尿酸与支气管肺发育不良相关性研究进展
Advances in Research on the Association between Uric Acid and Bronchopulmonary Dysplasia
摘要: 支气管肺发育不良(Bronchopulmonary Dysplasia, BPD)是早产儿的慢性肺部疾病,其发病机制复杂且多因素交织,涉及到氧化应激、炎症反应等多个环节。尿酸(UA)在支气管肺发育不良(BPD)中的角色逐渐得到重视。尿酸不仅在氧化应激(OS)中发挥着关键抗氧化作用,同时也与炎症反应的调控密切相关。在婴儿特别是早产儿中,尿酸水平的升高与BPD的发病率呈正相关,提示尿酸可能通过氧化应激与炎症机制对肺部发育产生影响。相关研究发现,尿酸通过影响细胞因子(cytokines)的释放及免疫响应,可能促进肺组织细胞的炎症状态,并影响肺泡发育进程。为了深入理解尿酸在BPD过程中所发挥的作用,未来的研究应着重于尿酸与诱导性因子之间的相互作用及其生物学效应,同时开发基于尿酸水平的临床干预措施,以探索个体化治疗的可行性及有效性。总体而言,尿酸作为BPD的重要生物指标,值得在临床预测及干预策略中进一步研究。
Abstract: Bronchopulmonary dysplasia (BPD) is a chronic lung disease of premature infants. Its pathogenesis is complex and multi-factor, involving oxidative stress, inflammatory response and other links. The role of uric acid (UA) in bronchopulmonary dysplasia (BPD) has been paid more and more attention. Uric acid not only plays a key antioxidant role in oxidative stress (OS), but also is closely related to the regulation of inflammatory response. In infants, especially premature infants, the increase of uric acid level is positively correlated with the incidence of BPD, suggesting that uric acid may affect lung development through oxidative stress and inflammation. Relevant studies have found that uric acid may promote the inflammatory state of lung tissue cells and affect alveolar development by affecting the release of cytokines and immune response. To better understand the role of UA in BPD, future research should focus on the interaction between UA and inducing factors and their biological effects, and develop clinical interventions based on UA levels to explore the feasibility and effectiveness of individualized treatment. In conclusion, as an important biological indicator of BPD, uric acid is worthy of further study in clinical prediction and intervention strategies.
文章引用:秦博, 韦红. 尿酸与支气管肺发育不良相关性研究进展[J]. 临床医学进展, 2025, 15(4): 1538-1543. https://doi.org/10.12677/acm.2025.1541090

1. 引言

支气管肺发育不良(Bronchopulmonary Dysplasia, BPD)在早产儿中是一种较为常见的慢性肺部疾病。早产儿由于自身器官发育尚未成熟,对外部环境以及各类病理过程的抵御能力较弱,这使得BPD在早产儿中的发生率显著攀升。据相关研究数据显示,在孕周不足28周的早产儿中,BPD的发生率处于62%至89%这一高位区间,与足月儿BPD的发生率形成鲜明对比,充分显示了早产儿在BPD发病风险上的特殊性[1]

BPD的发病机制极为复杂,是多因素共同作用的结果,其中氧化应激、炎症反应等关键环节相互交织,共同推动疾病的发生与发展[2]。临床上,BPD主要表现为呼吸功能不全,且常伴有长期的气道重塑现象,严重影响早产儿的肺部功能及后续生长发育,有研究显示,中度高氧通过p53/p21-DDR通路诱导肺成纤维细胞衰老,并伴随自噬抑制和SASP激活[3]

近年来,随着医学研究的不断深入,尿酸(UA)作为一种重要的生物代谢产物,其在多种病理生理过程中的潜在作用逐渐进入研究者的视野,并受到广泛关注,尤其是在BPD领域的关联性研究,更是引发了学术界的高度重视。大量文献表明,氧化应激在众多肺部疾病的进展中扮演着关键角色,而尿酸作为人体内强大的抗氧化剂之一,理论上其抗氧化功能对肺部健康具有积极意义[4]。在当前临床实践中,氧气治疗和机械通气等干预手段在早产儿救治中广泛应用,在此背景下,尿酸水平的波动与BPD发生之间的关联愈发引人关注。鉴于此,本文对尿酸在支气管肺发育不良中的研究进展进行综述如下。

2. 尿酸

2.1. 尿酸的产生和代谢

尿酸(Uric acid)的来源主要包括内源性合成和外源性摄入两大类,核苷酸及细胞核酸降解过程中的嘌呤代谢是内源性尿酸生成的基本机制。嘌呤的代谢过程中,嘌呤脱氨基生成腺嘌呤(Adenine)及鸟嘌呤(Guanine)。这两个核苷酸随后又通过腺苷酸脱氨酶和鸟苷酸脱氨酶作用转化为腺苷(Adenosine)和鸟苷(Guanosine),最终通过腺苷脱酸酶及黄嘌呤氧化酶(Xanthine oxidase)的作用,分别生成黄嘌呤(Xanthine)和尿酸[5]。尿酸的代谢主要由肝脏、肾脏及肠道负责,各组织的密切相互作用确保了尿酸水平的动态平衡。

2.2. 尿酸的生理作用

尿酸在人体生理过程中扮演着多重角色,其作用广泛涵盖抗氧化[6]、血压调节[7]、免疫调节[8]以及代谢调节[9]等关键领域。在抗氧化方面,适量的尿酸于体内发挥着Antioxidant功效,能够有效抑制自由基生成,进而显著减轻氧化应激在炎症进程中所产生的负面效应[6]。从免疫调节角度来看,已有研究表明,尿酸可通过上调对核因子κB (Nuclear Factor κB, NF-κB)信号通路的抑制作用,有效遏制巨噬细胞(Macrophage)和中性粒细胞(Neutrophil)的过度活化状态,最终减少炎性细胞因子的释放,对维持机体免疫稳态起到积极作用[9]

然而,当机体出现高尿酸血症(Hyperuricemia)时,情况则截然不同,此时尿酸转变为多种慢性炎症性疾病的重要病理因素。在高浓度状态下,尿酸可通过激活尿酸结晶(Urate Crystals)所诱导的炎症反应,直接诱发或加剧支气管炎症。在这一病理过程中,尿酸晶体的形成不仅会促使单核细胞和巨噬细胞发生迁移并被活化,还会触发关键炎症因子如肿瘤坏死因子α (Tumor Necrosis Factor-alpha, TNF-α)和白细胞介素-1β (Interleukin-1β, IL-1β)的大量释放,这些炎症因子进一步对周围组织造成损伤,形成恶性循环[9]

综上所述,维持体内尿酸水平的动态平衡,对于人体健康具有重要的意义。

3. 尿酸在BPD中的抗氧化作用

支气管肺发育不良(BPD)的发病与氧化应激存在着极为紧密的联系[10]。氧化应激(oxidative stress),是指机体内活性氧(species of reactive oxygen)和活性氮(species of reactive nitrogen)生成过度,进而打破抗氧化系统(antioxidant systems)平衡的一种病理状态[11]。在这种病理状态下,细胞膜、蛋白质以及DNA常受到损伤,这些损伤最终会对细胞的正常功能产生负面影响[12]

在肺部的早期发育阶段,氧化应激通过多种分子机制对肺部发育进程造成影响。具体表现为,氧化应激能够诱导肺部细胞发生凋亡(apoptosis)以及自噬(autophagy)现象,使得肺泡的正常发育和结构重塑进程遭受抑制[13]。在这一过程中,肿瘤坏死因子-α (tumor necrosis factor-alpha, TNF-α)以及其他促炎细胞因子(inflammatory cytokines)被大量激活,肺部炎症反应(inflammatory response)进一步加剧,致使支气管肺发育不良的病理状态不断恶化[14]。与此同时,氧化应激还会引发细胞外基质(extra-cellular matrix, ECM)出现过度降解与合成失衡的情况,长此以往,极有可能导致肺泡发育不全,进而严重影响气体交换功能,使肺部无法正常进行气体交换。

深入研究发现,早产儿因其免疫系统发育尚未成熟,相较于足月儿,更易受到氧化应激的侵袭,进而引发与BPD相关的肺部炎症[15]。早产儿体内抗氧化酶水平普遍偏低,这使得他们在接受氧气治疗时,肺部更易遭受损伤,最终引发气道重塑以及间质纤维化[16]

在BPD病理进程中,肺泡和血管的发育受到显著影响。氧化应激损伤体现为干扰肺泡和血管的正常生长与分化,阻碍肺泡化进程,促使异常肺结构的形成[17] [18]。内质网在肺表面活性物质与蛋白质合成过程中发挥着关键作用,同时对线粒体功能具有辅助作用。氧化应激可导致内质网功能出现障碍,影响蛋白质的正确折叠与分泌,进而对肺泡上皮细胞功能以及肺发育造成影响,甚至可能激活未折叠蛋白反应(unfolded protein response, UPR)。UPR作为一种细胞应激反应,其初衷是恢复内质网的蛋白质稳态,但倘若应激持续存在或者强度过大,UPR反而可能导致细胞功能障碍,甚至引发细胞死亡[19]

尿酸(UA)是一种内源性抗氧化剂,可能通过清除过量的活性氧来减轻氧化应激,从而在支气管肺发育不良的病理生理中发挥重要作用[6]。尿酸的抗氧化特性主要表现在尿酸能够直接清除氧自由基、单线态氧、氧化血红素氧化剂和过羟基自由基,从而减轻细胞内的氧化损伤[20]。具体而言,尿酸可通过还原反应直接捕获羟基自由基(·OH)及过氧亚硝酸盐阴离子(ONOO−),抑制脂质过氧化(lipid peroxidation)和蛋白质氧化(protein oxidation)等一系列连锁反应[21]。有研究表明,通过对57例足月新生儿和20例早产儿进行脐血尿酸含量测定,结果表明:早产儿脐血尿酸水平为349.43 ± 83.36 umol/L,而足月儿脐血血清尿酸水平为300.36 ± 73.64 umol/L,早产儿脐血尿酸水平明显高于足月儿(t = 2.4774, P < 0.05),且与胎龄大小呈线性负相关联系(rs = −0.6310),提示:尿酸作为一种重要抗氧化剂,能补偿出生时机体其他抗氧化物质的不足,对调节氧化与抗氧化平衡具有重要意义[22]

4. 尿酸在BPD中的抗炎症作用

炎症反应是BPD发病机制中的关键因素,在发生和发展中扮演着重要角色。炎症反应在BPD中的损伤则表现为产前暴露于感染、产后感染、通风和氧气接触引起的促炎细胞因子导致肺的发育中断或者异常修复[23]。BPD的病理生理过程中包括炎症细胞、分子信号通路和促炎调节因子,这些因子对BPD的发病机制有贡献[24]。炎症反应通过这些途径影响肺部的发育和成熟。

具体而言,主要在于炎症细胞聚集、细胞因子与炎症介质的失衡。在BPD早期,趋化因子等炎症介质释放增加,吸引中性粒细胞从血液循环迁移到肺组织。中性粒细胞被激活后,会释放多种蛋白酶、活性氧等物质,虽然这些物质在一定程度上有助于清除病原体等异物,但过量释放会对肺组织细胞,如肺泡上皮细胞、血管内皮细胞等造成直接损伤,破坏肺组织结构的完整性[25]。巨噬细胞在BPD的炎症反应中也起着关键作用。巨噬细胞被异常激活,分泌肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)等促炎细胞因子,进一步放大炎症反应,还可释放基质金属蛋白酶,参与细胞外基质的重塑,导致肺组织的纤维化[26] [27]。而T淋巴细胞在BPD中,Th1细胞和Th2细胞的失衡在BPD的发生发展中较为突出。Th2细胞优势活化,分泌IL-4、IL-5、IL-13等细胞因子,促进炎症细胞的募集和气道高反应性,加重肺部炎症损伤[19]

在参与BPD的进程中,促炎细胞因子如TNF-α、IL-1β、IL-6等在BPD患者的肺泡灌洗液和血清中水平显著升高。TNF-α可诱导细胞凋亡,增加血管通透性,促进炎症细胞浸润;IL-1β能激活炎症细胞,刺激其他细胞因子的释放,两者共同作用可导致肺组织的炎症损伤和结构破坏。IL-6参与急性期反应,可促进B细胞增殖和分化,产生免疫球蛋白,在炎症放大过程中起重要作用[28]。IL-10等抗炎细胞因子的表达相对不足,无法有效对抗促炎细胞因子的作用,导致炎症反应失控。IL-10具有抑制炎症细胞活化、减少促炎细胞因子分泌的作用,其水平降低使得炎症反应难以得到及时有效的控制,从而持续损伤肺组织[28] [29]。白三烯、前列腺素等炎症介质在BPD的炎症反应中也发挥着重要作用。白三烯可引起支气管平滑肌收缩、增加血管通透性和促进黏液分泌,导致气道狭窄和通气功能障碍;前列腺素则可调节血管张力和细胞增殖,在炎症反应和肺组织重塑过程中具有重要意义[26]

尿酸作为一种关键的代谢产物,在机体中发挥着多元且复杂的作用。它不仅能够影响细胞的代谢状态,还可通过多种精细的机制对免疫反应进行调节。近年来,尿酸的临床意义已逐渐从单纯的代谢指标,拓展至具有重要影响力的炎症介质角色。

大量研究已确凿证实,尿酸具备刺激巨噬细胞、树突状细胞等免疫细胞活化的能力。免疫细胞被激活后,会诱导肿瘤坏死因子α (TNF-α)、白介素-6 (IL-6)、白介素-1β (IL-1β)等细胞因子的释放。值得注意的是,适量的尿酸在这一过程中能够通过下调相关诱导因子,有效抑制自身所引发的炎症反应[10]。例如,诸多研究数据清晰显示,细胞内尿酸浓度的上升可显著促进TNF-α的分泌,进而进一步增强局部炎症反应的强度[30]。其背后的机制可能在于,尿酸在细胞内可被识别为损伤相关分子模式(DAMPs),通过激活核因子κB (NF-κB)信号通路,启动细胞因子基因的表达,从而在炎症反应中占据重要地位。

具体而言,尿酸可激活核因子κB (NF-κB)信号通路,这一过程产生了双向效应。一方面,尿酸能够促使细胞生成更为丰富的抗氧化因子,这些抗氧化因子能够增强细胞对氧化应激的抵御能力,有效减轻氧化应激对细胞的损伤;另一方面,尿酸可抑制促炎因子的产生,减少炎症反应,进而维持机体在炎症与抗氧化之间的动态平衡[31]。通过流式细胞术与酶联免疫吸附试验(ELISA)的联合检测技术,研究进一步表明,尿酸通过精准调控NF-κB信号通路,参与了对促炎因子的动态调节过程[8]

5. 小结

早产儿在肺泡形成过程中遭遇的多种生理和外界挑战,氧气暴露、机械通气以及感染等因素,均可能导致肺组织的氧化应激和过度炎症反应,进而引发结构重塑和功能障碍,从而加速BPD发展的进程。而尿酸在氧化应激和炎症反应过程中发挥着独特作用可能成为连接尿酸与BPD之间关系的新桥梁,进一步深入研究尿酸不同水平对BPD的影响、探寻新的干预措施,为BPD的防治提供新的思路。

NOTES

*通讯作者。

参考文献

[1] Siffel, C., Kistler, K.D., Lewis, J.F.M. and Sarda, S.P. (2019) Global Incidence of Bronchopulmonary Dysplasia among Extremely Preterm Infants: A Systematic Literature Review. The Journal of Maternal-Fetal & Neonatal Medicine, 34, 1721-1731.
https://doi.org/10.1080/14767058.2019.1646240
[2] Cannavò, L., Perrone, S., Viola, V., Marseglia, L., Di Rosa, G. and Gitto, E. (2021) Oxidative Stress and Respiratory Diseases in Preterm Newborns. International Journal of Molecular Sciences, 22, Article 12504.
https://doi.org/10.3390/ijms222212504
[3] You, K., Parikh, P., Khandalavala, K., Wicher, S.A., Manlove, L., Yang, B., et al. (2019) Moderate Hyperoxia Induces Senescence in Developing Human Lung Fibroblasts. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317, L525-L536.
https://doi.org/10.1152/ajplung.00067.2019
[4] Subasi, B. and Esnafoglu, E. (2024) The Relationship between Uric Acid Levels, Cognition and Inflammation in a Cohort of Elderly Subjects. Journal of Neural Transmission, 131, 1059-1065.
https://doi.org/10.1007/s00702-024-02804-z
[5] Logan, J.W., Nath, S., Shah, S.D., Nandula, P.S. and Hudak, M.L. (2022) Respiratory Support Strategies in the Management of Severe, Longstanding Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 10, Article 1016204.
https://doi.org/10.3389/fped.2022.1016204
[6] Wang, Q., Wen, X. and Kong, J. (2019) Recent Progress on Uric Acid Detection: A Review. Critical Reviews in Analytical Chemistry, 50, 359-375.
https://doi.org/10.1080/10408347.2019.1637711
[7] Kuwabara, M., Ae, R., Kosami, K., Kanbay, M., Andres-Hernando, A., Hisatome, I., et al. (2024) Current Updates and Future Perspectives in Uric Acid Research, 2024. Hypertension Research, 48, 867-873.
https://doi.org/10.1038/s41440-024-02031-9
[8] Shi, Y. (2010) Caught Red-Handed: Uric Acid Is an Agent of Inflammation. Journal of Clinical Investigation, 120, 1809-1811.
https://doi.org/10.1172/jci43132
[9] Ng, G., Chau, E.M.T. and Shi, Y. (2010) Recent Developments in Immune Activation by Uric Acid Crystals. Archivum Immunologiae et Therapiae Experimentalis, 58, 273-277.
https://doi.org/10.1007/s00005-010-0082-1
[10] Luo, L., Li, Y., Long, Z., Jiang, F., Wu, F. and Wang, Q. (2024) Exploring Research Trends and Hotspots on Oxidative Stress and Bronchopulmonary Dysplasia: Insights from Bibliometric and Visualized Study. Pediatric Pulmonology, 59, 3610-3623.
https://doi.org/10.1002/ppul.27268
[11] van der Pol, A., van Gilst, W.H., Voors, A.A. and van der Meer, P. (2018) Treating Oxidative Stress in Heart Failure: Past, Present and Future. European Journal of Heart Failure, 21, 425-435.
https://doi.org/10.1002/ejhf.1320
[12] 孙宁. 芘诱发蚯蚓的氧化应激效应与机理的研究[D]: [硕士学位论文]. 济南: 山东大学, 2022.
[13] Filomeni, G., De Zio, D. and Cecconi, F. (2014) Oxidative Stress and Autophagy: The Clash between Damage and Metabolic Needs. Cell Death & Differentiation, 22, 377-388.
https://doi.org/10.1038/cdd.2014.150
[14] Crotty, G.F., Ascherio, A. and Schwarzschild, M.A. (2017) Targeting Urate to Reduce Oxidative Stress in Parkinson Disease. Experimental Neurology, 298, 210-224.
https://doi.org/10.1016/j.expneurol.2017.06.017
[15] Humberg, A., Fortmann, I., Siller, B., Kopp, M.V., Herting, E., Göpel, W., Härtel, C., & German Neonatal Network, German Center for Lung Research and Priming Immunity at the Beginning of Life (PRIMAL) Consortium (2020) Preterm Birth and Sustained Inflammation: Consequences for the Neonate. Seminars in Immunopathology, 42, 451-468.
https://doi.org/10.1007/s00281-020-00803-2
[16] Di Filippo, P., Dodi, G., Ciarelli, F., Di Pillo, S., Chiarelli, F. and Attanasi, M. (2022) Lifelong Lung Sequelae of Prematurity. International Journal of Environmental Research and Public Health, 19, Article 5273.
https://doi.org/10.3390/ijerph19095273
[17] Cassady, S.J., Lasso-Pirot, A. and Deepak, J. (2020) Phenotypes of Bronchopulmonary Dysplasia in Adults. Chest, 158, 2074-2081.
https://doi.org/10.1016/j.chest.2020.05.553
[18] Hwang, J.S. and Rehan, V.K. (2018) Recent Advances in Bronchopulmonary Dysplasia: Pathophysiology, Prevention, and Treatment. Lung, 196, 129-138.
https://doi.org/10.1007/s00408-018-0084-z
[19] Wu, T., Teng, M., Jing, X., Pritchard, K.A., Day, B.W., Naylor, S., et al. (2024) Endoplasmic Reticulum Stress in Bronchopulmonary Dysplasia: Contributor or Consequence? Cells, 13, Article 1774.
https://doi.org/10.3390/cells13211774
[20] Davies, K.J.A., Sevanian, A., Muakkassah-Kelly, S.F. and Hochstein, P. (1986) Uric Acid-Iron Ion Complexes. A New Aspect of the Antioxidant Functions of Uric Acid. Biochemical Journal, 235, 747-754.
https://doi.org/10.1042/bj2350747
[21] Kuzkaya, N., Weissmann, N., Harrison, D.G. and Dikalov, S. (2005) Interactions of Peroxynitrite with Uric Acid in the Presence of Ascorbate and Thiols: Implications for Uncoupling Endothelial Nitric Oxide Synthase. Biochemical Pharmacology, 70, 343-354.
https://doi.org/10.1016/j.bcp.2005.05.009
[22] 钱岭梅, 陈吉庆, 胡毓华. 新生儿血清尿酸抗氧化作用的探讨[J]. 南京医科大学学报, 1994(3): 336-337.
[23] Yu, H., Li, D., Zhao, X. and Fu, J. (2024) Fetal Origin of Bronchopulmonary Dysplasia: Contribution of Intrauterine Inflammation. Molecular Medicine, 30, Article No. 135.
https://doi.org/10.1186/s10020-024-00909-5
[24] Wozniak, P.S., Makhoul, L. and Botros, M.M. (2023) Bronchopulmonary Dysplasia in Adults: Exploring Pathogenesis and Phenotype. Pediatric Pulmonology, 59, 540-551.
https://doi.org/10.1002/ppul.26795
[25] Carraro, S., Filippone, M., Da Dalt, L., Ferraro, V., Maretti, M., Bressan, S., et al. (2013) Bronchopulmonary Dysplasia: The Earliest and Perhaps the Longest Lasting Obstructive Lung Disease in Humans. Early Human Development, 89, S3-S5.
https://doi.org/10.1016/j.earlhumdev.2013.07.015
[26] Wang, S. and Tsao, P. (2020) Phenotypes of Bronchopulmonary Dysplasia. International Journal of Molecular Sciences, 21, Article 6112.
https://doi.org/10.3390/ijms21176112
[27] Li, Y., Zhao, L. and Qi, W. (2022) Uric Acid, As a Double-Edged Sword, Affects the Activity of Epidermal Growth Factor (EGF) on Human Umbilical Vein Endothelial Cells by Regulating Aging Process. Bioengineered, 13, 3877-3895.
https://doi.org/10.1080/21655979.2022.2027172
[28] Jobe, A.H. and Ikegami, M. (2001) Prevention of Bronchopulmonary Dysplasia. Current Opinion in Pediatrics, 13, 124-129.
https://doi.org/10.1097/00008480-200104000-00006
[29] Lal, C.V. and Ambalavanan, N. (2017) Cellular and Humoral Biomarkers of Bronchopulmonary Dysplasia. Early Human Development, 105, 35-39.
https://doi.org/10.1016/j.earlhumdev.2016.12.003
[30] Wu, Z.D., Yang, X.K., He, Y.S., Ni, J., Wang, J., Yin, K.J., Huang, J.X., Chen, Y., Feng, Y.T., Wang, P. and Pan, H.F. (2022) Environmental Factors and Risk of Gout. Environmental Research, 212(Pt C), Article ID: 113377.
https://doi.org/10.1016/j.envres.2022.113377
[31] Feitosa, C.M., da Silva Oliveira, G.L., do Nascimento Cavalcante, A., Morais Chaves, S.K. and Rai, M. (2018) Determination of Parameters of Oxidative Stress in Vitro Models of Neurodegenerative Diseases—A Review. Current Clinical Pharmacology, 13, 100-109.
https://doi.org/10.2174/1574884713666180301091612