系统免疫炎症指数联合代谢指标与冠心病合并2型糖尿病冠状动脉病变的研究
The Study of Systemic Immune Inflammatory Index Combined with Metabolic Index and Coronary Artery Disease in Patients with Coronary Heart Disease Complicated with Type 2 Diabetes Mellitus
摘要: 目的:研究冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease, CHD)合并2型糖尿病(type 2 diabetes mellitus, T2DM)患者的系统免疫炎症指数(systemic immune inflammatory index, SII)和甘油三酯葡萄糖指数(triglyceride-glucose index,TyG指数)对冠状动脉病变的影响。方法:回顾性收集选取2022年9月~2024年6月于青岛大学附属医院诊治的完善冠状动脉造影的患者395例,收集患者心理因素、病史资料、各项生化指标,按照2型糖尿病诊断标准分为CHD组133例、CHD合并T2DM组262例。根据Gensini评分中位数将CHD合并T2DM组患者分为轻微冠脉病变组133例(Gensini评分 < 34.5分)和严重冠脉病变组129例(Gensini评分 ≥ 34.5分)。采用多因素Logistic回归分析探讨CHD合并T2DM的影响因素;采用ROC曲线分析SII、TyG指数预测CHD合并T2DM冠脉狭窄程度的价值。结果:CHD合并T2DM组白细胞计数(WBC)、中性粒细胞计数(NE)、单核细胞计数(MONO)、肌酐、空腹血糖(FPG)、糖化血红蛋白(HbA1c)、系统免疫炎症指数(SII)、甘油三酯葡萄糖指数(TyG指数)高于CHD组(P < 0.05)。多因素Logistic回归分析结果显示,肌酐、SII、TyG指数是CHD合并T2DM的独立影响因素(P < 0.05)。严重冠脉病变组跟轻微冠脉病变组的多因素Logistic回归分析结果显示,年龄、焦虑状态、肌酐、SII、TyG指数是CHD合并T2DM冠脉狭窄程度的独立影响因素(P < 0.05)。ROC曲线分析显示以SII、TyG指数及二者联合应用绘制的ROC曲线下面积分别为0.82 (95%CI: 0.77~0.87)、0.75 (95%CI: 0.69~0.81)、0.84 (95%CI: 0.80~0.89),SII联合TyG指数预测CHD合并T2DM组冠脉狭窄严重程度的价值最高。结论:SII、TyG指数是CHD合并T2DM的独立影响因素,且SII、TyG指数对CHD合并T2DM组患者冠脉狭窄严重程度有一定的预测价值,且二者联合较SII、TyG指数更好的预测价值。
Abstract: Objective: To investigate coronary atherosclerotic heart disease (CHD) with type 2 diabetes mellitus, Coronary atherosclerotic heart disease (CHD) in T2DM patients, Systemic immune inflammatory index (SII) and triglyceride-glucose index (TyG index) affected the relationship between coronary artery disease. Methods: A cross-section of 395 patients with complete coronary angiography who were treated and treated in the Affiliated Hospital of Qingdao University from September 2022 to June 2024 were selected. Psychological factors, medical history and biochemical indicators of the patients were collected. According to the diagnostic criteria of type 2 diabetes, the patients were divided into 133 cases in the CHD group and 262 cases in the CHD combined T2DM group. According to the median Gensini score, CHD patients with T2DM were divided into mild coronary disease group (133 cases) (Gensini score < 34.5 points) and severe coronary disease group (129 cases) (Gensini score ≥ 34.5 points). Multivariate Logistic regression analysis was used to investigate the influencing factors of CHD with T2DM. ROC curve was used to analyze the value of SII and TyG index in predicting the degree of coronary stenosis in CHD patients with T2DM. Result: The white blood cell count (WBC), neutrophil count (NE), monocyte count (MONO), creatinine, fasting blood glucose (FPG), glycosylated hemoglobin (HbA1c), systemic immunoinflammatory index (SII) and triglyceride glucose index (TyG index) in CHD combined T2DM group were higher than those in CAHD group (P < 0.05). Multiple Logistic regression analysis showed that creatinine, SII and TyG index were independent influencing factors of CHD and T2DM (P < 0.05). Multivariate Logistic regression analysis showed that age, anxiety status, creatinine, SII and TyG index were independent factors influencing the degree of coronary stenosis in CHD patients with T2DM (P < 0.05). ROC curve analysis showed that the area under ROC curve drawn by SII, TyG index and their combined application were 0.82 (95%CI: 0.77~0.87), 0.75 (95%CI: 0.69~0.81) and 0.84 (95%CI: 0.80~0.89), respectively. SII combined with TyG index had the highest value in predicting the severity of coronary stenosis in CHD patients with T2DM. Conclusion: SII and TyG index are independent influencing factors of CHD combined with T2DM, and SII and TyG index have certain predictive value for the severity of coronary artery stenosis in CHD combined with T2DM, and their combined value is better than SII and TyG index.
文章引用:张旭, 郭宗君. 系统免疫炎症指数联合代谢指标与冠心病合并2型糖尿病冠状动脉病变的研究[J]. 临床医学进展, 2025, 15(4): 1564-1576. https://doi.org/10.12677/acm.2025.1541093

1. 引言

冠状动脉粥样硬化性心脏病(CHD)是因心肌缺血、缺氧或坏死从而导致管腔狭窄甚至闭塞的心脏病[1]。随着如今社会的发展,吸烟、高血压、高血脂、糖尿病等作为CHD的危险因素日益普遍[2]-[5]。到2030年,CHD预计将成为全世界非传染性过早发病和死亡的主要原因[6]。糖尿病作为CHD最为重要的危险因素之一[7] [8],在世界范围内的患病率正在上升[9]。从1986年至2010年的24年来,中国糖尿病的患病率从1.3%上升到了11.6% [10]。数据显示,近35%的CHD患者合并糖尿病,近50%的糖尿病患者因心血管疾病而死亡[11]。二者密切相关,当这两种疾病同时存在时,未来心血管事件的风险和严重程度显著增加[12]。然而,作为诊断冠状动脉病变严重程度的“金标准”的冠状动脉造影(CAG)计数是一项侵入性检查,不仅价格高昂且耗时长,难以普及[13]。同时,冠脉血管成像(CCTA)的价格亦比较昂贵[14]。因此寻找一种简便、廉价的方法对CHD合并T2DM患者的冠状动脉血管状况进行评估是必要的。现已有相关研究表明,炎症反应在CHD及T2DM中均起着关键作用,其被认为是动脉粥样硬化的始动环节[15]-[17]。单一生物标志物评估冠状动脉狭窄严重程度诊断效能有限[18]。系统免疫炎症指数(systemic immune inflammation index, SII)作为整合外周血中的中性粒细胞、血小板、淋巴细胞计数的新型复合炎症指标,研究证实其与CHD的病变严重程度相关[19]。但在CHD合并T2DM方面研究较少。胰岛素抵抗被广泛认为是CHD发生、发展的重要生物学过程之一[20],对于合并T2DM的CHD患者来说,胰岛素抵抗会导致长期持续的高血糖状态从而损害全身血管,并增加了心血管事件风险[12]。相较于依赖血胰岛素计算的传统胰岛素抵抗指数(homeostasis model assessment for insulin resistance, HOMA-IR),TyG指数通过整合甘油三酯和空腹血糖的数值,为评估胰岛素抵抗程度提供了更为便捷的方法[21]。据研究表明,TyG指数作为胰岛素抵抗的替代标志物具有预测心血管疾病的价值[22] [23]。本文旨在探讨上述指标与CHD合并T2DM及冠状动脉狭窄病变严重程度的关系。

2. 对象与方法

2.1. 研究对象

回顾性选取2022年9月~2024年9月青岛大学附属医院收治的CHD患者395例为研究对象。纳入标准:(1) 年龄 ≥ 50岁,符合《2024年欧洲心脏病学会慢性冠脉综合征诊断和管理指南》[24]和《中国2型糖尿病防治指南2024年版》[25]的诊断标准;(2) 临床资料完整;(3) 全部入组患者对本次评估调查知情并同意。排除标准:(1) 有中重度认知功能障碍及其他精神疾病史难以配合量表调查者;(2) 合并恶性肿瘤、严重肝肾功能不全、血液系统疾病、急慢性感染等严重疾病者;(3) 既往冠状动脉介入治疗或其他心脏手术史。本研究获得本院伦理委员会的批准。

2.2. 收集资料

2.2.1. 一般资料

收集患者的临床资料,包括性别、年龄、BMI、吸烟史(目前正在吸烟,且大于等于10支/天)、饮酒史(目前正在饮酒,且大于等于2两/天)、既往基础疾病史、白细胞计数(white blood cell count, WBC)、中性粒细胞计数(neutrophil count, NE)、淋巴细胞计数(lymphocyte count, LYM)、单核细胞计数(monocyte count, MONO)、血小板计数(platelet count, PLT)、尿酸(Uric Acid, UA)、血肌酐(serum creatinine, Scr)、血尿素氮(blood urea nitrogen, BUN)、丙氨酸氨基转移酶(alanine aminotransferase, ALT)、天冬氨酸氨基转移酶(aspartate aminotransferase, AST)、γ-谷氨酰转移酶(γ-glutamyltransferase, γ-GGT)、空腹血糖(fasting plasma glucose, FPG)、糖化血红蛋白(glycosylated hemoglobin, HbA1c)、甘油三酯(triglyceride, TG)、总胆固醇(total cholesterol, TC)、高密度脂蛋白胆固醇(high-density lipoproteincholesterol, HDL-C)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C),计算SII = (NE × PLT)/LYM。TyG指数 = ln [TG (mg/dL) × FPG (mg/dL)/2]。

2.2.2. 问卷调查

汉密尔顿焦虑量表(Hamilton Anxiety Scale, HAMA)用于评估焦虑状态,按照我国量表协作组提供的资料:总分 ≥ 14分,肯定有焦虑;<14,可能或无焦虑。

2.2.3. 冠脉造影检查和Gensini评分

由我院同一团队内的2名或以上心内科专科医生操作,所有患者均经右侧桡动脉穿刺入路,动脉造影采用Judkin方法,按常规投照体位分别对左右冠状动脉造影,用以判断冠状动脉病变程度。采用Gensini评分系统评估冠心病患者冠状动脉病变严重程度:首先,对冠状动脉各分支的狭窄程度进行评分,其中狭窄率 ≤ 25%计1分,狭窄率 > 25%且≤50%计2分,狭窄率 > 50%且≤75%计4分,狭窄率 > 75%且≤90%计8分,狭窄率 > 90%且≤99%计l6分,狭窄率为100%计32分。然后,将冠状动脉各分支狭窄程度评分与其对应的系数相乘,即左主干 × 5,左前降支近段 × 2.5、中段 × 1.5、远段 × 1,左回旋支近段 × 2.5、中段 × 1.5、远段 × 1,右冠状动脉 × 1,第一对角支 × 1,第二对角支 × 0.5,缘支 × 1,后降支 × 1,后侧支 × 0.5。最后,计算冠状动脉各分支得分之和,即为患者的Gensini评分[24]。根据Gensini评分中位数将患者分为轻微冠脉病变组133例(Gensini评分 < 34.5分)和严重冠脉病变组129例(Gensini评分 ≥ 34.5分)。

2.3. 统计学方法

采用SPSS 27.0和Zstats v0.90软件进行统计分析。符合正态分布的计量资料以均数 ± 标准差(±s)表示,两组间比较采用独立样本t检验;不符合正态分布的计量资料以中位数(四分位间距) [M (Q1, Q3)]表示,采用非参数秩和检验(Kruskal-Wallis)。计数资料以例数和百分比[n (%)]表示,采用χ2检验。采用多因素Logistic回归分析探讨CHD合并T2DM及冠脉硬化严重程度的影响因素,同时绘制研究对象的工作特征(ROC)曲线预测价值。P < 0.05表示差异具有统计学意义。

3. 结果

3.1. CHD组与CHD合并T2DM组临床资料比较

CHD组与CHD合并T2DM组年龄、性别、有高血压病史占比、有吸烟史占比、有饮酒史占比、BMI、LYM、RBC、Hb、PLT、ALT、AST、γ-GGT、TG、TC、LDL-C、HDL-C、UA、BUN差异无统计学意义(P > 0.05)。CHD合并T2DM组WBC、NE、MONO、FPG、HbA1c、Scr、SII、TyG指数、焦虑状态差异有统计学意义(P < 0.05),见表1

3.2. CHD合并T2DM影响因素的Logistic回归分析

以CHD是否合并T2DM为因变量(赋值:否 = 0,是 = 1),以WBC(实测值)、MONO(实测值)焦虑状态(赋值:否 = 0,是 = 1)、肌酐(实测值)、LDL-C(实测值)、SII(NE、LYM与SII存在共线性,故将其排除)、TyG指数(HbA1c、FPG与TyG指数存在共线性,故将其排除)为自变量,进行多因素Logistic回归分析,结果显示,Scr、SII、TyG指数是CHD合并T2DM的独立影响因素(P < 0.05),见表2

Table 1. Comparison of clinical data between CHD group and CHD group with T2DM

1. CHD组与CHD合并T2DM组临床资料比较

Variables

Total (n = 395)

CHD组(n = 133)

CHD合并T2DM组(n = 262)

Statistic

P

年龄,[M (Q1, Q3),岁]

67.00 (60.00, 72.00)

68.00 (60.00, 74.00)

66.00 (59.00, 72.00)

Z = −1.71

0.087

性别,n (%)

χ2 = 0.05

0.831

199 (50.38)

66 (49.62)

133 (50.76)

196 (49.62)

67 (50.38)

129 (49.24)

高血压,n (%)

268 (67.85)

89 (66.92)

179 (68.32)

χ2 = 0.08

0.778

吸烟史,n (%)

230 (58.23)

73 (54.89)

157 (59.92)

χ2 = 0.92

0.337

饮酒史,n (%)

161 (40.76)

50 (37.59)

111 (42.37)

χ2 = 0.83

0.362

BMI, [M(Q1, Q3), kg/m2]

25.40 (23.41, 27.70)

25.70 (23.41, 28.37)

25.40 (23.41, 27.50)

Z = −0.83

0.407

WBC, [M (Q1, Q3), ×109/L]

6.57 (5.67, 7.50)

6.23 (5.31, 7.41)

6.67 (5.89, 7.53)

Z = −2.63

0.009

NE, [M (Q1, Q3), ×109/L]

4.36 (3.66, 5.18)

3.74 (3.15, 4.43)

4.66 (3.96, 5.45)

Z = −7.55

<0.001

LYM, [M (Q1, Q3), ×109/L]

1.85 (1.48, 2.17)

1.87 (1.55, 2.17)

1.83 (1.45, 2.18)

Z = −0.68

0.496

MONO, [M (Q1, Q3), ×109/L]

0.44 (0.36, 0.54)

0.40 (0.32, 0.50)

0.46 (0.37, 0.55)

Z = −3.12

0.002

RBC, [M (Q1, Q3), ×1012/L]

4.51 (4.21, 4.92)

4.55 (4.21, 4.94)

4.51 (4.21, 4.90)

Z = −0.36

0.722

Hb, [M (Q1, Q3), g/L]

139.00 (127.50, 148.00)

140.00 (128.00, 152.00)

138.00 (127.25, 147.00)

Z = −1.25

0.212

PLT, [M (Q1, Q3), ×1012/L]

216.00 (194.50, 237.00)

215.00 (188.00, 234.00)

218.00 (197.00, 239.75)

Z = −1.16

0.247

FPG, [M (Q1, Q3), mmol/L]

6.18 (5.22, 7.48)

5.22 (4.77, 5.74)

6.96 (6.09, 8.10)

Z = −11.76

<.001

HbA1c, [M (Q1, Q3), %]

6.60 (5.90, 7.80)

5.80 (5.50, 6.00)

7.45 (6.60, 8.50)

Z = −14.13

<.001

ALT, [M (Q1, Q3), U/L]

18.90 (14.25, 25.60)

19.30 (13.70, 26.00)

18.75 (14.33, 25.45)

Z = −0.07

0.945

AST, [M (Q1, Q3), U/L]

19.10 (15.00, 24.50)

18.00 (14.10, 24.70)

19.65 (15.72, 24.40)

Z = −1.85

0.064

γ-GGT, [M (Q1, Q3), U/L]

19.00 (14.00, 26.95)

20.00 (15.00, 26.00)

19.00 (13.93, 26.98)

Z = −0.97

0.333

TG, [M (Q1, Q3), mmol/L]

1.33 (0.99, 1.94)

1.23 (0.93, 1.81)

1.38 (1.05, 1.97)

Z = −1.86

0.063

TC, [M (Q1, Q3), mmol/L]

4.18 (3.49, 5.05)

4.05 (3.42, 4.99)

4.26 (3.52, 5.07)

Z = −1.19

0.235

LDL-C, [M (Q1, Q3), mmol/L]

2.22 (1.70, 2.82)

2.11 (1.65, 2.75)

2.32 (1.74, 2.95)

Z = −1.94

0.052

HDL-C, [M (Q1, Q3), mmol/L]

1.15 (0.98, 1.31)

1.14 (0.95, 1.25)

1.15 (1.01, 1.33)

Z = −1.79

0.074

UA, [M (Q1, Q3),μmol/L]

311.00 (258.90, 371.80)

315.00 (245.00, 384.00)

305.45 (260.73, 367.10)

Z = −0.42

0.678

Scr, [M (Q1, Q3), μmol/L]

80.40 (66.05, 92.00)

65.50 (53.00, 77.30)

85.65 (76.33, 95.75)

Z = −9.48

<0.001

BUN, [M (Q1, Q3), mmol/L]

5.80 (4.92, 6.98)

5.80 (5.00, 7.20)

5.84 (4.90, 6.80)

Z = −0.57

0.567

SII, [M (Q1, Q3), ×109/L]

514.24 (401.75, 665.63)

417.83 (334.47, 535.45)

549.93 (440.39, 709.90)

Z = −6.33

<0.001

TyG指数,M (Q1, Q3)

7.22 (6.87, 7.62

6.99 (6.60, 7.34)

7.33 (6.98, 7.78)

Z = −6.41

<0.001

焦虑状态,n (%)

231 (58.48)

64 (48.12)

167 (63.74)

χ2 = 8.86

0.003

Z:Kruskal-Wallis test,χ2:Chi-square test;M:Median,Q1:1st Quartile, Q3:3st Quartile;注:CHD = 冠心病,T2DM = 2型糖尿病,WBC = 白细胞计数,NE = 中性粒细胞计数,LYM = 淋巴细胞计数,MONO = 单核细胞计数,PLT = 血小板计数,ALT = 丙氨酸氨基转移酶,AST = 天冬氨酸氨基转移酶,γ-GGT = γ-谷氨酰转移酶,FPG = 空腹血糖,HbA1c = 糖化血红蛋白,SII = 系统免疫炎症指数,TyG指数 = 甘油三酯 − 葡萄糖指数。

Table 2. Single + multiple Logistic regression analysis of CHD and T2DM influencing factors

2. CHD合并T2DM影响因素的单 + 多因素Logistic回归分析

Variables

单因素

多因素

β

S.E

Z

P

OR (95%CI)

β

S.E

Z

P

OR (95%CI)

WBC

0.17

0.08

2.23

0.026

1.18 (1.02~1.37)

MONO

1.14

0.69

1.65

0.099

3.14 (0.81~12.17)

Scr

0.06

0.01

8.10

<0.001

1.06 (1.05~1.08)

0.06

0.01

7.21

<0.001

1.06 (1.04~1.08)

LDL-C

0.25

0.13

1.96

0.050

1.29 (1.00~1.67)

焦虑状态

0

1.00 (Reference)

1

0.64

0.22

2.96

0.003

1.90 (1.24~2.89)

SII

0.01

0.00

5.60

<0.001

1.01 (1.01~1.01)

0.01

0.00

3.48

<0.001

1.01 (1.01~1.01)

TyG指数

1.36

0.22

6.16

<0.001

3.91 (2.53~6.04)

1.08

0.27

4.01

<0.001

2.94 (1.74~4.97)

OR: Odds Ratio, CI: Confidence Interval。

3.3. CHD合并T2DM组临床资料比较

将CHD合并T2DM组患者分为轻微冠脉病变组、严重冠脉病变组后,发现在两组中,年龄、有高血压病史占比、有吸烟史占比、有饮酒史占比、WBC、NE、LYM、MONO、PLT、HDL-C、FPG、TG、焦虑状态、SII、TyG指数差异有统计学意义(P < 0.05),而性别、BMI、RBC、Hb、HbA1c、ALT、AST、γ-GGT、TG、TC、LDL-C、UA、Scr、BUN差异无统计学意义(P > 0.05),见表3

Table 3. Comparison of clinical data in CHD patients with T2DM

3. CHD合并T2DM组临床资料比较

Variables

Total (n = 262)

轻微冠脉病变组 (n = 133)

严重冠组病变组 (n = 129)

Statistic

P

年龄,[M (Q1, Q3),岁]

66.00 (59.00, 72.00)

63.00 (57.00, 67.00)

70.00 (64.00, 74.00)

Z = −6.23

<0.001

性别,n (%)

χ2 = 0.75

0.385

133 (50.76)

64 (48.12)

69 (53.49)

129 (49.24)

69 (51.88)

60 (46.51)

高血压,n (%)

83 (31.68)

50 (37.59)

33 (25.58)

χ2 = 4.37

0.037

吸烟史,n (%)

105 (40.08)

65 (48.87)

40 (31.01)

χ2 = 8.70

0.003

饮酒史,n (%)

151 (57.63)

88 (66.17)

63 (48.84)

χ2 = 8.05

0.005

BMI, [M(Q1, Q3), kg/m2]

25.40 (23.41, 27.50)

25.00 (23.40, 27.50)

25.70 (23.90, 27.50)

Z = −1.43

0.154

WBC, [M (Q1, Q3), ×109/L]

6.67 (5.89, 7.53)

6.43 (5.57, 7.26)

7.01 (6.21, 7.84)

Z = −3.85

<0.001

NE, [M (Q1, Q3), ×109/L]

4.66 (3.96, 5.45)

4.43 (3.87, 5.19)

4.82 (4.11, 5.64)

Z = −2.85

0.004

LYM, [M (Q1, Q3), ×109/L]

1.83 (1.45, 2.18)

2.02 (1.64, 2.36)

1.67 (1.30, 1.91)

Z = −5.32

<0.001

MONO, [M (Q1, Q3), ×109/L]

0.46 (0.37, 0.55)

0.44 (0.36, 0.54)

0.47 (0.39, 0.56)

Z = −2.32

0.020

RBC, [M (Q1, Q3), ×1012/L]

4.51 (4.21, 4.90)

4.55 (4.22, 4.92)

4.47 (4.16, 4.87)

Z = −0.79

0.430

Hb, [M (Q1, Q3), g/L]

138.00 (127.25, 147.00)

140.00 (129.00, 147.00)

137.00 (124.00, 147.00)

Z = −1.55

0.122

PLT, [M (Q1, Q3), ×1012/L]

218.00 (197.00, 239.75)

203.00 (184.00, 225.00)

229.00 (210.00, 253.00)

Z = −5.89

<0.001

FPG, [M (Q1, Q3), mmol/L]

6.96 (6.09, 8.10)

6.74 (5.90, 7.88)

7.31 (6.36, 8.39)

Z = −2.43

0.015

HbA1c, [M (Q1, Q3), %]

7.45 (6.60, 8.50)

7.40 (6.60, 8.60)

7.50 (6.70, 8.40)

Z = −0.30

0.762

ALT, [M (Q1, Q3), U/L]

18.75 (14.33, 25.45)

19.00 (14.80, 24.80)

18.60 (14.00, 27.60)

Z = −0.26

0.792

AST, [M (Q1, Q3), U/L]

19.65 (15.72, 24.40)

19.50 (16.00, 24.00)

19.90 (15.30, 26.00)

Z = −0.37

0.712

γ-GGT, [M (Q1, Q3), U/L]

19.00 (13.93, 26.98)

19.70 (14.60, 26.90)

17.90 (12.90, 27.00)

Z = −1.29

0.199

TG, [M (Q1, Q3), mmol/L]

1.33 (0.95, 1.94)

1.23 (0.90, 1.77)

1.39 (0.97, 2.09)

Z = −1.51

0.130

TC, [M (Q1, Q3), mmol/L]

4.26 (3.52, 5.07)

4.09 (3.43, 5.05)

4.31 (3.64, 5.13)

Z = −1.33

0.185

LDL-C,[M(Q1,Q3), mmol/L]

2.32 (1.74, 2.95)

2.15 (1.68, 2.80)

2.42 (1.89, 2.98)

Z = −1.70

0.089

HDL-C,[M (Q1, Q3), mmol/L]

1.15 (1.01, 1.33)

1.20 (1.02, 1.36)

1.11 (0.98, 1.27)

Z = −2.15

0.031

UA, [M (Q1, Q3), μmol/L]

305.45 (260.73, 367.10)

303.60 (254.00, 362.30)

308.70 (262.00, 372.00)

Z = −0.71

0.478

Scr, [M (Q1, Q3), μmol/L]

85.65 (76.33, 95.75)

84.30 (76.00, 94.00)

86.00 (76.90, 97.00)

Z = −0.68

0.499

BUN, [M (Q1, Q3), mmol/L]

5.84 (4.90, 6.80)

5.65 (4.67, 6.60)

6.06 (5.00, 7.14)

Z = −1.82

0.069

SII, [M (Q1, Q3),×109/L]

549.93 (440.39, 709.90)

470.76 (386.94, 552.18)

692.73 (549.11, 856.11)

Z = −8.88

<0.001

TyG指数,M (Q1, Q3)

7.33 (6.98, 7.78)

7.14 (6.87, 7.49)

7.65 (7.25, 7.98)

Z = −6.89

<0.001

焦虑状态,n (%)

95 (36.26)

70 (52.63)

25 (19.38)

χ2 = 31.33

<0.001

Z: Kruskal-Wallis test, χ2: Chi-square test; M: Median, Q1: 1st Quartile, Q3: 3st Quartile。

3.4. 影响CHD合并T2DM组的单 + 多因素Logistic回归分析

以CHD合并T2DM冠脉病变严重程度为因变量(赋值:轻微 = 0,严重 = 1),以年龄、高血压史(赋值:无 = 0,有 = 1)、吸烟史(赋值:无 = 0,有 = 1)、饮酒史(赋值:无 = 0,有 = 1)、WBC (实测值)、MONO (实测值)、Scr (实测值)、HDL-C (实测值)、SII 实测值)、TyG (实测值)、焦虑状态(赋值:无 = 0,有 = 1)为自变量(NE、LYM、PLT与SII存在共线性,故将其排除),进行多因素Logistic回归分析,结果显示,年龄、SII、TyG指数、焦虑状态是CHD合并T2DM的独立影响因素(P < 0.05),见表4

3.5. ROC曲线分析SII、TyG指数单一及联合对CHD合并T2DM组冠脉病变严重程度的 诊断效能

根据冠状动脉造影结果将CHD合并T2DM组分为轻微冠脉病变组和严重冠脉病变组,以SII、TyG指数及二者联合应用绘制ROC曲线,通过约登指数(敏感度 + 特异度-1)最大化所对应的数值得出最佳截断值。得出结果:当SII在最佳截断值等于610.461时,敏感度为86%,特异度为67%,AUC面积为0.817 (95%CI: 0.766~0.869, P < 0.05);当TyG指数在最佳截断值等于7.324,敏感度为69%,特异度为71%,AUC面积为0.746 (95%CI: 0.686~0.806, P < 0.05);SII联合TyG指数预测的敏感度为80%,特异度为74%,AUC面积为0.845 (95%CI: 0.798~0.891, P < 0.05),其中两者联合诊断的曲线下面积较单个指标诊断曲线下面积增大,所以SII联合TyG指数预测CHD合并T2DM组冠脉病变严重程度的的价值最高。见图1表5

Table 4. Single + multi-factor Logistic regression analysis of mild coronary disease group and severe coronary disease group

4. 轻微冠脉病变组跟严重冠脉病变组的单 + 多因素Logistic回归分析

Variables

单因素

多因素

β

S.E

Z

P

OR (95%CI)

β

S.E

Z

P

OR (95%CI)

年龄

0.09

0.02

5.33

<0.001

1.09 (1.06~1.13)

0.08

0.02

3.65

<0.001

1.08 (1.04~1.13)

高血压病史

0

1.00 (Reference)

1.00 (Reference)

1

0.56

0.27

2.08

0.038

1.75 (1.03~2.97)

0.22

0.37

0.59

0.558

1.24 (0.60~2.58)

吸烟史

0

1.00 (Reference)

1.00 (Reference)

1

0.75

0.26

2.93

0.003

2.13 (1.28~3.52)

0.51

0.35

1.48

0.139

1.67 (0.85~3.30)

饮酒史

0

1.00 (Reference)

1.00 (Reference)

1

0.72

0.25

2.82

0.005

2.05 (1.24~3.37)

0.09

0.36

0.26

0.793

1.10 (0.54~2.22)

WBC

0.34

0.10

3.51

<.001

1.41 (1.16~1.71)

0.02

0.13

0.11

0.909

1.02 (0.78~1.32)

NOMO

1.59

0.84

1.88

0.060

4.88 (0.94~25.42)

1.73

1.30

1.34

0.181

5.66 (0.45~71.87)

Scr

0.01

0.01

0.92

0.360

1.01 (0.99~1.02)

0.00

0.01

0.55

0.584

1.00 (0.99~1.02)

HDL-C

−0.89

0.45

−1.97

0.049

0.41 (0.17~0.99)

−0.49

0.65

−0.75

0.454

0.61 (0.17~2.20)

SII

0.01

0.00

7.13

<0.001

1.01 (1.01~1.01)

0.01

0.00

5.49

<0.001

1.01 (1.01~1.01)

TyG指数

1.68

0.28

5.93

<0.001

5.36 (3.08~9.34)

1.03

0.34

3.02

0.002

2.81 (1.44~5.50)

焦虑状态

0

1.00 (Reference)

1.00 (Reference)

1

1.53

0.28

5.42

<0.001

4.62 (2.66~8.04)

0.89

0.35

2.52

0.012

2.44 (1.22~4.89)

OR: Odds Ratio, CI: Confidence Interval。

SII:系统性免疫炎症指数;TyG指数:甘油三酯–葡萄糖指数;联合指标:SII联合TyG指数。

Figure 1. ROC curve of SII, TyG index and their combination in predicting the severity of coronary lesions in CHD patients with T2DM

1. SII、TyG指数及二者联合预测CHD合并T2DM组冠脉病变严重程度的ROC曲线

Table 5. Diagnostic efficacy of SII and TyG index alone and combined on the severity of coronary lesions in CHD patients with T2DM

5. SII、TyG指数单一及联合对CHD合并T2DM组冠脉病变严重程度的诊断效能

检验结果变量

AUC区域

标准错误

渐近显著性

灵敏度

特异度

约登 指数

渐近95%置信区间上限

渐近95%置信区间下限

最佳截 断值

SII

0.817

0.026

0.000

0.86

0.67

0.53

0.766

0.869

610.461

TyG

0.746

0.030

0.000

0.69

0.71

0.4

0.686

0.806

7.324

联合指标

0.845

0.024

0.000

0.80

0.74

0.54

0.798

0.891

4. 讨论

CHD的本质是动脉粥样硬化(Atherosclerosis, AS)致使血管狭窄甚至阻塞,引起心肌缺血、缺氧而导致临床系列症状的一种慢性疾病[26]。在CHD众多并发症中,糖尿病的心血管事件的风险和严重程度显著增加[12]。冠状动脉粥样硬化的演变过程涉及了多种病理生理机制,其中以单核/巨噬细胞浸润为特征的炎症反应在心血管疾病的发生和发展过程中起着重要的作用[27]。所以探究炎症指标与冠脉狭窄严重程度之间的关系尤为重要。作为白细胞两个亚型的中性粒细胞及淋巴细胞均可参与冠状动脉血管病变[28]。研究表明,T2DM患者的血小板功能受损、凝血异常等病理改变均可加速冠状动脉粥样硬化的形成[29]。综上,SII作为一种包含了中性粒细胞、淋巴细胞、血小板的新型炎性指标,能综合三者在反映冠状动脉病变程度上的优点并弥补缺点,可更好地反映患者的炎症情况[30]。研究证明,SII与冠心病患者的冠状动脉狭窄严重程度呈正相关[31]。在糖尿病发生异常代谢过程中,血脂异常、慢性高血糖和胰岛素抵抗会导致动脉血管功能障碍,其中,慢性高血糖和胰岛素抵抗对内皮功能受损和动脉粥样硬化的诱导和进展有直接影响[32]。TyG指数通过TG和FPG的比值,可以反映胰岛素抵抗的程度[33]。胰岛素抵抗是促进动脉粥样硬化的重要机制,与冠心病的发生、发展及预后密切相关,同时与冠状动脉狭窄程度呈正相关[34]。既往研究已证实TyG指数是冠状动脉硬化性心血管疾病的独立危险因素[35]。SII与TyG指数分别从炎症激活和代谢紊乱角度揭示了冠脉硬化的病理机制,而对于两者的联合分析可以理解为“炎症–代谢轴”在动脉粥样硬化中的协同效应。已有研究表明SII和TyG指数在冠心病患者中与冠脉硬化严重程度具有一定的相关性[30] [36]-[39],但目前尚无研究探讨SII和TyG指数联合应用与CHD合并T2DM冠状动脉病变严重程度的相关。

本研究结果发现肌酐、SII、TyG指数是CHD合并T2DM的独立影响因素。年龄、焦虑状态、肌酐、SII、TyG指数是CHD合并T2DM冠脉狭窄病变严重程度的独立影响因素。动脉粥样硬化的核心病理特征是单核–巨噬细胞系统的动态浸润及促炎微环境形成[40]。肌酐升高反映肾功能损伤时,促炎因子TNF-α、IL-6不仅会直接破坏血管内皮,还通过诱导单核细胞迁移及泡沫化从而加速动脉粥样硬化进程[41]。升高的全身免疫炎症指数(SII)标志着中性粒细胞过度活化与淋巴细胞减少的免疫失调状态,其双重作用机制包括:直接驱动动脉粥样硬化形成,以及增强血小板活性从而提升T2DM患者的冠脉血栓风险[42]。值得注意的是,SII的升高本质上是代谢紊乱与慢性炎症相互放大的生物学标志。研究证实,高SII水平会显著削弱血管内皮的修复能力,导致冠状动脉粥样硬化进展加速,使T2DM患者冠脉硬化的发生率倍增[43]

本研究ROC曲线结果显示以SII及TyG指数预测CHD合并T2DM冠脉狭窄程度的AUC分别为0.817、0.746,而二者联合预测的AUC为0.845,提示SII跟TyG指数联合预测冠脉狭窄程度更有优势。综上所述,SII跟TyG联合指数具有反映CHD合并T2DM患者冠状动脉病变严重程度的能力。二者简便易得,这为今后临床医生的诊疗活动提供了更多的参考和帮助。本研究也具有一些局限性:1) 本研究是一项单中心回顾性研究,未收集患者的用药情况、生活方式、遗传因素等,这些因素可能通过多重机制影响SII、TyG指数及冠脉狭窄程度。由于缺乏这些数据,研究结果可能存在偏差。未来研究需通过前瞻性设计,结合详细问卷、基因检测及药物使用记录,开展多中心的研究,以更准确地评估生物标志物的独立预测价值。2) 本研究未纳入特异性指标高敏C反应蛋白(hs-CRP)及稳态模型的胰岛素抵抗指数(HOMA-IR),考虑到血清hs-CRP是炎症的主要标志物,其水平可独立预测心血管事件的风险,对心脏病患者具有预后价值[44],但其作为经典炎症标志物易受感染、创伤等短期因素干扰[45]。HOMA-IR作为评估胰岛素抵抗的金标准,需要依赖空腹血胰岛素计算,增加采血负担及检测成本[21]。本研究所选择的SII跟TyG指数的计算基于常规实验室指标,可间接反应炎症和代谢状态,具有非浸入性及低成本、操作简便、稳定性的优势,无需额外的血液检测及特殊设备,更适用于大规模人群的初筛,便于重复测量,但二者特异性有限,未来可研究hs-CRP、HOMA-IR、SII跟TyG指数多维度结合。尽管存在上述不足,本研究仍为临床实践提供了初步证据,提示SII和TyG指数可能作为简便易行的工具辅助评估冠脉病变严重程度。

声 明

该病例报道已获得病人的知情同意。

NOTES

*通讯作者。

参考文献

[1] Vrints, C., Andreotti, F., Koskinas, K.C., et al. (2024) 2024 ESC Guidelines for the Management of Chronic Coronary Syndromes. European Heart Journal, 45, 3415-3537.
[2] Pencina, M.J., Navar, A.M., Wojdyla, D., Sanchez, R.J., Khan, I., Elassal, J., et al. (2019) Quantifying Importance of Major Risk Factors for Coronary Heart Disease. Circulation, 139, 1603-1611.
https://doi.org/10.1161/circulationaha.117.031855
[3] Malakar, A.K., Choudhury, D., Halder, B., Paul, P., Uddin, A. and Chakraborty, S. (2019) A Review on Coronary Artery Disease, Its Risk Factors, and Therapeutics. Journal of Cellular Physiology, 234, 16812-16823.
https://doi.org/10.1002/jcp.28350
[4] Ding, N., Sang, Y., Chen, J., Ballew, S.H., Kalbaugh, C.A., Salameh, M.J., et al. (2019) Cigarette Smoking, Smoking Cessation, and Long-Term Risk of 3 Major Atherosclerotic Diseases. Journal of the American College of Cardiology, 74, 498-507.
https://doi.org/10.1016/j.jacc.2019.05.049
[5] Kopin, L. and Lowenstein, C.J. (2017) Dyslipidemia. Annals of Internal Medicine, 167, ITC81-ITC96.
https://doi.org/10.7326/aitc201712050
[6] Natarajan, P., Ray, K.K. and Cannon, C.P. (2010) High-Density Lipoprotein and Coronary Heart Disease. Journal of the American College of Cardiology, 55, 1283-1299.
https://doi.org/10.1016/j.jacc.2010.01.008
[7] Arnett, D.K., Blumenthal, R.S., Albert, M.A., et al. (2019) 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140, e596-e646.
[8] Htay, T., Soe, K., Lopez-Perez, A., Doan, A.H., Romagosa, M.A. and Aung, K. (2019) Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. Current Cardiology Reports, 21, Article No. 45.
https://doi.org/10.1007/s11886-019-1133-9
[9] Zheng, Y., Ley, S.H. and Hu, F.B. (2017) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98.
https://doi.org/10.1038/nrendo.2017.151
[10] Huo, X., Gao, L., Guo, L., Xu, W., Wang, W., Zhi, X., et al. (2016) Risk of Non-Fatal Cardiovascular Diseases in Early-Onset versus Late-Onset Type 2 Diabetes in China: A Cross-Sectional Study. The Lancet Diabetes & Endocrinology, 4, 115-124.
https://doi.org/10.1016/s2213-8587(15)00508-2
[11] Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[12] 中国内分泌代谢病专科联盟. 2型糖尿病合并心血管疾病诊断和治疗行业标准[J]. 中华内分泌代谢杂志, 2022(10): 839-842.
[13] Sayadi, M., Varadarajan, V., Sadoughi, F., Chopannejad, S. and Langarizadeh, M. (2022) A Machine Learning Model for Detection of Coronary Artery Disease Using Noninvasive Clinical Parameters. Life, 12, Article No. 1933.
https://doi.org/10.3390/life12111933
[14] Collet, C., Onuma, Y., Andreini, D., Sonck, J., Pompilio, G., Mushtaq, S., et al. (2018) Coronary Computed Tomography Angiography for Heart Team Decision-Making in Multivessel Coronary Artery Disease. European Heart Journal, 39, 3689-3698.
https://doi.org/10.1093/eurheartj/ehy581
[15] Libby, P., Buring, J.E., Badimon, L., Hansson, G.K., Deanfield, J., Bittencourt, M.S., et al. (2019) Atherosclerosis. Nature Reviews Disease Primers, 5, Article No. 56.
https://doi.org/10.1038/s41572-019-0106-z
[16] 夏经钢. 冠心病和糖尿病“共病”管理中的干预靶点——代谢性炎症的作用机制探讨[J]. 中国循环杂志, 2021, 36(1): 93-96.
[17] Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533.
https://doi.org/10.1038/s41586-021-03392-8
[18] 李艳宁, 李攀宁. Lpa与老年CCS患者外周血T淋巴细胞的相关性研究[J]. 山西卫生健康职业学院学报, 2024, 34(3): 64-66.
[19] Wang, C., Yan, W., Ren, M. and Zhong, L. (2024) Screening Significance of Systemic Immune‐Inflammation Index (SII) and Systemic Inflammation Response Index (SIRI) in Coronary Heart Disease of Symptomatic Youth. Immunity, Inflammation and Disease, 12, e1369.
https://doi.org/10.1002/iid3.1369
[20] Lyu, L., Wang, X., Xu, J., Liu, Z., He, Y., Zhu, W., et al. (2024) Association between Triglyceride Glucose-Body Mass Index and Long-Term Adverse Outcomes of Heart Failure Patients with Coronary Heart Disease. Cardiovascular Diabetology, 23, Article No. 162.
https://doi.org/10.1186/s12933-024-02213-2
[21] 卢彦娜, 梁超, 唐强. 三酰甘油-葡萄糖指数及其联合人体测量学指标与心血管疾病相关性的研究进展[J]. 中国心血管杂志, 2024(2): 174-177.
[22] 刘茹, 张皓楠, 许雅鑫, 等. TyG指数与稳定性冠心病患者冠状动脉病变支数的关联分析[J]. 中华全科医师杂志, 2023(7): 715-721.
[23] 付建平, 王雪. TyG指数联合单核细胞/高密度脂蛋白胆固醇比值与冠状动脉狭窄程度的研究[J]. 中华内分泌代谢杂志, 2023(11): 923-927.
[24] 中华医学会心血管病学分会介入心脏病学组, 中华医学会心血管病学分会动脉粥样硬化与冠心病学组, 中国医师协会心血管内科医师分会血栓防治专业委员会, 等. 稳定性冠心病诊断与治疗指南[J]. 中华心血管病杂志, 2018, 46(9): 680-694.
[25] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
[26] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545.
[27] Aziz, I.S., McMahon, A.M., Friedman, D., Rabinovich-Nikitin, I., Kirshenbaum, L.A. and Martino, T.A. (2021) Circadian Influence on Inflammatory Response during Cardiovascular Disease. Current Opinion in Pharmacology, 57, 60-70.
https://doi.org/10.1016/j.coph.2020.11.007
[28] Attiq, A., Afzal, S., Ahmad, W. and Kandeel, M. (2024) Hegemony of Inflammation in Atherosclerosis and Coronary Artery Disease. European Journal of Pharmacology, 966, Article ID: 176338.
https://doi.org/10.1016/j.ejphar.2024.176338
[29] Capodanno, D., Mehran, R., Krucoff, M.W., Baber, U., Bhatt, D.L., Capranzano, P., et al. (2023) Defining Strategies of Modulation of Antiplatelet Therapy in Patients with Coronary Artery Disease: A Consensus Document from the Academic Research Consortium. Circulation, 147, 1933-1944.
https://doi.org/10.1161/circulationaha.123.064473
[30] Liu, Y., Ye, T., Chen, L., Jin, T., Sheng, Y., Wu, G., et al. (2021) Systemic Immune-Inflammation Index Predicts the Severity of Coronary Stenosis in Patients with Coronary Heart Disease. Coronary Artery Disease, 32, 715-720.
https://doi.org/10.1097/mca.0000000000001037
[31] 淡一航, 张宇, 杨岭, 等. 全身免疫炎症指数在急性冠状动脉综合征中的应用进展[J]. 中国心血管病研究, 2023, 21(11): 1038-1042.
[32] Poznyak, A., Grechko, A.V., Poggio, P., Myasoedova, V.A., Alfieri, V. and Orekhov, A.N. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences, 21, Article No. 1835.
https://doi.org/10.3390/ijms21051835
[33] 侯党敏, 王新诚, 李周慧灵, 等. 胰岛素抵抗新模型与心血管代谢性疾病的相关性研究[J]. 中华内分泌代谢杂志, 2024(4): 283-290.
[34] Liang, S., Wang, C., Zhang, J., Liu, Z., Bai, Y., Chen, Z., et al. (2023) Triglyceride-Glucose Index and Coronary Artery Disease: A Systematic Review and Meta-Analysis of Risk, Severity, and Prognosis. Cardiovascular Diabetology, 22, Article No. 170.
https://doi.org/10.1186/s12933-023-01906-4
[35] 张诗慧, 侯善荣. 甘油三酯葡萄糖乘积指数联合载脂蛋白A1在预测冠状动脉狭窄程度中的预测价值[J]. 中国循证心血管医学杂志, 2024, 16(12): 1534-1537.
[36] 戴苏婕, 高萌, 米蕊, 等. 老年糖尿病患者高敏C反应蛋白和系统性免疫炎症指数与冠状动脉狭窄程度的相关研究[J]. 中华老年心脑血管病杂志, 2024, 26(9): 993-996.
[37] Ma, J. and Li, K. (2023) Systemic Immune-Inflammation Index Is Associated with Coronary Heart Disease: A Cross-Sectional Study of NHANES 2009-2018. Frontiers in Cardiovascular Medicine, 10, Article ID: 1199433.
https://doi.org/10.3389/fcvm.2023.1199433
[38] Dang, K., Wang, X., Hu, J., Zhang, Y., Cheng, L., Qi, X., et al. (2024) The Association between Triglyceride-Glucose Index and Its Combination with Obesity Indicators and Cardiovascular Disease: NHANES 2003-2018. Cardiovascular Diabetology, 23, Article No. 8.
https://doi.org/10.1186/s12933-023-02115-9
[39] Wang, X., Xu, W., Song, Q., Zhao, Z., Meng, X., Xia, C., et al. (2022) Association between the Triglyceride-Glucose Index and Severity of Coronary Artery Disease. Cardiovascular Diabetology, 21, Article No. 168.
https://doi.org/10.1186/s12933-022-01606-5
[40] La Sala, L., Prattichizzo, F. and Ceriello, A. (2019) The Link between Diabetes and Atherosclerosis. European Journal of Preventive Cardiology, 26, 15-24.
https://doi.org/10.1177/2047487319878373
[41] 姚姗. 2型糖尿病患者并发冠心病风险的列线图模型的建立[D]: [硕士学位论文]. 海口: 海南医学院, 2022.
[42] 魏世刚, 汪亚丽, 彭倩, 等. 脂蛋白磷脂酶A2联合系统免疫炎性指数对2型糖尿病患者冠心病风险的预测价值[J]. 中国医师进修杂志, 2023, 46(9): 838-843.
[43] Bian, X., He, J., Zhang, R., Yuan, S. and Dou, K. (2023) The Combined Effect of Systemic Immune-Inflammation Index and Type 2 Diabetes Mellitus on the Prognosis of Patients Undergoing Percutaneous Coronary Intervention: A Large-Scale Cohort Study. Journal of Inflammation Research, 16, 6415-6429.
https://doi.org/10.2147/jir.s445479
[44] Ghavam, S., Hafezi Ahmadi, M.R., Mosavi, A., Elhamdoost, E. and Kazeminezhad, B. (2016) The Relationship between High Sensitive C-Reaction Protein (hs-CRP) and Diastolic Heart Function in Diabetes Mellitus Type II. Asian Journal of Pharmaceutical Research and Health Care, 9, Article No. 41.
https://doi.org/10.18311/ajprhc/0/7716
[45] Castro, A.R., Silva, S.O. and Soares, S.C. (2018) The Use of High Sensitivity C-Reactive Protein in Cardiovascular Disease Detection. Journal of Pharmacy & Pharmaceutical Sciences, 21, 496-503.
https://doi.org/10.18433/jpps29872