母胎界面IL-33对蜕膜免疫细胞功能的影响及机制
The Effect and Mechanism of IL-33 on Decidual Immune Cell Function at Maternal-Fetal Interface
DOI: 10.12677/acm.2025.1541094, PDF, HTML, XML,   
作者: 王浩然, 王宝茜:山东大学第二医院检验医学中心,山东 济南
关键词: 母胎界面IL-33蜕膜免疫细胞Maternal-Fetal Interface IL-33 Decidual Immune Cells
摘要: 白细胞介素-33 (IL-33)是一种与多种免疫调节过程相关的细胞因子,它在免疫调节、炎症反应以及多种疾病的发生发展过程中发挥着重要作用,亦在维持妊娠状态下的免疫稳态中扮演重要角色。母胎界面由滋养细胞、蜕膜基质细胞及蜕膜免疫细胞构成,其中蜕膜免疫细胞包括自然杀伤(NK)细胞、T细胞、B细胞、巨噬细胞、树突状细胞等。妊娠过程中,胎儿对于母体而言为同种半异体移植物,因此保持母胎界面的免疫平衡尤为重要,而本文通过研究IL-33对于蜕膜免疫细胞的影响及相关机制的研究进展,从而进一步探索了妊娠过程中母胎局部免疫平衡的维持。
Abstract: Interleukin-33 (IL-33) is a cytokine involved in a variety of immunomodulatory processes, which plays an important role in immune regulation, inflammation and the occurrence and development of various diseases, and also plays an important role in the maintenance of immune homeostasis during pregnancy. The maternal-fetal interface is composed of trophoblast cells, decidual stromal cells and decidual immune cells, among which decidual immune cells include natural killer (NK) cells, T cells, B cells, macrophages and dendritic cells. During pregnancy, the fetus is an allogeneic and semi-allogeneic graft from the mother, so it is particularly important to maintain the immune balance at the mother-fetus interface. In this paper, the influence of IL-33 on decidual immune cells and the related mechanisms have been studied, so as to further explore the maintenance of the local immune balance in the mother and fetus during pregnancy.
文章引用:王浩然, 王宝茜. 母胎界面IL-33对蜕膜免疫细胞功能的影响及机制[J]. 临床医学进展, 2025, 15(4): 1577-1585. https://doi.org/10.12677/acm.2025.1541094

1. 引言

妊娠过程是一个高度复杂且精密的生理进程,母胎界面是胎儿与母体之间接触和交流的界面,是妊娠过程中二者之间物质与能量交换的关键部位。母胎界面主要由母体来源的蜕膜基质细胞及蜕膜免疫细胞和胎儿来源的绒毛滋养细胞三部分构成。其中蜕膜免疫细胞包括自然杀伤(NK)细胞、T细胞、B细胞、巨噬细胞、树突状细胞等。蜕膜免疫细胞及其分泌的各种细胞因子和活化因子组成了母胎界面的免疫微环境,母胎界面免疫微环境的平衡对于妊娠的维持具有重要作用。白细胞介素-33 (IL-33)属于IL-1细胞因子家族[1],可在多种类型的组织及细胞中广泛表达,如上皮细胞、内皮细胞以及成纤维细胞等多种细胞中表达[2]。母胎界面的IL-33主要来源于蜕膜组织及滋养层细胞。其受体ST2在蜕膜基质细胞和蜕膜免疫细胞以及滋养细胞中均可表达[3]

母胎界面的蜕膜免疫细胞在维持母胎界面免疫平衡中发挥着重要作用,IL-33与母胎界面的蜕膜免疫细胞存在着错综复杂的相互作用的关系,深入剖析母胎界面IL-33对蜕膜免疫细胞功能的具体作用以及其背后深层次的分子机制,对于全面理解母胎免疫平衡调节具有重要的意义。本文将全面阐述母胎微环境中IL-33对不同蜕膜免疫细胞的作用及机制的最新研究进展。

2. IL-33概述

2.1. IL-33的生物学特性

IL-33隶属于IL-1细胞因子家族,基因定位于人类染色体9p24.1区域,全长约12 kb,由6个外显子有序拼接而成。该基因编码的前体蛋白由270个氨基酸残基聚合而成,相对分子质量约为30 kDa。成熟的IL-33蛋白呈现典型的核定位特征,拥有高度保守的IL-1家族结构域,其独特的β-三叶草折叠结构赋予了该蛋白与受体特异性结合并有效发挥生物学功能的能力。这种精细的结构特征在进化过程中得以保留,暗示了其在维持机体生理平衡中的重要地位。

2.2. IL-33及其受体的的表达及分布

IL-33在人类和动物的多种组织及细胞中表达,如内皮细胞、上皮细胞、成纤维细胞、角质细胞、巨噬细胞以及星形胶质细胞[2] [4] [5]。在炎症环境中,IL-33的表达可显著升高,如哮喘患者的支气管上皮细胞和气道平滑肌细胞以及骨髓移植后患有移植物抗宿主病患者的肠上皮。在正常妊娠中,IL-33主要在滋养层细胞、蜕膜细胞以及免疫细胞中表达,其在母胎界面的表达受到严格调控[6]

2005年,IL-33被确定为孤儿受体ST2 (suppression of tumorigenicity 2)的配体[7]。编码ST2的mRNA具有三种同工型变体:sST2 (可溶形式)、ST2L (穿膜形式ST2)及ST2V (变体ST2)。ST2L是一种跨膜蛋白,其胞外区包含三个免疫球蛋白样结构域,负责与IL-33特异性结合,这种结构赋予了ST2L与IL-33高亲和力的相互作用[8]。而sST2主要通过蛋白酶水解作用或选择性剪接从细胞膜表面脱落进入血液循环,或者由某些细胞直接分泌产生。可溶性的sST2虽然也能够与IL-33结合,但由于缺乏跨膜和胞内结构,无法介导信号转导,因此作为一种诱饵受体,竞争性地结合IL-33,发挥负向调节IL-33信号通路的作用。ST2V是ST2的一种变异体形式,其基因结构源于ST2基因的特定剪接方式,与传统ST2异构体在核酸序列上存在差异[9]。ST2LV同样是ST2家族中的特殊成员,在基因层面也经历了独特的转录后加工过程,形成了区别于其他异构体的基因序列。相较于ST2L,ST2V及ST2LV可能缺失部分关键结构域或具有不同的结构域组合方式,这些结构差异直接影响了其与配体的结合能力以及后续的生物学功能。

2.3. IL-33的功能及信号通路

IL-33在过敏、感染、急慢性炎症以及免疫稳态的维持中发挥着重要作用[10] [11]。在不同疾病的进展中,IL-33具有不同的作用[12],IL-33不仅可以在炎症激活后发挥免疫调节作用,细胞核内的IL-33还发挥着转录抑制因子的作用。作为一种核因子,全长的IL-33在合成后与组蛋白结合定位于细胞核[13] [14],通过与染色质结合改变染色质的结构来影响基因的可及性。研究发现,IL-33能够与组蛋白修饰酶相互作用,调节组蛋白的乙酰化、甲基化等修饰状态[15],进而影响基因转录的起始,从而限制其核外的促炎及其免疫调节作用[16]。在正常生理状态下,IL-33主要存在于细胞核内,而当细胞受到损伤、感染或炎症刺激时,IL-33由细胞核内的前体蛋白经过切割后释放到细胞外,与其受体ST2及其IL-1受体辅助蛋白(IL-1RAcP)结合,聚集TIR结构域以召集MYD88、IRAK1、IRAK4和TRAF6,进而激活MAPK和NF-κB转录因子信号通路,最终驱动表达ST2的细胞增殖、生存及细胞因子分[17] [18],从而调控免疫细胞的功能。IL-33/ST2信号通路在不同疾病中发挥着作用,如肿瘤发射细胞(TICs)驱动的IL-33-TGF-β前馈环可以促进癌症发展[19]

IL-33主要作用于II型免疫细胞[20],但又不仅仅限于激活II型免疫应答。其在I型免疫细胞的激活中也发挥着重要作用[21]。因此IL-33在免疫调节和炎症反应中扮演着极为复杂且关键的角色。在组织遭受损伤或病原体入侵时,IL-33作为一种警报素,从受损细胞中释放至细胞外空间,迅速激活固有免疫细胞,如肥大细胞、嗜酸性粒细胞以及ILC2 (第2组固有淋巴细胞)等。这些细胞被激活后随即分泌一系列细胞因子和趋化因子,启动早期免疫应答程序,增强机体对病原体的识别、清除能力,从而维护机体的免疫稳态。与此同时,IL-33也深度介入适应性免疫应答的调控过程,通过精确调节Th2细胞(辅助性T细胞2型)的分化、增殖和功能发挥,有力地促进体液免疫反应。然而,值得注意的是,当机体处于长期应激或免疫失调状态时,过度或持续性的IL-33信号激活可能打破免疫平衡,引发慢性炎症反应,进而推动多种疾病的发生与发展。在母胎界面中蜕膜免疫细胞是受体ST2L的主要表达位点,其表达水平和分布模式随着妊娠进程的不同阶段而变化,这反映了母胎界面免疫微环境的动态调整。

3. IL-33对母胎界面免疫细胞功能的影响

3.1. IL-33对NK细胞的影响

在人类中,NK细胞分为外周血NK (peripheral blood NK cells, pNKs)细胞和组织驻留NK (tissue resident NK cells, trNK)细胞,蜕膜NK (decidual NK cells, dNKs)细胞是trNK细胞的特殊类型,与pNK细胞相比有独特表型和功能特征[22]。约占淋巴细胞总量的50%~70%。IL-33通过与IL-12协同作用激活人类及小鼠的NKT和NK细胞,诱导IFN-γ的产生。妊娠早期母胎界面的蜕膜被认为是一个免疫特赦组织,妊娠早期大量白细胞在此选择性聚集,其中最主要的是dNKs,主要为CD56brightCD16neg表型,表达高水平的穿孔素(perforin)和颗粒酶A(granzyme A),同时还表达多种激活受体及抑制性受体。与dNKs不同,pNKs含有大量的裂解颗粒,具有较高的细胞毒性;dNKs细胞的主要功能为免疫调节:dNKs通过分泌Th1和Th2细胞因子来调节母胎界面的免疫平衡。其中Th2细胞因子占主导地位,可以促进免疫耐受。调节细胞毒性:尽管dNKs含有较高水平的穿孔素和颗粒酶A,但与pNKs相比,其细胞毒性活性较低[23]。多数研究表明,不明原因的RPL (unexplained recurrent pregnancy loss, uRPL)与NK细胞数量和亚群异常有关。uRPL患者uNK细胞浓度更高,细胞毒性CD16 +uNK细胞增加,且dNK穿孔素、颗粒酶B和IFN-γ表达升高[24] [25]。可见NK细胞毒性增加过度不利于妊娠的维持。而研究发现与pNKs相比,dNKs的ST2的表达明显增加,且重组人IL-33 (rhIL-33)和蜕膜基质细胞(DSCs)来源的IL-33均可通过减少dNKs的穿孔素和颗粒酶A表达显著降低dNKs的细胞毒性,而且IL-33还可通过抑制dNKs中NKp30及NKG2D表达而抑制NKs的激活,维持免疫平衡[26]。因此,IL-33可以通过抑制dNKs细胞毒性、诱导Th2型细胞因子产生、改变细胞表型等维持母胎界面的局部免疫平衡,在维持成功妊娠中起关键作用。但现有研究多集中于对dNKs的毒性抑制以及调节Th1/Th2细胞因子上,少有对于其通路的研究,另外在对某些Th1因子方面的影响上,如IFN-γ可以促进妊娠早期血管的生成,但过度的IFN-γ又破坏了母胎界面的免疫平衡,未来研究可多集中于IL-33对dNKs通路的影响以及不同含量IL-33对Th1细胞因子的影响,确定较为清楚的界限,从而有利于将IL-33作为妊娠检测靶点。

3.2. IL-33对巨噬细胞的影响

巨噬细胞约占蜕膜免疫细胞的10%~20%,正常妊娠时,母胎局部的巨噬细胞以M2型为主,而病理妊娠时M1巨噬细胞数量增加并分泌有害的促炎因子,从而使M1/M2失衡导致病理性妊娠,如子痫前期或不明原因复发性自然流产等。已知IL-33可通过直接作用于特定巨噬细胞亚群上的ST2 [27],以及间接诱导ST2+淋巴细胞分泌抗炎细胞因子,如IL-10、TGF-β、IL-13等Ⅱ型细胞因子来促进M2极化。研究发现,在怀孕早期(E7.5),与野生型(WT)母鼠相比,IL-33基因敲除(KO)母鼠的蜕膜和子宫肌层中表达精氨酸酶-1 (Arg-1,一种与M2巨噬细胞的2型免疫反应相关的酶)的巨噬细胞数量显著减少,这表明母体IL-33信号在小鼠怀孕早期调节M2巨噬细胞功能,IL-33/ST2轴的失调会影响蜕膜巨噬细胞(dMΦs)的功能[6]。在复发性流产患者中,ST2增加而IL-33减少,这种变化伴随着蜕膜组织中凋亡细胞增加。用sST2处理正常的蜕膜基质细胞(decidual stromal cells, DSCs)会导致其凋亡增加,处理正常的dMΦs和巨噬细胞系THP-1会促进胞葬作用[28]。同时,Sheng等研究表明IL-33/ST2信号下调导致dMΦs以M1亚型分化为主,dMΦs清除凋亡DSC的能力增强,从而促进了母胎界面炎症反应,导致复发性流产的发生[29]。综上所述,巨噬细胞中IL-33/ST2信号传导不仅可以促进M2极化,而M2型蜕膜巨噬细胞起到免疫抑制的作用,从而可以维持胎儿这种半同种移植物在母体的生存,进而减少不良妊娠结局的发生。但现有研究多集中于IL-33对M2型巨噬细胞的促进作用,且在体外实验方面,多集中于巨噬细胞本身IL-33对自身极化的影响。而IL-33是否可以抑制M1型蜕膜巨噬细胞极化,以及将IL-33作为一种细胞因子来研究其对巨噬细胞的影响的研究较少。可进一步明确IL-33对妊娠的不同阶段不同M1及M2型细胞因子的分泌的影响,从而更有利于妊娠的维持。

3.3. IL-33对T细胞的影响

T细胞在妊娠的全过程中为维持母胎界面的免疫平衡中发挥着重要的作用。T细胞约占蜕膜免疫细胞的10%~20%左右,主要由CD4+T细胞及CD8+T细胞构成,而CD4+T细胞又可划分为Th及Treg细胞,Th细胞主要包括Th1、Th2、Th17及Th22 [30]。Th1/Th2及Th17/Treg平衡对于母胎界面稳态具有重要意义,不同T细胞亚群之间的失衡会导致子痫及复发性流产等不良妊娠结局的发生[31]-[35]。妊娠过程是一个动态平衡的过程,在胚胎着床前期及着床期,Th1以及CD8+ T细胞发挥着重要作用,通过分泌炎性因子引起局部炎症,有利于滋养细胞的侵袭。IL-33可以促进Th1未成熟细胞发育,但对成熟的Th1细胞无明显作用[36],可能由于其受体ST2只表达于初始CD4+ T细胞,而具体信号机制并不清楚。在妊娠的早期及中期,Th2占据主导,分泌抑炎因子抑制炎症,有利于妊娠的维持[37]。Treg细胞也是母胎局部免疫耐受维持的重要免疫细胞,整个妊娠过程中Treg比Th17更占据主导地位。IL-33可以在体内及体外促进Treg的增殖[38],亦可通过促进小鼠DC分泌IL-12从而促进Treg的增殖[39],有利于妊娠的维持。总之,IL-33在Th1/Th2及Th17/Treg平衡维持中发挥着重要作用,从妊娠早期的滋养细胞侵袭,以及妊娠过程中的免疫耐受状态,均离不开Th1/Th2及Th17/Treg动态平衡的调整,从而有利于妊娠的维持。但T细胞常可与其它免疫细胞协同调控机体的免疫环境,而IL-33通过其他细胞进而间接作用于T细胞的研究较少,研究空间较大。

3.4. IL-33对树突状细胞的影响

树突状细胞(DCs)处于免疫调控的中心位置,在妊娠中具有关键的免疫调节作用,约占蜕膜免疫细胞的1%~5%。DCs与T细胞、自然杀伤细胞、巨噬细胞等免疫细胞及内分泌系统密切互动。其异常活动也与多种妊娠相关疾病有关。DCs的活化是指DCs对外界刺激作出响应,进而改变其生理状态和功能的过程。DCs的成熟是指其在活化的基础上,进一步发生的一系列形态、表型和功能上的变化,以便更高效地激活T细胞和启动适应性免疫反应。IL-33可通过与DCs表面的受体ST2结合,在体内及体外活化DCs,进而促进CD4+T细胞产生IL-5及IL-13,引起Th2型免疫应答。基于成熟度分类,DCs可分为不成熟树突状细胞(imDCs)和成熟树突状细胞(mDCs)。妊娠时,imDCs在蜕膜中的优势更为明显,因为蜕膜中的mDCs产生的细胞因子减少,诱导Th2反应能力降低[40],不利于妊娠的维持。而研究发现,IL-33可直接诱导DCs成熟分化障碍[41],进而使imDCs占优势,有利于妊娠的维持。在妊娠小鼠中,尽管imDCs和mDCs的变化与人类不同,但也存在子宫内imDCs的优势[42]。因此,IL-33可通过抑制DCs的成熟以及与其他免疫细胞的协同作用进而促进母胎耐受的维持。但IL-33对DCs的研究在代谢调控、时空动态以及亚群异质性等维度研究较少,未来可进一步结合单细胞组学以及类器官等进一步研究IL-33对DCs的更为精准的调控网络,如靶向于不同DCs亚群的ST2L受体或IL-33对DCs影响过程中的关键酶,进而为妊娠相关免疫疾病提供新的靶点。

3.5. IL-33对B细胞的影响

B细胞在女性生殖道中相对稀少,但B细胞会在母胎界面募集,因此蜕膜中是含有B细胞的[43]。在母胎界面通过释放多种免疫调节分子对母胎免疫平衡有重要调节作用。在妊娠过程中,B细胞的增殖、亚型转换、抗体产生、以及对于细胞因子的调节和对其他免疫细胞调控等方面有广泛的变化。同时,调节性B细胞(Bregs)的抗炎特性对维持正常妊娠有重要意义[44]。而IL-33能促进B细胞的激活,增加其细胞周期蛋白的表达,从而促进B细胞的增殖,如Bregs的增殖[45]。此外,IL-33也能促进B细胞产生IgG和IgA,这些抗体在母胎界面的免疫保护中起着重要作用,有助于母胎耐受的维持[46]。研究显示,IL-33在小鼠和人类的B细胞早期发育过程中表达,其缺失可通过细胞内在机制促进B细胞的适应性[47]。在正常妊娠的维持中,IL-33可通过诱导蜕膜B细胞PIBF1的表达来抵御早产,B细胞缺乏会增加小鼠炎症诱导的早产(PTL)易感性,而补充PIBF1可减轻PTL和子宫炎症。另一方面,在PTL中,这一保护机制存在缺陷,表现为PIBF1减少和IL-33受体α链表达降低[48]。此外,也有研究表明小鼠正常妊娠期间脾脏B细胞在RNA (Ilrl1)和蛋白(ST2)水平显著上调IL-33受体,B1 B细胞亚群是表达ST2的主要B细胞群,其在妊娠特定时间有独特动力学变化。在LPS诱导的早产急性期,脾脏和蜕膜B细胞的ST2表达上调,这表明IL-33/ST2轴在B细胞中对维持妊娠有关键作用[49]。有研究表明妊娠期间女性的总B细胞数量减少,这与激素介导的骨髓中B淋巴细胞生成选择性减少有关,也可能与趋化因子表达改变和白细胞招募有关[50]。虽然B细胞分化受限,但在小鼠妊娠晚期循环中成熟B细胞相对增加,可能与高水平孕酮影响B细胞激活有关[51]。综上所述,IL-33可以通过促进B细胞增殖以及对抗体产生的调节参与维持母胎免疫平衡。蜕膜免疫细胞中B细胞含量较少,IL-33对蜕膜B细胞的研究较少,未来可集中于IL-33对不同亚群B细胞的影响及机制研究以及妊娠不同阶段对B细胞抗体分泌的影响等,从而进一步开发靶向于B细胞ST2L受体的细胞疗法等,为妊娠免疫疾病提供新的靶点。

4. 结论与展望

综上所述,母胎界面的IL-33在调节蜕膜免疫细胞功能和维持母胎免疫平衡方面发挥着多方面的重要作用。通过对NK细胞、巨噬细胞、T淋巴细胞、DC细胞和B淋巴细胞等免疫细胞功能的影响,IL-33营造了一个有利于胚胎着床、发育和生长的免疫微环境。其作用机制涉及复杂的信号转导通路和细胞间相互作用调节网络。深入研究母胎界面IL-33对蜕膜免疫细胞的影响及其作用机制,有助于我们更好地理解正常妊娠的免疫调节机制,也为复发性流产、子痫前期等妊娠相关疾病的发病机制研究和治疗提供新的靶点和思路。未来需要进一步探索IL-33在不同妊娠阶段的动态变化及其与其他免疫调节因子的协同或拮抗作用,以期为改善妊娠结局提供更有效的干预措施。

参考文献

[1] Afferni, C., Buccione, C., Andreone, S., Galdiero, M.R., Varricchi, G., Marone, G., et al. (2018) The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Frontiers in Immunology, 9, Article 2601.
https://doi.org/10.3389/fimmu.2018.02601
[2] Martin, N.T. and Martin, M.U. (2016) Interleukin 33 Is a Guardian of Barriers and a Local Alarmin. Nature Immunology, 17, 122-131.
https://doi.org/10.1038/ni.3370
[3] Miller, J.E., Koti, M. and Tayade, C. (2022) IL-33-ILC2 Axis in the Female Reproductive Tract. Trends in Molecular Medicine, 28, 569-582.
https://doi.org/10.1016/j.molmed.2022.04.006
[4] Huang, J., Gandini, M.A., Chen, L., M’Dahoma, S., Stemkowski, P.L., Chung, H., et al. (2020) Hyperactivity of Innate Immunity Triggers Pain via TLR2-Il-33-Mediated Neuroimmune Crosstalk. Cell Reports, 33, Article 108233.
https://doi.org/10.1016/j.celrep.2020.108233
[5] 闫雪, 刘晶瑶, 刘红超, 等. IL-33在中枢神经系统疾病中的调控作用[J]. 中国实验诊断学, 2020, 24(9): 1567-1570.
[6] Valero-Pacheco, N., Tang, E.K., Massri, N., Loia, R., Chemerinski, A., Wu, T., et al. (2022) Maternal IL-33 Critically Regulates Tissue Remodeling and Type 2 Immune Responses in the Uterus during Early Pregnancy in Mice. Proceedings of the National Academy of Sciences, 119, e2123267119.
https://doi.org/10.1073/pnas.2123267119
[7] Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490.
https://doi.org/10.1016/j.immuni.2005.09.015
[8] Hardman, C. and Ogg, G. (2016) Interleukin-33, Friend and Foe in Type-2 Immune Responses. Current Opinion in Immunology, 42, 16-24.
https://doi.org/10.1016/j.coi.2016.05.004
[9] Tago, K., Noda, T., Hayakawa, M., Iwahana, H., Yanagisawa, K., Yashiro, T., et al. (2001) Tissue Distribution and Subcellular Localization of a Variant Form of the Human ST2 Gene Product, ST2V. Biochemical and Biophysical Research Communications, 285, 1377-1383.
https://doi.org/10.1006/bbrc.2001.5306
[10] Molofsky, A.B., Savage, A.K. and Locksley, R.M. (2015) Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 42, 1005-1019.
https://doi.org/10.1016/j.immuni.2015.06.006
[11] Cayrol, C. and Girard, J. (2018) Interleukin‐33 (Il‐33): A Nuclear Cytokine from the Il‐1 Family. Immunological Reviews, 281, 154-168.
https://doi.org/10.1111/imr.12619
[12] Yuan, C. (2022) IL-33 in Autoimmunity; Possible Therapeutic Target. International Immunopharmacology, 108, Article 108887.
https://doi.org/10.1016/j.intimp.2022.108887
[13] Carriere, V., Roussel, L., Ortega, N., Lacorre, D., Americh, L., Aguilar, L., et al. (2007) IL-33, the Il-1-Like Cytokine Ligand for ST2 Receptor, Is a Chromatin-Associated Nuclear Factorin Vivo. Proceedings of the National Academy of Sciences, 104, 282-287.
https://doi.org/10.1073/pnas.0606854104
[14] Roussel, L., Erard, M., Cayrol, C. and Girard, J. (2008) Molecular Mimicry between IL‐33 and KSHV for Attachment to Chromatin through the H2A-H2B Acidic Pocket. EMBO reports, 9, 1006-1012.
https://doi.org/10.1038/embor.2008.145
[15] Zhang, F., Tossberg, J.T., Spurlock, C.F., Yao, S., Aune, T.M. and Sriram, S. (2014) Expression of Il‐33 and Its Epigenetic Regulation in Multiple Sclerosis. Annals of Clinical and Translational Neurology, 1, 307-318.
https://doi.org/10.1002/acn3.47
[16] Augustine, J., Pavlou, S., Ali, I., Harkin, K., Ozaki, E., Campbell, M., et al. (2019) IL-33 Deficiency Causes Persistent Inflammation and Severe Neurodegeneration in Retinal Detachment. Journal of Neuroinflammation, 16, Article No. 251.
https://doi.org/10.1186/s12974-019-1625-y
[17] Liew, F.Y., Girard, J. and Turnquist, H.R. (2016) Interleukin-33 in Health and Disease. Nature Reviews Immunology, 16, 676-689.
https://doi.org/10.1038/nri.2016.95
[18] Endo, Y., Hirahara, K., Iinuma, T., Shinoda, K., Tumes, D.J., Asou, H.K., et al. (2015) The Interleukin-33-P38 Kinase Axis Confers Memory T Helper 2 Cell Pathogenicity in the Airway. Immunity, 42, 294-308.
https://doi.org/10.1016/j.immuni.2015.01.016
[19] Taniguchi, S., Elhance, A., Van Duzer, A., Kumar, S., Leitenberger, J.J. and Oshimori, N. (2020) Tumor-Initiating Cells Establish an Il-33-TGF-β Niche Signaling Loop to Promote Cancer Progression. Science, 369, eaay1813.
https://doi.org/10.1126/science.aay1813
[20] Gordon, E.D., Simpson, L.J., Rios, C.L., Ringel, L., Lachowicz-Scroggins, M.E., Peters, M.C., et al. (2016) Alternative Splicing of Interleukin-33 and Type 2 Inflammation in Asthma. Proceedings of the National Academy of Sciences, 113, 8765-8770.
https://doi.org/10.1073/pnas.1601914113
[21] Cayrol, C. and Girard, J. (2014) IL-33: An Alarmin Cytokine with Crucial Roles in Innate Immunity, Inflammation and Allergy. Current Opinion in Immunology, 31, 31-37.
https://doi.org/10.1016/j.coi.2014.09.004
[22] Jabrane-Ferrat, N. (2019) Features of Human Decidual NK Cells in Healthy Pregnancy and during Viral Infection. Frontiers in Immunology, 10, Article 1397.
https://doi.org/10.3389/fimmu.2019.01397
[23] Cooper, M.A., Fehniger, T.A., Turner, S.C., Chen, K.S., Ghaheri, B.A., Ghayur, T., et al. (2001) Human Natural Killer Cells: A Unique Innate Immunoregulatory Role for the CD56bright Subset. Blood, 97, 3146-3151.
https://doi.org/10.1182/blood.v97.10.3146
[24] Seshadri, S. and Sunkara, S.K. (2014) Natural Killer Cells in Female Infertility and Recurrent Miscarriage: A Systematic Review and Meta-Analysis. Human Reproduction Update, 20, 429-438.
https://doi.org/10.1093/humupd/dmt056
[25] El‐Azzamy, H., Dambaeva, S.V., Katukurundage, D., Salazar Garcia, M.D., Skariah, A., Hussein, Y., et al. (2018) Dysregulated Uterine Natural Killer Cells and Vascular Remodeling in Women with Recurrent Pregnancy Losses. American Journal of Reproductive Immunology, 80, e13024.
https://doi.org/10.1111/aji.13024
[26] Hu, W., Huang, L., Li, M., Jin, L., Li, D. and Zhu, X. (2015) Decidual Stromal Cell-Derived IL-33 Contributes to Th2 Bias and Inhibits Decidual NK Cell Cytotoxicity through NF-κB Signaling in Human Early Pregnancy. Journal of Reproductive Immunology, 109, 52-65.
https://doi.org/10.1016/j.jri.2015.01.004
[27] Faas, M., Ipseiz, N., Ackermann, J., Culemann, S., Grüneboom, A., Schröder, F., et al. (2021) Il-33-Induced Metabolic Reprogramming Controls the Differentiation of Alternatively Activated Macrophages and the Resolution of Inflammation. Immunity, 54, 2531-2546.e5.
https://doi.org/10.1016/j.immuni.2021.09.010
[28] Sheng, Y., Hu, W., Shen, H., Wei, C., Liu, Y., Ma, X., et al. (2022) An Imbalance of the Il-33/ST2-AXL-Efferocytosis Axis Induces Pregnancy Loss through Metabolic Reprogramming of Decidual Macrophages. Cellular and Molecular Life Sciences, 79, Article No. 173.
https://doi.org/10.1007/s00018-022-04197-2
[29] Sheng, Y., Hu, W., Wei, C., Tang, L., Liu, Y., Liu, Y., et al. (2018) Il‐33/ST2 Axis Affects the Polarization and Efferocytosis of Decidual Macrophages in Early Pregnancy. American Journal of Reproductive Immunology, 79, e12836.
https://doi.org/10.1111/aji.12836
[30] Wang, W., Sung, N., Gilman-Sachs, A. and Kwak-Kim, J. (2020) T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Frontiers in Immunology, 11, Article 2025.
https://doi.org/10.3389/fimmu.2020.02025
[31] Wang, M., Zhong, J. and Xiang, Y. (2021) LncRNA‐GAS5 Related to the Processes of Recurrent Pregnancy Loss by Regulating Th1/Th2 Balance. The Kaohsiung Journal of Medical Sciences, 37, 479-486.
https://doi.org/10.1002/kjm2.12360
[32] Luo, J., Wang, Y., Qi, Q., Cheng, Y., Xu, W. and Yang, J. (2021) Sinomenine Improves Embryo Survival by Regulating Th1/Th2 Balance in a Mouse Model of Recurrent Spontaneous Abortion. Medical Science Monitor, 27, e927709.
https://doi.org/10.12659/msm.927709
[33] Lan, Y., Li, Y., Yang, X., Lei, L., Liang, Y. and Wang, S. (2021) Progesterone-Induced Blocking Factor-Mediated Th1/Th2 Balance Correlates with Fetal Arrest in Women Who Underwent in Vitro Fertilization and Embryo Transfer. Clinical Immunology, 232, Article 108858.
https://doi.org/10.1016/j.clim.2021.108858
[34] Bahrami-Asl, Z., Farzadi, L., Fattahi, A., Yousefi, M., Quinonero, A., Hakimi, P., et al. (2020) Tacrolimus Improves the Implantation Rate in Patients with Elevated Th1/2 Helper Cell Ratio and Repeated Implantation Failure (RIF). Geburtshilfe und Frauenheilkunde, 80, 851-862.
https://doi.org/10.1055/a-1056-3148
[35] Arefieva, A., Nikolaeva, M., Stepanova, E., Krechetova, L., Golubeva, E., Tetruashvili, N., et al. (2021) Association of CD200 Expression in Paternal Lymphocytes with Female Th1/Th2 Balance and Pregnancy Establishment at Immunotherapy of Recurrent Spontaneous Abortion. American Journal of Reproductive Immunology, 85, e13355.
https://doi.org/10.1111/aji.13355
[36] Komai-Koma, M., Wang, E., Kurowska-Stolarska, M., Li, D., McSharry, C. and Xu, D. (2016) Interleukin-33 Promoting Th1 Lymphocyte Differentiation Dependents on Il-12. Immunobiology, 221, 412-417.
https://doi.org/10.1016/j.imbio.2015.11.013
[37] Lu, H., Huang, Y., Xin, H., Hao, C. and Cui, Y. (2018) The Expression of Cytokines IFN-γ, IL-4, IL-17A, and TGF-β1 in Peripheral Blood and Follicular Fluid of Patients Testing Positive for Anti-Thyroid Autoantibodies and Its Influence on in Vitro Fertilization and Embryo Transfer Pregnancy Outcomes. Gynecological Endocrinology, 34, 933-939.
https://doi.org/10.1080/09513590.2018.1459546
[38] Peine, M., Marek, R.M. and Löhning, M. (2016) IL-33 in T Cell Differentiation, Function, and Immune Homeostasis. Trends in Immunology, 37, 321-333.
https://doi.org/10.1016/j.it.2016.03.007
[39] Matta, B.M., Lott, J.M., Mathews, L.R., Liu, Q., Rosborough, B.R., Blazar, B.R., et al. (2014) IL-33 Is an Unconventional Alarmin That Stimulates IL-2 Secretion by Dendritic Cells to Selectively Expand IL-33R/ST2+ Regulatory T Cells. The Journal of Immunology, 193, 4010-4020.
https://doi.org/10.4049/jimmunol.1400481
[40] Bartmann, C., Segerer, S.E., Rieger, L., Kapp, M., Sütterlin, M. and Kämmerer, U. (2014) Quantification of the Predominant Immune Cell Populations in Decidua Throughout Human Pregnancy. American Journal of Reproductive Immunology, 71, 109-119.
https://doi.org/10.1111/aji.12185
[41] 阴月, 王丽雪, 董宁, 等. 白细胞介素-33对脓毒症小鼠脾脏树突状细胞免疫功能的影响[J]. 感染、炎症、修复, 2019, 20(4): 247-252.
[42] Blois, S.M., Joachim, R., Kandil, J., Margni, R., Tometten, M., Klapp, B.F., et al. (2004) Depletion of CD8+ Cells Abolishes the Pregnancy Protective Effect of Progesterone Substitution with Dydrogesterone in Mice by Altering the Th1/Th2 Cytokine Profile. The Journal of Immunology, 172, 5893-5899.
https://doi.org/10.4049/jimmunol.172.10.5893
[43] Leng, Y., Romero, R., Xu, Y., Galaz, J., Slutsky, R., Arenas‐Hernandez, M., et al. (2019) Are B Cells Altered in the Decidua of Women with Preterm or Term Labor? American Journal of Reproductive Immunology, 81, e13102.
https://doi.org/10.1111/aji.13102
[44] Dutta, S., Sengupta, P. and Haque, N. (2020) Reproductive Immunomodulatory Functions of B Cells in Pregnancy. International Reviews of Immunology, 39, 53-66.
https://doi.org/10.1080/08830185.2019.1674299
[45] Zhu, J., Xu, Y., Zhao, J., Li, X., Meng, X., Wang, T., et al. (2018) IL-33 Protects Mice against DSS-Induced Chronic Colitis by Increasing Both Regulatory B Cell and Regulatory T Cell Responses as Well as Decreasing Th17 Cell Response. Journal of Immunology Research, 2018, Article ID: 1827901.
https://doi.org/10.1155/2018/1827901
[46] Mi, Z., Zhao, L., Sun, M., Gao, T., Wang, Y., Sui, B., et al. (2021) Overexpression of Interleukin-33 in Recombinant Rabies Virus Enhances Innate and Humoral Immune Responses through Activation of Dendritic Cell-Germinal Center Reactions. Vaccines, 10, Article 34.
https://doi.org/10.3390/vaccines10010034
[47] Stier, M.T., Mitra, R., Nyhoff, L.E., Goleniewska, K., Zhang, J., Puccetti, M.V., et al. (2019) IL-33 Is a Cell-Intrinsic Regulator of Fitness during Early B Cell Development. The Journal of Immunology, 203, 1457-1467.
https://doi.org/10.4049/jimmunol.1900408
[48] Huang, B., Faucette, A.N., Pawlitz, M.D., Pei, B., Goyert, J.W., Zhou, J.Z., et al. (2017) Interleukin-33-Induced Expression of PIBF1 by Decidual B Cells Protects against Preterm Labor. Nature Medicine, 23, 128-135.
https://doi.org/10.1038/nm.4244
[49] Valeff, N., Juriol, L., Quadrana, F., Muzzio, D.O., Zygmunt, M., Quiroga, M.F., et al. (2020) Expression of IL-33 Receptor Is Significantly Up-Regulated in B Cells during Pregnancy and in the Acute Phase of Preterm Birth in Mice. Frontiers in Immunology, 11, Article 446.
https://doi.org/10.3389/fimmu.2020.00446
[50] Kraus, T.A., Engel, S.M., Sperling, R.S., Kellerman, L., Lo, Y., Wallenstein, S., et al. (2012) Characterizing the Pregnancy Immune Phenotype: Results of the Viral Immunity and Pregnancy (VIP) Study. Journal of Clinical Immunology, 32, 300-311.
https://doi.org/10.1007/s10875-011-9627-2
[51] Zhang, L., Chang, K.K., Li, M.Q., et al. (2014) Mouse Endometrial Stromal Cells and Progesterone Inhibit the Activation and Regulate the Differentiation and Antibody Secretion of Mouse B Cells. International Journal of Clinical and Experimental Pathology, 7, 123-133.