜腔,导致胸膜层之间的粘连,从而防止液体的再次产生[40] [41]。一项随机研究显示大口径胸引管24F相较于12F胸引管,行胸膜固定术的效果更好,这可能与小口径胸引管易堵塞有关[42]

复杂性胸腔积液,即包裹性胸腔积液。大尺寸胸引管是首选,因其引流粘稠的脓性液体效果明显。在早期渗出阶段,其液体可自由流通,仅通过胸引管引流可以取得较好的效果,在渗出后期,纤维蛋白沉积,液体变的更加粘稠,并且形成包裹性积液[43]。当简单引流失败且患者不适合手术时,可以选择使用组织纤溶酶原激活剂(rTPA/DNAse)分解纤维蛋白分隔和降低液体粘度来提高引流效果,从而改善包裹性积液患者的预后[44]。Mei等的研究显示小口径胸引管联合rTPA/DNAse达到的引流效果可以与大口径胸引管的效果相当[45]

5.2. 血胸

血胸通常由外伤、自发性胸膜血管破裂、手术并发症等引起,行胸引管引流可解除肺不张,减少呼吸窘迫的风险,引流血液,预防感染发生[46]。通过引流血量,可协助诊断活动性血胸,当初次引流超过1500 mL,或在2~4小时内每小时持续出血超过300 mL,或短时间大量出血形成凝固性血胸时,通常提示活动性出血,需要手术干预[47]。推荐使用大口径胸引管引流,以确保血液和血凝块排除,以防堵塞。Bauman等的研究也表明,14 Fr的导管与28~32 Fr管一样有效[48]

5.3. 气胸

气胸可分为自发性、创伤性及医源性气胸。自发性气胸可分为原发性和继发性,原发性自发性气胸(PSP)通常在高、瘦的青年男性中更常见。继发性自发性气胸(SSP)通常在患有慢性阻塞性肺病(COPD)、囊性纤维化、感染或肺恶性肿瘤的患者中常见,其原因是这些疾病损害了胸膜的完整性,从而导致空气的泄露。外伤性气胸则是由胸部钝挫伤或穿透伤,如肋骨骨折,刀刺伤引起。医源性气胸是由肺定位穿刺,肺活检,中心静脉导管置入等导致[49]

对于小气胸,胸腔穿刺抽气则足以治疗[49]。对于PSP,是否行胸引管引流主要根据X片上肺与胸顶的距离是否大于3 cm来决定,胸引管引流非常有效,经治疗后肺再扩张率可达到80%~90%,然而,有23-50%的患者会复发。但一项随机对照研究显示,入组患者中94%的气胸大而症状轻微的PSP患者经保守治疗,可在8周内实现肺完全扩张,且12月复发率较引流组显著降低(8.8% vs 16.8%) [50]。英国胸科学会(British Thoracic Society, BTS)胸膜疾病指南强调,无症状或症状轻微的PSP气胸患者可以接受保守治疗,无需立即进行有创手术,对于SSP,胸引管引流则是必要的,因为其可能会发生大量、长期的漏气,同时,需要尽快的手术或胸膜固定术干预,但对于手术风险高的患者,长期留置胸引管可能是唯一的治疗措施[51]

6. 胸引管的拔出时机

当达到治疗目标后,应立即拔出胸引管。对于气胸患者,通常认为在不漏气至少48小时后拔出胸引管是安全的[52]。对于可疑漏气的患者,通常认为进行钳夹试验可以帮助判断,但Kiefer的研究指出进行钳夹试验可能会导致张力性气胸的发生,因此,现在并不推荐进行钳夹试验[2]

对于引流胸腔积液的患者来说,现阶段拔出胸引管的引流量阈值存在争议。通常来讲,多数胸外科医生以200 ml/d作为拔出胸引管的标准。Xie等的研究表明术后每日引流量300 ml是可以接受的,Bjerregaard等研究表明VATS肺叶切除术后每天500 ml的较高阈值仅导致2.8%的患者出现临床相关的复发性积液[53] [54]。因此,只要术后未发现血胸、乳糜胸及漏气,以高于传统的引流量阈值拔管是可以接受的。Murakami则完全无视胸腔积液量,无论术后引流量有多大,胸腔引流管早期都可以安全地拔除,甚至只要无空气泄漏,VATS解剖肺切除术后当天就可以安全地拔除胸管[55]

胸膜固定术后,一些外科医生在液体产生量低于100~150 mL/天时拔除引流管,而另一些肺科医生在滴注硬化剂后的特定时间(例如24小时)进行引流[56]

Haider等的mate分析中指出,在呼气、吸气末期均可安全拔除胸腔引流管,呼气末拔管的患者住院时间有缩短趋势[57]

7. 并发症

按照标准流程安放胸引管尽管是一个相对安全的操作,但并非没有并发症[58]。Aho等提出了一种标准化胸引管相关并发症报告的方法,以便更容易地记录和识别并发症[59]。他提出的五种胸引管相关并发症包括安放、位置、取出、感染和教学或设备相关问题。

安放并发症定义为安放引流管后24小时内对胸内或胸外器官直接造成的损伤,例如安放时插入肺实质、肝脏、心脏或其他器官内,这是通过套管技术插入胸管时最常见的并发症,其发生率在6%~14%之间。因此,安放时最好于安全三角进行,这个三角是指第五肋间或以上肋间水平,由后方的背阔肌、前方的胸大肌和上方的腋窝底部围成的区域。

位置并发症定义为安放24小时后发生,通常由发生于胸引管无功能后,其发生机制为胸引管侵蚀周围结构,如对食管、神经、血管的侵蚀,导致食管瘘、Horner综合征、膈肌麻痹等并发症。当发现胸引管无明显功能后,应复查胸片以确定胸引管位置,及时拔出或调整胸引管位置以避免胸引管长期留置对于周围组织的侵蚀。

取出并发症包括取出胸引管后未能及时密闭胸部缺口,导致压缩性气胸需要再次置管,或取出后任何异物残留,如引流管断端残留于胸腔。在取出胸引管时,实施者应接受正规的培训,确保合理的取出程序从而预防压缩性气胸的发生。在取出胸引管后,应仔细检查胸引管的完整性,确保完整取出。

感染性并发症涉及任何感染,包括消毒技术不当引起的外部感染,以及脓胸等内部感染。有证据表明,在胸腔闭式引流术后服用抗生素,可在一定程度上减少脓胸和手术部位感染。

教学或设备并发症是指在教学过程中发生的并发症和未能正确使用设备导致的并发症,如安放胸引管后未能正确的连接胸引瓶等。

目前为止,尚无权威的胸引管相关并发症分类指南发布。因此,尽快合理的、全面的定义这些并发症,有助于胸外科医师预防及识别相关问题并早期处理。

8. 免放胸引管

加速康复外科学(ERAS)是围手术期管理的一种多模式、多学科康复理念[60]。基于其理念指导,胸部手术日益微创化,但术后放置胸引管易导致伤口疼痛等不适,不利于患者康复[61]。有研究表明,针对楔形、部分解剖性肺的手术,电视胸腔镜(VATS)手术后免放胸引管安全可行。

对于VATS楔形切除术后免放胸引管的研究是最早的。Liu等对临床考虑早期原发性肺癌行VATS楔形切除的患者进行研究,其纳入标准为:1. 病变位于外周且直径 ≤ 2 cm,2. 无阻塞性通气缺陷[第1秒用力呼气容积(FEV1) ≥ 1.5 L],3. 无胸膜粘连的患者。4. 排除≥3处楔形切除和切除范围超过2个解剖节段的患者,术后第1天气胸发生率19.4%,但未出现更严重的并发症[62]。一项meta分析纳入了10项研究(4项随机对照试验,6项非随机对照试验)共1079例患者,其中7项为肺楔形切除术,术后不放置胸腔引流管组561例(52%),放置胸腔引流管组518例(48%)。结果显示,与胸腔引流管组相比,不放置胸腔引流管组的患者术后平均住院少1.53天(加权均数差(WMD) −1.53,P < 0.001),疼痛评分更低(WMD −1.09, P = 0.002),胸腔穿刺再干预及放置胸腔引流管风险更高,但对两组患者出院时的影响差异无统计学意义[63]。基于以上研究,VATS楔形切除术后免放胸引管是相对可行且安全的。

对于VATS解剖性肺切除,因术中需显露支气管、血管,因此更易对肺实质造成损伤,因此临床上普遍认为,相较于楔形切除,解剖性肺解除术后并发症更易发生,但基于楔形切除免放胸引管的研究,也有部分研究者关注解剖性肺切除术后免放胸引管是否可行。Homma等发表的一项研究中,针对术后6 h内拔除胸腔引流管采取以下拔管标准:(1) 数字引流装置观察未见漏气;(2) 胸腔引流量 ≤ 100 ml/h;(3) 无≥3项危险因素,包括男性、慢性阻塞性肺疾病、体质量指数 < 18.5 kg/m2、严重胸膜粘连、肺上叶切除术或左肺上叶节段切除术。研究共纳入942例患者,其中244例(25.9%)符合以上标准,并在术后6 h内拔除胸腔引流管。结果显示,早期拔管组术后平均住院天数显著减少(4天对6天),总术后并发症发生率较低(7.4%对25.6%) [64]。该研究对筛选解剖性肺切除术后不放置胸腔引流管的合适标准有一定意义,为不放置胸腔引流管的实践提供了基础。

术后放置胸引管,可及时引流胸腔积液、气体,同时为胸外科医生提供观察的窗口,以判断术后是否出现活动性出血、漏气、肺不张等情况。因此,基于安全性考虑,VATS术后免放胸引管仍需积极关注及预防术后并发症。不放置胸腔引流管的患者中,术后气胸是最常见的并发症,大多数研究在手术结束时进行严格的气密性检测,检测方式常分为两种:(1) 被动排气法:将胸引管置于胸腔内,关闭其余切口,将胸引管另一端置于水中进行机械通气,检测水中是否有气泡产生。(2) 主动抽吸法:在胸腔镜直视下确保肺复张后,将胸引管连接到数字引流系统(Digital drainage system, DDS)以15 mmHg的压力进行主动抽吸,当DDS确认气流为0 mL/min则选择不放置胸引管,以预防术后气胸的发生[65] [66]。较为特别的是,Laven等的研究回顾性分析了12年不放置胸引管的经验,该研究认为通过目视检查肺实质是否受损来判断是否漏气是可行的[67]。不同研究中术后气胸发生率也不同,大部分患者无需进一步干预[63] [68] [69]。术后出血是VATS术后的严重并发症之一,尽管发生率非常低,但仍需高度警惕[70]-[72]。其危险因素包括:术中对胸腔内胸膜及组织粘连的松解、支气管或血管吻合术或手术切口后渗血,以上危险因素可帮助胸外科医生选择免放胸引管的患者,因此,手术结束时彻底胸腔镜下止血,可显著降低出血发生率。同时,术后管理也极为重要,术后1天内应常规行X线胸片、血常规和血气分析动态评估[68]。对于X线胸片提示胸腔积液的患者,需进行诊断性穿刺,明确液体性质。对于检验提示血红蛋白进行性下降的患者应尽快明确病因,若确定为术后活动性出血,应立即启动输血治疗或手术止血。

总体而言,VATS术后免放胸引管并发症发生概率较低,因此理论上其安全性可得到保证,但入组患者仍需遵循严格标准,避免二次置管及手术为患者带来额外创伤。同时,大多数免放胸引管研究为回顾性研究,亟待多中心、大样本、前瞻性和随机对照等强力循证学证据支持。

9. 小结

胸引管适用于胸外科各种临床疾病,掌握其类型、安放方法、适应症及最新进展仍是胸外科医生专业知识中的重要组成部分,同时,随着ERAS理念逐步深入和应用到胸外科领域,不仅要求手术微创化,更要求胸外医生加强对患者围术期关注,促进患者早期康复,因此,及早拔除或省略胸引管也应纳入胸外科医生的临床决策中。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Christopoulou-Aletra, H. and Papavramidou, N. (2008) “Empyemas” of the Thoracic Cavity in the Hippocratic Corpus. The Annals of Thoracic Surgery, 85, 1132-1134.
https://doi.org/10.1016/j.athoracsur.2007.11.031
[2] Kiefer, T. (2017) Chest Drains in Daily Clinical Practice. Springer International Publishing.
https://scholar.google.com/scholar_lookup?title=Chest%20drains%20in%20clinical%20practice&author=T%20Kiefer&publication_year=2017&
https://doi.org/10.1007/978-3-319-32339-8
[3] Porcel, J.M. (2018) Chest Tube Drainage of the Pleural Space: A Concise Review for Pulmonologists. Tuberculosis and Respiratory Diseases, 81, 106-115.
https://doi.org/10.4046/trd.2017.0107
[4] Bassi, M., Mottola, E., Mantovani, S., Amore, D., Pagini, A., Diso, D., et al. (2022) Coaxial Drainage versus Standard Chest Tube after Pulmonary Lobectomy: A Randomized Controlled Study. Current Oncology, 29, 4455-4463.
https://doi.org/10.3390/curroncol29070354
[5] 韩志伟, 胡文滕, 马敏杰, 等. 带金属支撑的多侧孔超细引流管对单孔胸腔镜肺上叶切除术后胸腔残腔形成影响的单中心回顾性研究[J]. 中国胸心血管外科临床杂志, 2024, 31(3): 397-402.
[6] Chang, S., Kang, Y., Chiu, H. and Chiu, Y. (2018) A Systematic Review and Meta-Analysis Comparing Pigtail Catheter and Chest Tube as the Initial Treatment for Pneumothorax. Chest, 153, 1201-1212.
https://doi.org/10.1016/j.chest.2018.01.048
[7] Mahmood, K. and Wahidi, M.M. (2013) Straightening Out Chest Tubes: What Size, What Type, and When. Clinics in Chest Medicine, 34, 63-71.
https://doi.org/10.1016/j.ccm.2012.11.007
[8] Cooke, D.T., and David, E.A. (2013) Large-Bore and Small-Bore Chest Tubes. Thoracic Surgery Clinics, 23, 17-24.
https://www.thoracic.theclinics.com/article/S1547-4127(12)00077-1/abstract
https://doi.org/10.1016/j.thorsurg.2012.10.006
[9] Almusally, R.M., Elbawab, H., Alswiket, H., Alamry, R., Aldar, H., Alismail, M., et al. (2024) Chest Tube Size Selection for Pleural Effusion: From the Perspective of Thoracic Surgeons and Pulmonologists. Hospital Practice, 52, 143-150.
https://doi.org/10.1080/21548331.2024.2401315
[10] Mortman, K.D., Tanenbaum, M.T., Cavallo, K.M., Kelley, D., Bonitto, S.S., Sadur, A., et al. (2023) Reintervention Rate after Pigtail Catheter Insertion Compared to Surgical Chest Tubes. The American Surgeon™, 89, 5487-5491.
https://doi.org/10.1177/00031348231157419
[11] Kulvatunyou, N., Bauman, Z.M., Zein Edine, S.B., de Moya, M., Krause, C., Mukherjee, K., et al. (2021) The Small (14 Fr) Percutaneous Catheter (P-CAT) versus Large (28-32 Fr) Open Chest Tube for Traumatic Hemothorax: A Multicenter Randomized Clinical Trial. Journal of Trauma and Acute Care Surgery, 91, 809-813.
https://doi.org/10.1097/ta.0000000000003180
[12] Stamenovic, D., Dittmar, E., Schiller, P., Trenchev, D., Karampinis, I., Galata, C., et al. (2023) A Randomized Controlled Trial: Comparison of 14 and 24 French Thoracic Drainage after Minimally Invasive Lobectomy—MZ 14-24 Study. Heliyon, 9, e22049.
https://doi.org/10.1016/j.heliyon.2023.e22049
[13] 袁晔, 王宁, 贾霜, 等. 电话与微信随访在Ⅲ期结核性脓胸术后滞留胸腔引流管出院患者中的应用效果[J/OL]. 中国胸心血管外科临床杂志, 1-6.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZXYX20240607001, 2025-03-03.
[14] McElnay, P.J. and Lim, E. (2017) Modern Techniques to Insert Chest Drains. Thoracic Surgery Clinics, 27, 29-34.
https://doi.org/10.1016/j.thorsurg.2016.08.005
[15] Porcel, J.M. (2016) Ecografía pleural para clínicos. Revista Clínica Española, 216, 427-435.
https://doi.org/10.1016/j.rce.2016.05.009
[16] John, M., Razi, S., Sainathan, S. and Stavropoulos, C. (2014) Is the Trocar Technique for Tube Thoracostomy Safe in the Current Era? Interactive CardioVascular and Thoracic Surgery, 19, 125-128.
https://doi.org/10.1093/icvts/ivu071
[17] Filosso, P.L., Guerrera, F., Sandri, A., Roffinella, M., Solidoro, P., Ruffini, E., et al. (2017) Errors and Complications in Chest Tube Placement. Thoracic Surgery Clinics, 27, 57-67.
https://doi.org/10.1016/j.thorsurg.2016.08.009
[18] Yun, T., Zhang, Y., Liu, A., Qin, Y., Sun, X., Wu, Z., et al. (2023) Randomized Trial of Modified Chest Tube Placement vs Routine Placement after Lung Resection. The Annals of Thoracic Surgery, 116, 1013-1019.
https://doi.org/10.1016/j.athoracsur.2023.04.031
[19] Xu, Y., Luo, J., Ge, Q., Cong, Z., Jiang, Z., Diao, Y., et al. (2023) Safety and Feasibility of a Novel Chest Tube Placement in Uniportal Video‐Assisted Thoracoscopic Surgery for Non‐Small Cell Lung Cancer. Thoracic Cancer, 14, 2648-2656.
https://doi.org/10.1111/1759-7714.15049
[20] Hooper, C. and Maskell, N. (2011) British Thoracic Society National Pleural Procedures Audit 2010. Thorax, 66, 636-637.
https://doi.org/10.1136/thoraxjnl-2011-200077
[21] Sorino, C., Feller-Kopman, D., Mei, F., Mondoni, M., Agati, S., Marchetti, G., et al. (2024) Chest Tubes and Pleural Drainage: History and Current Status in Pleural Disease Management. Journal of Clinical Medicine, 13, Article 6331.
https://doi.org/10.3390/jcm13216331
[22] Mercer, R.M., Mishra, E., Banka, R., Corcoran, J.P., Daneshvar, C., Panchal, R.K., et al. (2022) A Randomised Controlled Trial of Intrapleural Balloon Intercostal Chest Drains to Prevent Drain Displacement. European Respiratory Journal, 60, Article 2101753.
https://doi.org/10.1183/13993003.01753-2021
[23] Asciak, R., Addala, D., Karimjee, J., Rana, M.S., Tsikrika, S., Hassan, M.F., et al. (2018) Chest Drain Fall-Out Rate According to Suturing Practices: A Retrospective Direct Comparison. Respiration, 96, 48-51.
https://doi.org/10.1159/000489230
[24] Gogakos, A., Barbetakis, N., Lazaridis, G., et al. (2015) Heimlich Valve and Pneumothorax. Annals of Translational Medicine, 3, Article 54.
[25] Meyer, J.A. (1989) Gotthard Bülau and Closed Water-Seal Drainage for Empyema, 1875-1891. The Annals of Thoracic Surgery, 48, 597-599.
https://doi.org/10.1016/s0003-4975(10)66876-2
[26] Zisis, C., Tsirgogianni, K., Lazaridis, G., et al. (2015) Chest Drainage Systems in Use. Annals of Translational Medicine, 3, Article 43.
[27] Toth, J.W., Reed, M.F. and Ventola, L.K. (2019) Chest Tube Drainage Devices. Seminars in Respiratory and Critical Care Medicine, 40, 386-393.
https://doi.org/10.1055/s-0039-1694769
[28] Cerfolio, R.J. and Bryant, A.S. (2008) The Benefits of Continuous and Digital Air Leak Assessment after Elective Pulmonary Resection: A Prospective Study. The Annals of Thoracic Surgery, 86, 396-401.
https://doi.org/10.1016/j.athoracsur.2008.04.016
[29] Cerfolio, R.J., Varela, G. and Brunelli, A. (2010) Digital and Smart Chest Drainage Systems to Monitor Air Leaks: The Birth of a New Era? Thoracic Surgery Clinics, 20, 413-420.
https://doi.org/10.1016/j.thorsurg.2010.03.007
[30] Shikano, K., Abe, M., Hirama, R., Kitahara, S., Maruyama, K., Horiuchi, D., et al. (2023) A Retrospective Comparison between Digital to Conventional Drainage Systems for Secondary Spontaneous Pneumothorax Related to Diffuse Interstitial Lung Disease. The Clinical Respiratory Journal, 17, 733-739.
https://doi.org/10.1111/crj.13654
[31] Anderson, D., Chen, S.A., Godoy, L.A., Brown, L.M. and Cooke, D.T. (2022) Comprehensive Review of Chest Tube Management. JAMA Surgery, 157, 269-274.
https://doi.org/10.1001/jamasurg.2021.7050
[32] Comacchio, G.M., Marulli, G., Mendogni, P., Andriolo, L.G., Guerrera, F., Brascia, D., et al. (2023) Comparison between Electronic and Traditional Chest Drainage Systems: A Multicenter Randomized Study. The Annals of Thoracic Surgery, 116, 104-109.
https://doi.org/10.1016/j.athoracsur.2023.02.057
[33] Holbek, B.L., Christensen, M., Hansen, H.J., Kehlet, H. and Petersen, R.H. (2019) The Effects of Low Suction on Digital Drainage Devices after Lobectomy Using Video-Assisted Thoracoscopic Surgery: A Randomized Controlled Trial. European Journal of Cardio-Thoracic Surgery, 55, 673-681.
https://doi.org/10.1093/ejcts/ezy361
[34] Chopra, A., Doelken, P., Hu, K., Huggins, J.T. and Judson, M.A. (2023) Pressure-Dependent Pneumothorax and Air Leak. CHEST, 164, 796-805.
https://doi.org/10.1016/j.chest.2023.04.049
[35] Coughlin, S.M., Emmerton-Coughlin, H.M.A. and Malthaner, R. (2012) Management of Chest Tubes after Pulmonary Resection: A Systematic Review and Meta-Analysis. Canadian Journal of Surgery, 55, 264-270.
https://doi.org/10.1503/cjs.001411
[36] Feenstra, T.M., Dickhoff, C. and Deunk, J. (2018) Systematic Review and Meta-Analysis of Tube Thoracostomy Following Traumatic Chest Injury; Suction versus Water Seal. European Journal of Trauma and Emergency Surgery, 44, 819-827.
https://doi.org/10.1007/s00068-018-0942-7
[37] Chung, J. and LI, J.K. (2006) Optimal Design of Small-Diameter Silicone Chest Drain Devices. Cardiovascular Engineering, 6, 1-9.
https://doi.org/10.1007/s10558-006-9002-8
[38] Korczyński, P., Górska, K., Konopka, D., Al-Haj, D., Filipiak, K.J. and Krenke, R. (2020) Significance of Congestive Heart Failure as a Cause of Pleural Effusion: Pilot Data from a Large Multidisciplinary Teaching Hospital. Cardiology Journal, 27, 254-261.
https://doi.org/10.5603/cj.a2018.0137
[39] Ferreiro, L., Porcel, J.M. and Valdés, L. (2017) Diagnóstico y manejo de los trasudados pleurales. Archivos de Bronconeumología, 53, 629-636.
https://doi.org/10.1016/j.arbres.2017.04.018
[40] Bhatnagar, R., Piotrowska, H.E.G., Laskawiec-Szkonter, M., Kahan, B.C., Luengo-Fernandez, R., Pepperell, J.C.T., et al. (2020) Effect of Thoracoscopic Talc Poudrage vs Talc Slurry via Chest Tube on Pleurodesis Failure Rate among Patients with Malignant Pleural Effusions. JAMA, 323, 60-69.
https://doi.org/10.1001/jama.2019.19997
[41] Muthu, V., Dhooria, S., Sehgal, I.S., Prasad, K.T., Aggarwal, A.N. and Agarwal, R. (2021) Iodopovidone Pleurodesis for Malignant Pleural Effusions: An Updated Systematic Review and Meta-Analysis. Supportive Care in Cancer, 29, 4733-4742.
https://doi.org/10.1007/s00520-021-06004-3
[42] Rahman, N.M., Pepperell, J., Rehal, S., Saba, T., Tang, A., Ali, N., et al. (2015) Effect of Opioids vs NSAIDs and Larger vs Smaller Chest Tube Size on Pain Control and Pleurodesis Efficacy among Patients with Malignant Pleural Effusion. JAMA, 314, 2641-2653.
https://doi.org/10.1001/jama.2015.16840
[43] Bedawi, E.O., Ricciardi, S., Hassan, M., Gooseman, M.R., Asciak, R., Castro-Añón, O., et al. (2023) ERS/ESTS Statement on the Management of Pleural Infection in Adults. European Respiratory Journal, 61, Article 2201062.
https://doi.org/10.1183/13993003.01062-2022
[44] Bachmayer, K. (2011) Tissue Plasminogen Activator and DNase in Empyema. The New England Journal of Medicine, 365, 1936-1937.
[45] Mei, F., Rota, M., Bonifazi, M., Zuccatosta, L., Porcarelli, F.M., Sediari, M., et al. (2023) Efficacy of Small versus Large-Bore Chest Drain in Pleural Infection: A Systematic Review and Meta-Analysis. Respiration, 102, 247-256.
https://doi.org/10.1159/000529027
[46] Patrini, D., Panagiotopoulos, N., Pararajasingham, J., et al. (2015) Etiology and Management of Spontaneous Haemothorax. Journal of Thoracic Disease, 7, 520-526.
[47] Rösch, R.M. (2023) From Diagnosis to Therapy: The Acute Traumatic Hemothorax—An Orientation for Young Surgeons. Innovative Surgical Sciences, 8, 221-226.
https://doi.org/10.1515/iss-2023-0062
[48] Bauman, Z.M., Kulvatunyou, N., Joseph, B., Gries, L., O’Keeffe, T., Tang, A.L., et al. (2021) Randomized Clinical Trial of 14‐French (14F) Pigtail Catheters versus 28-32F Chest Tubes in the Management of Patients with Traumatic Hemothorax and Hemopneumothorax. World Journal of Surgery, 45, 880-886.
https://doi.org/10.1007/s00268-020-05852-0
[49] MacDuff, A., Arnold, A. and Harvey, J. (2010) Management of Spontaneous Pneumothorax: British Thoracic Society Pleural Disease Guideline 2010. Thorax, 65, ii18-ii31.
https://doi.org/10.1136/thx.2010.136986
[50] Brown, S.G.A., Ball, E.L., Perrin, K., Asha, S.E., Braithwaite, I., Egerton-Warburton, D., et al. (2020) Conservative versus Interventional Treatment for Spontaneous Pneumothorax. New England Journal of Medicine, 382, 405-415.
https://doi.org/10.1056/nejmoa1910775
[51] Shorthose, M., Barton, E. and Walker, S. (2023) The Contemporary Management of Spontaneous Pneumothorax in Adults. Breathe, 19, Article 230135.
https://doi.org/10.1183/20734735.0135-2023
[52] Novoa, N.M., Jiménez, M.F. and Varela, G. (2017) When to Remove a Chest Tube. Thoracic Surgery Clinics, 27, 41-46.
https://doi.org/10.1016/j.thorsurg.2016.08.007
[53] Bjerregaard, L.S., Jensen, K., Petersen, R.H. and Hansen, H.J. (2014) Early Chest Tube Removal after Video-Assisted Thoracic Surgery Lobectomy with Serous Fluid Production up to 500 ml/Day. European Journal of Cardio-Thoracic Surgery, 45, 241-246.
https://doi.org/10.1093/ejcts/ezt376
[54] Xie, H., Xu, K., Tang, J., Bian, W., Ma, H., Zhao, J., et al. (2015) A Prospective Randomized, Controlled Trial Deems a Drainage of 300 ml/Day Safe before Removal of the Last Chest Drain after Video-Assisted Thoracoscopic Surgery Lobectomy. Interactive CardioVascular and Thoracic Surgery, 21, 200-205.
https://doi.org/10.1093/icvts/ivv115
[55] Murakami, J., Ueda, K., Tanaka, T., Kobayashi, T., Kunihiro, Y. and Hamano, K. (2017) The Validation of a No-Drain Policy after Thoracoscopic Major Lung Resection. The Annals of Thoracic Surgery, 104, 1005-1011.
https://doi.org/10.1016/j.athoracsur.2017.03.030
[56] Lee, Y.C.G. (2008) Textbook of Pleural Diseases. CRC Press.
https://scholar.google.com/scholar_lookup?title=Textbook%20of%20pleural%20diseases&author=HE%20Davies&author=YC%20Gary%20Lee&publication_year=2016&
[57] Haider, S., Kamal, M.T., Shoaib, N. and Zahid, M. (2023) Thoracostomy Tube Withdrawal during Latter Phases of Expiration or Inspiration: A Systematic Review and Meta-Analysis. European Journal of Trauma and Emergency Surgery, 49, 2389-2400.
https://doi.org/10.1007/s00068-023-02306-9
[58] Mao, M., Hughes, R., Papadimos, T.J. and Stawicki, S.P. (2015) Complications of Chest Tubes. Current Opinion in Pulmonary Medicine, 21, 376-386.
https://doi.org/10.1097/mcp.0000000000000169
[59] Aho, J.M., Ruparel, R.K., Rowse, P.G., Brahmbhatt, R.D., Jenkins, D. and Rivera, M. (2015) Tube Thoracostomy: A Structured Review of Case Reports and a Standardized Format for Reporting Complications. World Journal of Surgery, 39, 2691-2706.
https://doi.org/10.1007/s00268-015-3158-6
[60] Ljungqvist, O. (2014) ERAS—Enhanced Recovery after Surgery. Journal of Parenteral and Enteral Nutrition, 38, 559-566.
https://doi.org/10.1177/0148607114523451
[61] Wei, S., Zhang, G., Ma, J., Nong, L., Zhang, J., Zhong, W., et al. (2022) Randomized Controlled Trial of an Alternative Drainage Strategy vs Routine Chest Tube Insertion for Postoperative Pain after Thoracoscopic Wedge Resection. BMC Anesthesiology, 22, Article No. 27.
https://doi.org/10.1186/s12871-022-01569-w
[62] Liu, C., Hsu, P., Chien, H., Hsieh, C., Ting, C. and Tsou, M. (2018) Tubeless Single-Port Thoracoscopic Sublobar Resection: Indication and Safety. Journal of Thoracic Disease, 10, 3729-3737.
https://doi.org/10.21037/jtd.2018.05.119
[63] Huang, L., Kehlet, H., Holbek, B.L., Jensen, T.K. and Petersen, R.H. (2021) Efficacy and Safety of Omitting Chest Drains after Video-Assisted Thoracoscopic Surgery: A Systematic Review and Meta-Analysis. Journal of Thoracic Disease, 13, 1130-1142.
https://doi.org/10.21037/jtd-20-3130
[64] Homma, T., Saji, H., Shimada, Y., Tanabe, K., Kojima, K., Marushima, H., et al. (2024) Early Chest Tube Removal within 6 Hours after Thoracic Surgery Results in Improved Postoperative Prognosis and No Adverse Effects. Journal of Thoracic Disease, 16, 3096-3106.
https://doi.org/10.21037/jtd-23-1905
[65] Watanabe, A., Watanabe, T., Ohsawa, H., Mawatari, T., Ichimiya, Y., Takahashi, N., et al. (2004) Avoiding Chest Tube Placement after Video-Assisted Thoracoscopic Wedge Resection of the Lung. European Journal of Cardio-Thoracic Surgery, 25, 872-876.
https://doi.org/10.1016/j.ejcts.2004.01.041
[66] Ahn, S. and Moon, Y. (2022) Uniportal Video-Assisted Thoracoscopic Surgery without Drainage-Tube Placement for Pulmonary Wedge Resection: A Single-Center Retrospective Study. Journal of Cardiothoracic Surgery, 17, Article No. 317.
https://doi.org/10.1186/s13019-022-02053-9
[67] Laven, I.E.W.G., Franssen, A.J.P.M., van Dijk, D.P.J., Daemen, J.H.T., Gronenschild, M.H.M., Hulsewé, K.W.E., et al. (2023) A No-Chest-Drain Policy after Video-Assisted Thoracoscopic Surgery Wedge Resection in Selected Patients: Our 12-Year Experience. The Annals of Thoracic Surgery, 115, 835-843.
https://doi.org/10.1016/j.athoracsur.2022.04.030
[68] Liu, C., Hsu, P., Leong, K., Ting, C. and Tsou, M. (2020) Is Tubeless Uniportal Video-Assisted Thoracic Surgery for Pulmonary Wedge Resection a Safe Procedure? European Journal of Cardio-Thoracic Surgery, 58, i70-i76.
https://doi.org/10.1093/ejcts/ezaa061
[69] Li, P., Shen, C., Wu, Y., Lai, Y., Zhou, K. and Che, G. (2018) It Is Safe and Feasible to Omit the Chest Tube Postoperatively for Selected Patients Receiving Thoracoscopic Pulmonary Resection: A Meta-Analysis. Journal of Thoracic Disease, 10, 2712-2721.
https://doi.org/10.21037/jtd.2018.04.75
[70] Homma, T., Shimada, Y., Tanabe, K., Akemoto, Y., Ojima, T., Yamamoto, Y., et al. (2021) Adverse Factors and Postoperative Neuropathic Pain in Challenging Video-Assisted Thoracoscopic Surgery. Annals of Palliative Medicine, 10, 2849-2858.
https://doi.org/10.21037/apm-20-1729
[71] Haruki, T., Kubouchi, Y., Kidokoro, Y., Matsui, S., Ohno, T., Kojima, S., et al. (2023) A Comparative Study of Robot-Assisted Thoracoscopic Surgery and Conventional Approaches for Short-Term Outcomes of Anatomical Segmentectomy. General Thoracic and Cardiovascular Surgery, 72, 338-345.
https://doi.org/10.1007/s11748-023-01983-y
[72] Rinieri, P., Bubenheim, M., Calenda, E., Melki, J., Peillon, C., Baste, J., et al. (2016) Robot-Assisted Thoracoscopic Surgery versus Video-Assisted Thoracoscopic Surgery for Lung Lobectomy: Can a Robotic Approach Improve Short-Term Outcomes and Operative Safety? The Thoracic and Cardiovascular Surgeon, 64, 354-362.
https://doi.org/10.1055/s-0035-1548733