[1]
|
Magliano, D.J. and Boyko, E.J. (2021) IDF Diabetes Atlas 10th Edition Scientific Committee. International Diabetes Federation.
|
[2]
|
Park, J.J. (2021) Epidemiology, Pathophysiology, Diagnosis and Treatment of Heart Failure in Diabetes. Diabetes & Metabolism Journal, 45, 146-157. https://doi.org/10.4093/dmj.2020.0282
|
[3]
|
Siao, W.Z., Chen, Y.H., Tsai, C.F., Lee, C.M. and Jong, G.P. (2022) Diabetes Mellitus and Heart Failure. Journal of Personalized Medicine, 12, Article 1698. https://doi.org/10.3390/jpm12101698
|
[4]
|
Yap, J., Tay, W.T., Teng, T.K., Anand, I., Richards, A.M., Ling, L.H., MacDonald, M.R., Chandramouli, C., Tromp, J., Siswanto, B.B., et al. (2019) Association of Diabetes Mellitus on Cardiac Remodeling, Quality of Life, and Clinical Outcomes in Heart Failure with Reduced and Preserved Ejection Fraction. Journal of the American Heart Association, 8, e013114. https://doi.org/10.1161/JAHA.119.013114
|
[5]
|
Lee, H.J., Kim, H.K., Kim, B.S., Han, K.D., Rhee, T.M., Park, J.B., Lee, H., Lee, S.P. and Kim, Y.J. (2022) Impact of Diabetes Mellitus on the Outcomes of Subjects with Hypertrophic Cardiomyopathy: A Nationwide Cohort Study. Diabetes Research and Clinical Practice, 186, Article 109838. https://doi.org/10.1016/j.diabres.2022.109838
|
[6]
|
Bertrand, L., Horman, S., Beauloye, C. and Vanoverschelde, J.L. (2008) Insulin Signalling in the Heart. Cardiovascular Research, 79, 238-248. https://doi.org/10.1093/cvr/cvn093
|
[7]
|
Abel, E.D. (2004) Glucose Transport in the Heart. Frontiers in Bioscience, 9, 201-215. https://doi.org/10.2741/1216
|
[8]
|
Olson, A.L. and Pessin, J.E. (1996) Structure, Function, and Regulation of the Mammalian Facilitative Glucose Transporter Gene Family. Annual Review of Nutrition, 16, 235-256. https://doi.org/10.1146/annurev.nu.16.070196.001315
|
[9]
|
Fischer, Y., Thomas, J., Sevilla, L., Muñoz, P., Becker, C., Holman, G., Kozka, I.J., Palacín, M., Testar, X., Kammermeier, H. and Zorzano, A. (1997) Insulin-Induced Recruitment of Glucose Transporter 4 (GLUT4) and GLUT1 in Isolated Rat Cardiac Myocytes. Evidence of the Existence of Different Intracellular GLUT4 Vesicle Populations. Journal of Biological Chemistry, 272, 7085-7092. https://doi.org/10.1074/jbc.272.11.7085
|
[10]
|
Calera, M.R., Martinez, C., Liu, H., et al. (1998) Insulin Increases the Association of Akt-2 with Glut4-Containing Vesicles. Journal of Biological Chemistry, 273, 7201-7204. https://doi.org/10.1074/jbc.273.13.7201
|
[11]
|
Jia, G., DeMarco, V.G. and Sowers, J.R. (2016) Insulin Resistance and Hyperinsulinaemia in Diabetic Cardiomyopathy. Nature Reviews Endocrinology, 12, 144-153. https://doi.org/10.1038/nrendo.2015.216
|
[12]
|
Chen, C.Y., Chen, J., He, L. and Stiles, B.L. (2018) PTEN: Tumor Suppressor and Metabolic Regulator. Frontiers in Endocrinology, 9, Article 338. https://doi.org/10.3389/fendo.2018.00338
|
[13]
|
Gum, R.J., Gaede, L.L., Sandra, L., et al. (2003) Reduction of Protein Tyrosine Phosphatase 1B Increases Insulin-Dependent Signaling in ob/ob Mice. Diabetes, 52, 21-28. https://doi.org/10.2337/diabetes.52.1.21
|
[14]
|
Koh, H.J., Toyoda, T., Didesch, M.M., et al. (2013) Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle. Nature Communications, 4, Article 1871. https://doi.org/10.1038/ncomms2851
|
[15]
|
Gu, J., Yan, X., Dai, X., et al. (2018) Metallothionein Preserves Akt2 Activity and Cardiac Function via Inhibiting TRB3 in Diabetic Hearts. Diabetes, 67, 507-517. https://doi.org/10.2337/db17-0219
|
[16]
|
Zhang, Y., Chen, M., Tao, Y., Chu, B., Ma, Y., Lu, K. and Sun, H. (2022) Natural 8-C-Ascorbyl-(−)-Epigallocatechin as Antidiabetic Agent: α-Glucosidase and PTP-1B Signaling Pathway dual Regulators. Fitoterapia, 162, Article 105263. https://doi.org/10.1016/j.fitote.2022.105263
|
[17]
|
Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513. https://doi.org/10.1161/CIRCRESAHA.121.318241
|
[18]
|
Atkinson, L.L., Kozak, R., Kelly, S.E., Onay Besikci, A., Russell, J.C. and Lopaschuk, G.D. (2003) Potential Mechanisms and Consequences of Cardiac Triacylglycerol Accumulation in Insulin-Resistant Rats. American Journal of Physiology-Endocrinology and Metabolism, 284, E923-E930. https://doi.org/10.1152/ajpendo.00360.2002
|
[19]
|
Luiken, J.J., Glatz, J.F. and Neumann, D. (2015) Cardiac Contraction-Induced GLUT4 Translocation Requires Dual Signaling Input. Trends in Endocrinology & Metabolism, 26, 404-410. https://doi.org/10.1016/j.tem.2015.06.002
|
[20]
|
Sun, A., Simsek Papur, O., Dirkx, E., Wong, L., Sips, T., Wang, S., Strzelecka, A., Nabben, M., Glatz, J.F.C., Neumann, D. and Luiken, J.J.F.P. (2021) Phosphatidylinositol 4-Kinase IIIβ Mediates Contraction-Induced GLUT4 Translocation and Shows Its Anti-Diabetic Action in Cardiomyocytes. Cellular and Molecular Life Sciences, 78, 2839-2856. https://doi.org/10.1007/s00018-020-03669-7
|
[21]
|
Luiken, J.J., Glatz, J.F. and Neumann, D. (2015) Cardiac Contraction-Induced GLUT4 Translocation Requires Dual Signaling Input. Trends in Endocrinology & Metabolism, 26, 404-410. https://doi.org/10.1016/j.tem.2015.06.002
|
[22]
|
Buchanan, J., Mazumder, P.K., Hu, P., Chakrabarti, G., Roberts, M.W., Yun, U.J., Cooksey, R.C., Litwin, SE. and Abel, E.D. (2005) Reduced Cardiac Efficiency and Altered Substrate Metabolism Precedes the Onset of Hyperglycemia and Contractile Dysfunction in Two Mouse Models of Insulin Resistance and Obesity. Endocrinology, 146, 5341-5349. https://doi.org/10.1210/en.2005-0938
|
[23]
|
Coort, S.L., Bonen, A., van der Vusse, G.J., Glatz, J.F. and Luiken, J.J. (2007) Cardiac Substrate Uptake and Metabolism in Obesity and Type-2 Diabetes: Role of Sarcolemmal Substrate Transporters. Molecular and Cellular Biochemistry, 299, 5-18. https://doi.org/10.1007/s11010-005-9030-5
|
[24]
|
Prabhudas, M., Bowdish, D., Drickamer, K., Febbraio, M., Herz, J., Kobzik, L., Krieger, M., Loike, J., Means, T.K., Moestrup, S.K., Post, S., Sawamura, T., Silverstein, S., Wang, X.Y. and El Khoury, J. (2014) Standardizing Scavenger Receptor Nomenclature. The Journal of Immunology, 192, 1997-2006. https://doi.org/10.4049/jimmunol.1490003
|
[25]
|
Glatz, J.F.C. and Luiken, J.J.F.P. (2018) Dynamic Role of the Transmembrane Glycoprotein CD36 (SR-B2) in Cellular Fatty Acid Uptake and Utilization. Journal of Lipid Research, 59, 1084-1093. https://doi.org/10.1194/jlr.R082933
|
[26]
|
Glatz, J.F. and Luiken, J.J. (2017) From Fat to FAT (CD36/SR-B2): Understanding the Regulation of Cellular Fatty Acid Uptake. Biochimie, 136, 21-26. https://doi.org/10.1016/j.biochi.2016.12.007
|
[27]
|
García-Rúa, V., Otero, M.F., Lear, P.V., Rodríguez-Penas, D., Feijóo-Bandín, S., Noguera-Moreno, T., Calaza, M., Álvarez-Barredo, M., Mosquera-Leal, A., Parrington, J., Brugada, J., Portolés, M., Rivera, M., González-Juanatey, J.R. and Lago, F. (2012) Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart. PLOS One, 7, e37505. https://doi.org/10.1371/journal.pone.0037505
|
[28]
|
Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L., De Martino, F., Di Napoli, P., Esposito, I., Ambrosio, A., Ianniruberto, M., Mennella, R., Paolillo, R. and Gargiulo, P. (2019) Diabetic Cardiomyopathy: Definition, Diagnosis, and Therapeutic Implications. Heart Failure Clinics, 15, 341-347. https://doi.org/10.1016/j.hfc.2019.02.003
|
[29]
|
Steinbusch, L.K., Schwenk, R.W., Ouwens, D.M., Diamant, M., Glatz, J.F. and Luiken, J.J. (2011) Subcellular Trafficking of the Substrate Transporters GLUT4 and CD36 in Cardiomyocytes. Cellular and Molecular Life Sciences, 68, 2525-2538. https://doi.org/10.1007/s00018-011-0690-x
|
[30]
|
Glatz, J.F.C., Luiken, J.J.F.P. and Nabben, M. (2020) CD36 (SR-B2) As a Target to Treat Lipid Overload-Induced Cardiac Dysfunction. Journal of Lipid and Atherosclerosis, 9, 66-78. https://doi.org/10.12997/jla.2020.9.1.66
|
[31]
|
Chistiakov, D.A., Orekhov, A.N. and Bobryshev, Y.V. (2017) The Impact of FOXO-1 to Cardiac Pathology in Diabetes Mellitus and Diabetes-Related Metabolic Abnormalities. International Journal of Cardiology, 245, 236-244. https://doi.org/10.1016/j.ijcard.2017.07.096
|
[32]
|
Griffin, E., Re, A., Hamel, N., Fu, C., Bush, H., McCaffrey, T. and Asch, A.S. (2001) A Link between Diabetes and Atherosclerosis: Glucose Regulates Expression of CD36 at the Level of Translation. Nature Medicine, 7, 840-846. https://doi.org/10.1038/89969
|
[33]
|
Angin, Y., Steinbusch, L.K., Simons, P.J., Greulich, S., Hoebers, N.T., Douma, K., van Zandvoort, M.A., Coumans, W.A., Wijnen, W., Diamant, M., Ouwens, D.M., Glatz, J.F. and Luiken, J.J. (2012) CD36 Inhibition Prevents Lipid Accumulation and Contractile Dysfunction in Rat Cardiomyocytes. Biochemical Journal, 448, 43-53. https://doi.org/10.1042/BJ20120060
|
[34]
|
Finck, B.N., Lehman, J.J., Leone, T.C., Welch, M.J., Bennett, M.J., Kovacs, A., Han, X., Gross, R.W., Kozak, R., Lopaschuk, G.D. and Kelly, D.P. (2002) The Cardiac Phenotype Induced by PPARα Overexpression mimics that Caused by Diabetes Mellitus. Journal of Clinical Investigation, 109, 121-130. https://doi.org/10.1172/JCI0214080
|
[35]
|
Steinmetz, M., Quentin, T., Poppe, A., Paul, T. and Jux, C. (2005) Changes in Expression Levels of Genes Involved in Fatty Acid Metabolism: Upregulation of All Three Members of the PPAR Family (α, γ, δ) and the Newly Described Adiponectin Receptor 2, But Not Adiponectin Receptor 1 during Neonatal Cardiac Development of the Rat. Basic Research in Cardiology, 100, 263-269. https://doi.org/10.1007/s00395-005-0520-0
|
[36]
|
Yamashita, S., Masuda, D. and Matsuzawa, Y. (2020) Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Current Atherosclerosis Reports, 22, Article No. 5. https://doi.org/10.1007/s11883-020-0823-5
|
[37]
|
Ramírez, E., Picatoste, B., González-Bris, A., Oteo, M., Cruz, F., Caro-Vadillo, A., Egido, J., Tuñón, J., Morcillo, M.A. and Lorenzo, Ó. (2018) Sitagliptin Improved Glucose Assimilation in Detriment of Fatty-Acid Utilization in Experimental Type-II Diabetes: Role of GLP-1 Isoforms in Glut4 Receptor Trafficking. Cardiovascular Diabetology, 17, Article No. 12. https://doi.org/10.1186/s12933-017-0643-2
|
[38]
|
Shulman, G.I. (2000) Cellular Mechanisms of Insulin Resistance. Journal of Clinical Investigation, 106, 171-176. https://doi.org/10.1172/JCI10583
|
[39]
|
陈艳艳, 周洁, 卢作维, 李梦颖, 马溪悦, 李晓苗. 糖尿病心肌病发病机制及治疗研究进展[J]. 解放军医学杂志, 2023, 48(8): 957-964.
|
[40]
|
Franssen, C., Chen, S., Unger, A., et al. (2016) Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure with Preserved Ejection Fraction. JACC: Heart Failure, 4, 312-324. https://doi.org/10.1016/j.jchf.2015.10.007
|
[41]
|
Liu, Y., Steinbusch, L.K.M., Nabben, M., Kapsokalyvas, D., van Zandvoort, M., Schönleitner, P., Antoons, G., Simons, P.J., Coumans, W.A., Geomini, A., Chanda, D., Glatz, J.F.C., Neumann, D. and Luiken, J.J.F.P. (2017) Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward into Insulin Resistance and Contractile Dysfunction. Diabetes, 66, 1521-1534. https://doi.org/10.2337/db16-0727
|
[42]
|
Luiken, J.J.F.P., Nabben, M., Neumann, D. and Glatz, J.F.C. (2020) Understanding the Distinct Subcellular Trafficking of CD36 and GLUT4 during the Development of Myocardial Insulin Resistance. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866, Article 165775. https://doi.org/10.1016/j.bbadis.2020.165775
|