[1]
|
Afferni, C., Buccione, C., Andreone, S., Galdiero, M.R., Varricchi, G., Marone, G., et al. (2018) The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Frontiers in Immunology, 9, Article 2601. https://doi.org/10.3389/fimmu.2018.02601
|
[2]
|
Martin, N.T. and Martin, M.U. (2016) Interleukin 33 Is a Guardian of Barriers and a Local Alarmin. Nature Immunology, 17, 122-131. https://doi.org/10.1038/ni.3370
|
[3]
|
Miller, J.E., Koti, M. and Tayade, C. (2022) IL-33-ILC2 Axis in the Female Reproductive Tract. Trends in Molecular Medicine, 28, 569-582. https://doi.org/10.1016/j.molmed.2022.04.006
|
[4]
|
Huang, J., Gandini, M.A., Chen, L., M’Dahoma, S., Stemkowski, P.L., Chung, H., et al. (2020) Hyperactivity of Innate Immunity Triggers Pain via TLR2-Il-33-Mediated Neuroimmune Crosstalk. Cell Reports, 33, Article 108233. https://doi.org/10.1016/j.celrep.2020.108233
|
[5]
|
闫雪, 刘晶瑶, 刘红超, 等. IL-33在中枢神经系统疾病中的调控作用[J]. 中国实验诊断学, 2020, 24(9): 1567-1570.
|
[6]
|
Valero-Pacheco, N., Tang, E.K., Massri, N., Loia, R., Chemerinski, A., Wu, T., et al. (2022) Maternal IL-33 Critically Regulates Tissue Remodeling and Type 2 Immune Responses in the Uterus during Early Pregnancy in Mice. Proceedings of the National Academy of Sciences, 119, e2123267119. https://doi.org/10.1073/pnas.2123267119
|
[7]
|
Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490. https://doi.org/10.1016/j.immuni.2005.09.015
|
[8]
|
Hardman, C. and Ogg, G. (2016) Interleukin-33, Friend and Foe in Type-2 Immune Responses. Current Opinion in Immunology, 42, 16-24. https://doi.org/10.1016/j.coi.2016.05.004
|
[9]
|
Tago, K., Noda, T., Hayakawa, M., Iwahana, H., Yanagisawa, K., Yashiro, T., et al. (2001) Tissue Distribution and Subcellular Localization of a Variant Form of the Human ST2 Gene Product, ST2V. Biochemical and Biophysical Research Communications, 285, 1377-1383. https://doi.org/10.1006/bbrc.2001.5306
|
[10]
|
Molofsky, A.B., Savage, A.K. and Locksley, R.M. (2015) Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 42, 1005-1019. https://doi.org/10.1016/j.immuni.2015.06.006
|
[11]
|
Cayrol, C. and Girard, J. (2018) Interleukin‐33 (Il‐33): A Nuclear Cytokine from the Il‐1 Family. Immunological Reviews, 281, 154-168. https://doi.org/10.1111/imr.12619
|
[12]
|
Yuan, C. (2022) IL-33 in Autoimmunity; Possible Therapeutic Target. International Immunopharmacology, 108, Article 108887. https://doi.org/10.1016/j.intimp.2022.108887
|
[13]
|
Carriere, V., Roussel, L., Ortega, N., Lacorre, D., Americh, L., Aguilar, L., et al. (2007) IL-33, the Il-1-Like Cytokine Ligand for ST2 Receptor, Is a Chromatin-Associated Nuclear Factorin Vivo. Proceedings of the National Academy of Sciences, 104, 282-287. https://doi.org/10.1073/pnas.0606854104
|
[14]
|
Roussel, L., Erard, M., Cayrol, C. and Girard, J. (2008) Molecular Mimicry between IL‐33 and KSHV for Attachment to Chromatin through the H2A-H2B Acidic Pocket. EMBO reports, 9, 1006-1012. https://doi.org/10.1038/embor.2008.145
|
[15]
|
Zhang, F., Tossberg, J.T., Spurlock, C.F., Yao, S., Aune, T.M. and Sriram, S. (2014) Expression of Il‐33 and Its Epigenetic Regulation in Multiple Sclerosis. Annals of Clinical and Translational Neurology, 1, 307-318. https://doi.org/10.1002/acn3.47
|
[16]
|
Augustine, J., Pavlou, S., Ali, I., Harkin, K., Ozaki, E., Campbell, M., et al. (2019) IL-33 Deficiency Causes Persistent Inflammation and Severe Neurodegeneration in Retinal Detachment. Journal of Neuroinflammation, 16, Article No. 251. https://doi.org/10.1186/s12974-019-1625-y
|
[17]
|
Liew, F.Y., Girard, J. and Turnquist, H.R. (2016) Interleukin-33 in Health and Disease. Nature Reviews Immunology, 16, 676-689. https://doi.org/10.1038/nri.2016.95
|
[18]
|
Endo, Y., Hirahara, K., Iinuma, T., Shinoda, K., Tumes, D.J., Asou, H.K., et al. (2015) The Interleukin-33-P38 Kinase Axis Confers Memory T Helper 2 Cell Pathogenicity in the Airway. Immunity, 42, 294-308. https://doi.org/10.1016/j.immuni.2015.01.016
|
[19]
|
Taniguchi, S., Elhance, A., Van Duzer, A., Kumar, S., Leitenberger, J.J. and Oshimori, N. (2020) Tumor-Initiating Cells Establish an Il-33-TGF-β Niche Signaling Loop to Promote Cancer Progression. Science, 369, eaay1813. https://doi.org/10.1126/science.aay1813
|
[20]
|
Gordon, E.D., Simpson, L.J., Rios, C.L., Ringel, L., Lachowicz-Scroggins, M.E., Peters, M.C., et al. (2016) Alternative Splicing of Interleukin-33 and Type 2 Inflammation in Asthma. Proceedings of the National Academy of Sciences, 113, 8765-8770. https://doi.org/10.1073/pnas.1601914113
|
[21]
|
Cayrol, C. and Girard, J. (2014) IL-33: An Alarmin Cytokine with Crucial Roles in Innate Immunity, Inflammation and Allergy. Current Opinion in Immunology, 31, 31-37. https://doi.org/10.1016/j.coi.2014.09.004
|
[22]
|
Jabrane-Ferrat, N. (2019) Features of Human Decidual NK Cells in Healthy Pregnancy and during Viral Infection. Frontiers in Immunology, 10, Article 1397. https://doi.org/10.3389/fimmu.2019.01397
|
[23]
|
Cooper, M.A., Fehniger, T.A., Turner, S.C., Chen, K.S., Ghaheri, B.A., Ghayur, T., et al. (2001) Human Natural Killer Cells: A Unique Innate Immunoregulatory Role for the CD56bright Subset. Blood, 97, 3146-3151. https://doi.org/10.1182/blood.v97.10.3146
|
[24]
|
Seshadri, S. and Sunkara, S.K. (2014) Natural Killer Cells in Female Infertility and Recurrent Miscarriage: A Systematic Review and Meta-Analysis. Human Reproduction Update, 20, 429-438. https://doi.org/10.1093/humupd/dmt056
|
[25]
|
El‐Azzamy, H., Dambaeva, S.V., Katukurundage, D., Salazar Garcia, M.D., Skariah, A., Hussein, Y., et al. (2018) Dysregulated Uterine Natural Killer Cells and Vascular Remodeling in Women with Recurrent Pregnancy Losses. American Journal of Reproductive Immunology, 80, e13024. https://doi.org/10.1111/aji.13024
|
[26]
|
Hu, W., Huang, L., Li, M., Jin, L., Li, D. and Zhu, X. (2015) Decidual Stromal Cell-Derived IL-33 Contributes to Th2 Bias and Inhibits Decidual NK Cell Cytotoxicity through NF-κB Signaling in Human Early Pregnancy. Journal of Reproductive Immunology, 109, 52-65. https://doi.org/10.1016/j.jri.2015.01.004
|
[27]
|
Faas, M., Ipseiz, N., Ackermann, J., Culemann, S., Grüneboom, A., Schröder, F., et al. (2021) Il-33-Induced Metabolic Reprogramming Controls the Differentiation of Alternatively Activated Macrophages and the Resolution of Inflammation. Immunity, 54, 2531-2546.e5. https://doi.org/10.1016/j.immuni.2021.09.010
|
[28]
|
Sheng, Y., Hu, W., Shen, H., Wei, C., Liu, Y., Ma, X., et al. (2022) An Imbalance of the Il-33/ST2-AXL-Efferocytosis Axis Induces Pregnancy Loss through Metabolic Reprogramming of Decidual Macrophages. Cellular and Molecular Life Sciences, 79, Article No. 173. https://doi.org/10.1007/s00018-022-04197-2
|
[29]
|
Sheng, Y., Hu, W., Wei, C., Tang, L., Liu, Y., Liu, Y., et al. (2018) Il‐33/ST2 Axis Affects the Polarization and Efferocytosis of Decidual Macrophages in Early Pregnancy. American Journal of Reproductive Immunology, 79, e12836. https://doi.org/10.1111/aji.12836
|
[30]
|
Wang, W., Sung, N., Gilman-Sachs, A. and Kwak-Kim, J. (2020) T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Frontiers in Immunology, 11, Article 2025. https://doi.org/10.3389/fimmu.2020.02025
|
[31]
|
Wang, M., Zhong, J. and Xiang, Y. (2021) LncRNA‐GAS5 Related to the Processes of Recurrent Pregnancy Loss by Regulating Th1/Th2 Balance. The Kaohsiung Journal of Medical Sciences, 37, 479-486. https://doi.org/10.1002/kjm2.12360
|
[32]
|
Luo, J., Wang, Y., Qi, Q., Cheng, Y., Xu, W. and Yang, J. (2021) Sinomenine Improves Embryo Survival by Regulating Th1/Th2 Balance in a Mouse Model of Recurrent Spontaneous Abortion. Medical Science Monitor, 27, e927709. https://doi.org/10.12659/msm.927709
|
[33]
|
Lan, Y., Li, Y., Yang, X., Lei, L., Liang, Y. and Wang, S. (2021) Progesterone-Induced Blocking Factor-Mediated Th1/Th2 Balance Correlates with Fetal Arrest in Women Who Underwent in Vitro Fertilization and Embryo Transfer. Clinical Immunology, 232, Article 108858. https://doi.org/10.1016/j.clim.2021.108858
|
[34]
|
Bahrami-Asl, Z., Farzadi, L., Fattahi, A., Yousefi, M., Quinonero, A., Hakimi, P., et al. (2020) Tacrolimus Improves the Implantation Rate in Patients with Elevated Th1/2 Helper Cell Ratio and Repeated Implantation Failure (RIF). Geburtshilfe und Frauenheilkunde, 80, 851-862. https://doi.org/10.1055/a-1056-3148
|
[35]
|
Arefieva, A., Nikolaeva, M., Stepanova, E., Krechetova, L., Golubeva, E., Tetruashvili, N., et al. (2021) Association of CD200 Expression in Paternal Lymphocytes with Female Th1/Th2 Balance and Pregnancy Establishment at Immunotherapy of Recurrent Spontaneous Abortion. American Journal of Reproductive Immunology, 85, e13355. https://doi.org/10.1111/aji.13355
|
[36]
|
Komai-Koma, M., Wang, E., Kurowska-Stolarska, M., Li, D., McSharry, C. and Xu, D. (2016) Interleukin-33 Promoting Th1 Lymphocyte Differentiation Dependents on Il-12. Immunobiology, 221, 412-417. https://doi.org/10.1016/j.imbio.2015.11.013
|
[37]
|
Lu, H., Huang, Y., Xin, H., Hao, C. and Cui, Y. (2018) The Expression of Cytokines IFN-γ, IL-4, IL-17A, and TGF-β1 in Peripheral Blood and Follicular Fluid of Patients Testing Positive for Anti-Thyroid Autoantibodies and Its Influence on in Vitro Fertilization and Embryo Transfer Pregnancy Outcomes. Gynecological Endocrinology, 34, 933-939. https://doi.org/10.1080/09513590.2018.1459546
|
[38]
|
Peine, M., Marek, R.M. and Löhning, M. (2016) IL-33 in T Cell Differentiation, Function, and Immune Homeostasis. Trends in Immunology, 37, 321-333. https://doi.org/10.1016/j.it.2016.03.007
|
[39]
|
Matta, B.M., Lott, J.M., Mathews, L.R., Liu, Q., Rosborough, B.R., Blazar, B.R., et al. (2014) IL-33 Is an Unconventional Alarmin That Stimulates IL-2 Secretion by Dendritic Cells to Selectively Expand IL-33R/ST2+ Regulatory T Cells. The Journal of Immunology, 193, 4010-4020. https://doi.org/10.4049/jimmunol.1400481
|
[40]
|
Bartmann, C., Segerer, S.E., Rieger, L., Kapp, M., Sütterlin, M. and Kämmerer, U. (2014) Quantification of the Predominant Immune Cell Populations in Decidua Throughout Human Pregnancy. American Journal of Reproductive Immunology, 71, 109-119. https://doi.org/10.1111/aji.12185
|
[41]
|
阴月, 王丽雪, 董宁, 等. 白细胞介素-33对脓毒症小鼠脾脏树突状细胞免疫功能的影响[J]. 感染、炎症、修复, 2019, 20(4): 247-252.
|
[42]
|
Blois, S.M., Joachim, R., Kandil, J., Margni, R., Tometten, M., Klapp, B.F., et al. (2004) Depletion of CD8+ Cells Abolishes the Pregnancy Protective Effect of Progesterone Substitution with Dydrogesterone in Mice by Altering the Th1/Th2 Cytokine Profile. The Journal of Immunology, 172, 5893-5899. https://doi.org/10.4049/jimmunol.172.10.5893
|
[43]
|
Leng, Y., Romero, R., Xu, Y., Galaz, J., Slutsky, R., Arenas‐Hernandez, M., et al. (2019) Are B Cells Altered in the Decidua of Women with Preterm or Term Labor? American Journal of Reproductive Immunology, 81, e13102. https://doi.org/10.1111/aji.13102
|
[44]
|
Dutta, S., Sengupta, P. and Haque, N. (2020) Reproductive Immunomodulatory Functions of B Cells in Pregnancy. International Reviews of Immunology, 39, 53-66. https://doi.org/10.1080/08830185.2019.1674299
|
[45]
|
Zhu, J., Xu, Y., Zhao, J., Li, X., Meng, X., Wang, T., et al. (2018) IL-33 Protects Mice against DSS-Induced Chronic Colitis by Increasing Both Regulatory B Cell and Regulatory T Cell Responses as Well as Decreasing Th17 Cell Response. Journal of Immunology Research, 2018, Article ID: 1827901. https://doi.org/10.1155/2018/1827901
|
[46]
|
Mi, Z., Zhao, L., Sun, M., Gao, T., Wang, Y., Sui, B., et al. (2021) Overexpression of Interleukin-33 in Recombinant Rabies Virus Enhances Innate and Humoral Immune Responses through Activation of Dendritic Cell-Germinal Center Reactions. Vaccines, 10, Article 34. https://doi.org/10.3390/vaccines10010034
|
[47]
|
Stier, M.T., Mitra, R., Nyhoff, L.E., Goleniewska, K., Zhang, J., Puccetti, M.V., et al. (2019) IL-33 Is a Cell-Intrinsic Regulator of Fitness during Early B Cell Development. The Journal of Immunology, 203, 1457-1467. https://doi.org/10.4049/jimmunol.1900408
|
[48]
|
Huang, B., Faucette, A.N., Pawlitz, M.D., Pei, B., Goyert, J.W., Zhou, J.Z., et al. (2017) Interleukin-33-Induced Expression of PIBF1 by Decidual B Cells Protects against Preterm Labor. Nature Medicine, 23, 128-135. https://doi.org/10.1038/nm.4244
|
[49]
|
Valeff, N., Juriol, L., Quadrana, F., Muzzio, D.O., Zygmunt, M., Quiroga, M.F., et al. (2020) Expression of IL-33 Receptor Is Significantly Up-Regulated in B Cells during Pregnancy and in the Acute Phase of Preterm Birth in Mice. Frontiers in Immunology, 11, Article 446. https://doi.org/10.3389/fimmu.2020.00446
|
[50]
|
Kraus, T.A., Engel, S.M., Sperling, R.S., Kellerman, L., Lo, Y., Wallenstein, S., et al. (2012) Characterizing the Pregnancy Immune Phenotype: Results of the Viral Immunity and Pregnancy (VIP) Study. Journal of Clinical Immunology, 32, 300-311. https://doi.org/10.1007/s10875-011-9627-2
|
[51]
|
Zhang, L., Chang, K.K., Li, M.Q., et al. (2014) Mouse Endometrial Stromal Cells and Progesterone Inhibit the Activation and Regulate the Differentiation and Antibody Secretion of Mouse B Cells. International Journal of Clinical and Experimental Pathology, 7, 123-133.
|