[1]
|
Su, Z., Nie, Y., Huang, X., Zhu, Y., Feng, B., Tang, L., et al. (2019) Mitophagy in Hepatic Insulin Resistance: Therapeutic Potential and Concerns. Frontiers in Pharmacology, 10, Article No. 1193. https://doi.org/10.3389/fphar.2019.01193
|
[2]
|
Tian, M., Hou, J., Liu, Z., Li, Z., Huang, D., Zhang, Y., et al. (2024) BNIP3 in Hypoxia-Induced Mitophagy: Novel Insights and Promising Target for Non-Alcoholic Fatty Liver Disease. The International Journal of Biochemistry & Cell Biology, 168, Article ID: 106517. https://doi.org/10.1016/j.biocel.2024.106517
|
[3]
|
Wu, M., Zhang, G., Liu, T., Shen, J., Cheng, J., Shen, J., et al. (2022) HIF-2α Regulates Lipid Metabolism in Alcoholic Fatty Liver Disease through Mitophagy. Cell & Bioscience, 12, Article No. 198. https://doi.org/10.1186/s13578-022-00889-1
|
[4]
|
Gupta, S.S., Sharp, R., Hofferek, C., Kuai, L., Dorn, G.W., Wang, J., et al. (2019) Nix-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8+ T Cells. Cell Reports, 29, 1862-1877.e7. https://doi.org/10.1016/j.celrep.2019.10.032
|
[5]
|
Xiong, Z., Yang, L., Zhang, C., Huang, W., Zhong, W., Yi, J., et al. (2024) MANF Facilitates Breast Cancer Cell Survival under Glucose-Starvation Conditions via Prkn-Mediated Mitophagy Regulation. Autophagy, 21, 80-101. https://doi.org/10.1080/15548627.2024.2392415
|
[6]
|
Kumar, R. and Reichert, A.S. (2021) Common Principles and Specific Mechanisms of Mitophagy from Yeast to Humans. International Journal of Molecular Sciences, 22, Article No. 4363. https://doi.org/10.3390/ijms22094363
|
[7]
|
Nah, J., Shirakabe, A., Mukai, R., Zhai, P., Sung, E.A., Ivessa, A., et al. (2022) Ulk1-Dependent Alternative Mitophagy Plays a Protective Role during Pressure Overload in the Heart. Cardiovascular Research, 118, 2638-2651. https://doi.org/10.1093/cvr/cvac003
|
[8]
|
Choubey, V., Zeb, A. and Kaasik, A. (2021) Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells, 11, Article No. 38. https://doi.org/10.3390/cells11010038
|
[9]
|
Tang, Y., Wang, L., Yi, T., Xu, J., Wang, J., Qin, J., et al. (2021) Synergistic Effects of Autophagy/Mitophagy Inhibitors and Magnolol Promote Apoptosis and Antitumor Efficacy. Acta Pharmaceutica Sinica B, 11, 3966-3982. https://doi.org/10.1016/j.apsb.2021.06.007
|
[10]
|
Le Guerroué, F., Bunker, E.N., Rosencrans, W.M., Nguyen, J.T., Basar, M.A., Werner, A., et al. (2023) TNIP1 Inhibits Selective Autophagy via Bipartite Interaction with LC3/GABARAP and TAX1BP1. Molecular Cell, 83, 927-941.e8. https://doi.org/10.1016/j.molcel.2023.02.023
|
[11]
|
Yang, Y., Qian, J., Li, B., Lu, M., Le, G. and Xie, Y. (2021) Metabolomics Based on 1H-NMR Reveal the Regulatory Mechanisms of Dietary Methionine Restriction on Splenic Metabolic Dysfunction in Obese Mice. Foods, 10, Article No. 2439. https://doi.org/10.3390/foods10102439
|
[12]
|
Huang, T., Wang, Y., Yu, Z., Miao, X., Jiang, Z., Yu, K., et al. (2023) Effect of Mitophagy in the Formation of Osteomorphs Derived from Osteoclasts. iScience, 26, Article ID: 106682. https://doi.org/10.1016/j.isci.2023.106682
|
[13]
|
Yu, S., Yan, X., Tian, R., Xu, L., Zhao, Y., Sun, L., et al. (2021) An Experimentally Induced Mutation in the UBA Domain of P62 Changes the Sensitivity of Cisplatin by Up-Regulating HK2 Localisation on the Mitochondria and Increasing Mitophagy in A2780 Ovarian Cancer Cells. International Journal of Molecular Sciences, 22, Article No. 3983. https://doi.org/10.3390/ijms22083983
|
[14]
|
Kageyama, S., Maejima, Y., Morioka, Y., Escareal, Z.A.K.B., Sato, Y. and Namba, T. (2024) Neferine Attenuates Aging-Related Liver Dysfunction by Suppressing Cellular Aging via Mitochondrial Reactivation. Biological and Pharmaceutical Bulletin, 47, 1953-1960. https://doi.org/10.1248/bpb.b24-00477
|
[15]
|
Díaz-Gago, S., Vicente-Gutiérrez, J., Ruiz-Rodríguez, J.M., Calafell, J., Álvarez-Álvarez, A., Lasa, M., et al. (2024) Autophagy Sustains Mitochondrial Respiration and Determines Resistance to BRAFv600e Inhibition in Thyroid Carcinoma Cells. Autophagy, 20, 1383-1397. https://doi.org/10.1080/15548627.2024.2312790
|
[16]
|
Enyart, D.S., Crocker, C.L., Stansell, J.R., Cutrone, M., Dintino, M.M., Kinsey, S.T., et al. (2020) Low‐Dose Caffeine Administration Increases Fatty Acid Utilization and Mitochondrial Turnover in C2C12 Skeletal Myotubes. Physiological Reports, 8, e14340. https://doi.org/10.14814/phy2.14340
|
[17]
|
Zhang, Y., Wang, J., Qiao, F., Zhang, M., Luo, Y. and Du, Z. (2024) Pparα Activation Stimulates Autophagic Flux through Lipid Catabolism-Independent Route. Fish Physiology and Biochemistry, 50, 1141-1155. https://doi.org/10.1007/s10695-024-01327-4
|
[18]
|
Kodali, S., Li, M., Budai, M.M., Chen, M. and Wang, J. (2022) Protection of Quiescence and Longevity of Igg Memory B Cells by Mitochondrial Autophagy. The Journal of Immunology, 208, 1085-1098. https://doi.org/10.4049/jimmunol.2100969
|
[19]
|
Chhimwal, J., Goel, A., Sukapaka, M., Patial, V. and Padwad, Y. (2022) Phloretin Mitigates Oxidative Injury, Inflammation, and Fibrogenic Responses via Restoration of Autophagic Flux in in Vitro and Preclinical Models of NAFLD. The Journal of Nutritional Biochemistry, 107, Article ID: 109062. https://doi.org/10.1016/j.jnutbio.2022.109062
|
[20]
|
Clement, E., Lazar, I., Attané, C., Carrié, L., Dauvillier, S., Ducoux‐Petit, M., et al. (2020) Adipocyte Extracellular Vesicles Carry Enzymes and Fatty Acids That Stimulate Mitochondrial Metabolism and Remodeling in Tumor Cells. The EMBO Journal, 39, e102525. https://doi.org/10.15252/embj.2019102525
|
[21]
|
Hong, S., Ghandriz, R., Siddiqi, S., Zhu, X., Saadiq, I.M., Jordan, K.L., et al. (2022) Effects of Elamipretide on Autophagy in Renal Cells of Pigs with Metabolic Syndrome. Cells, 11, Article No. 2891. https://doi.org/10.3390/cells11182891
|
[22]
|
Liu, S., Zhao, L., Peng, Y., Liu, X., Yan, W., Zhang, L., et al. (2024) Obesity Induced Caveolin-1 Impairs Osteogenesis via Activating Mitophagy and Inhibiting Sirt1 Signaling. Bone, 186, Article ID: 117146. https://doi.org/10.1016/j.bone.2024.117146
|
[23]
|
Yoshii, A., McMillen, T.S., Wang, Y., Zhou, B., Chen, H., Banerjee, D., et al. (2024) Blunted Cardiac Mitophagy in Response to Metabolic Stress Contributes to HFPEF. Circulation Research, 135, 1004-1017. https://doi.org/10.1161/circresaha.123.324103
|
[24]
|
Liao, T., Xiong, L., Wang, X., Yang, S. and Liang, Z. (2023) Mitochondrial Disorders as a Mechanism for the Development of Obese Sarcopenia. Diabetology & Metabolic Syndrome, 15, Article No. 224. https://doi.org/10.1186/s13098-023-01192-w
|
[25]
|
Tan, Y., Li, M., Wu, G., Lou, J., Feng, M., Xu, J., et al. (2021) Short-Term but Not Long-Term High Fat Diet Feeding Protects against Pressure Overload-Induced Heart Failure through Activation of Mitophagy. Life Sciences, 272, Article ID: 119242. https://doi.org/10.1016/j.lfs.2021.119242
|
[26]
|
吴庆, 薛润青, 徐曼, 等. 肥胖所致心肌重构及相关线粒体稳态失衡机制研究进展[J]. 生理学报, 2019, 71(2): 216-224.
|
[27]
|
Morales, P.E., Monsalves‐Álvarez, M., Tadinada, S.M., Harris, M.P., Ramírez‐Sagredo, A., Ortiz‐Quintero, J., et al. (2021) Skeletal Muscle Type‐Specific Mitochondrial Adaptation to High‐Fat Diet Relies on Differential Autophagy Modulation. The FASEB Journal, 35, e21933. https://doi.org/10.1096/fj.202001593rr
|
[28]
|
Wang, Z., Li, Q., Yang, H., Zhang, D., Zhang, Y., Wang, J., et al. (2023) 5-Heptadecylresorcinol Ameliorates Obesity-Associated Skeletal Muscle Mitochondrial Dysfunction through SIRT3-Mediated Mitophagy. Journal of Agricultural and Food Chemistry, 71, 16032-16042. https://doi.org/10.1021/acs.jafc.3c01452
|
[29]
|
Abad-Jiménez, Z., López-Domènech, S., Pelechá, M., Perea-Galera, L., Rovira-Llopis, S., Bañuls, C., et al. (2024) Calorie Restriction Modulates Mitochondrial Dynamics and Autophagy in Leukocytes of Patients with Obesity. Free Radical Biology and Medicine, 225, 677-686. https://doi.org/10.1016/j.freeradbiomed.2024.10.295
|
[30]
|
Conn, M.O., Marko, D.M. and Schertzer, J.D. (2024) Intermittent Fasting Increases Fat Oxidation and Promotes Metabolic Flexibility in Lean Mice but Not Obese Type 2 Diabetic Mice. American Journal of Physiology-Endocrinology and Metabolism, 327, E470-E477. https://doi.org/10.1152/ajpendo.00255.2024
|
[31]
|
Behl, T., Sehgal, A., Bala, R. and Chadha, S. (2021) Understanding the Molecular Mechanisms and Role of Autophagy in Obesity. Molecular Biology Reports, 48, 2881-2895. https://doi.org/10.1007/s11033-021-06298-w
|
[32]
|
Wang, Y., Yu, F., Zheng, X., Li, J., Zhang, Z., Zhang, Q., et al. (2023) Balancing Adipocyte Production and Lipid Metabolism to Treat Obesity-Induced Diabetes with a Novel Proteoglycan from Ganoderma Lucidum. Lipids in Health and Disease, 22, Article No. 120. https://doi.org/10.1186/s12944-023-01880-6
|
[33]
|
Fukaya, M., Sato, Y., Kondo, S., Adachi, S., Yoshizawa, F. and Sato, Y. (2021) Quercetin Enhances Fatty Acid Β-Oxidation by Inducing Lipophagy in AML12 Hepatocytes. Heliyon, 7, e07324. https://doi.org/10.1016/j.heliyon.2021.e07324
|
[34]
|
Lee, C., Lee, S., Park, S., Choi, S., Song, M., Lee, H.W., et al. (2022) In Vivo Two-Photon Imaging Analysis of Dynamic Degradation of Hepatic Lipid Droplets in Ms-275-Treated Mouse Liver. International Journal of Molecular Sciences, 23, Article No. 9978. https://doi.org/10.3390/ijms23179978
|
[35]
|
Huang, X., Chen, H., Wen, S., Dong, M., Zhou, L. and Yuan, X. (2023) Therapeutic Approaches for Nonalcoholic Fatty Liver Disease: Established Targets and Drugs. Diabetes, Metabolic Syndrome and Obesity, 16, 1809-1819. https://doi.org/10.2147/dmso.s411400
|
[36]
|
Bednarczyk, M., Dąbrowska-Szeja, N., Łętowski, D., Dzięgielewska-Gęsiak, S., Waniczek, D. and Muc-Wierzgoń, M. (2024) Relationship between Dietary Nutrient Intake and Autophagy—Related Genes in Obese Humans: A Narrative Review. Nutrients, 16, Article No. 4003. https://doi.org/10.3390/nu16234003
|
[37]
|
Tan, T., Song, Z., Li, W., Wang, R., Zhu, M., Liang, Z., et al. (2023) Modelling Porcine NAFLD by Deletion of Leptin and Defining the Role of AMPK in Hepatic Fibrosis. Cell & Bioscience, 13, Article No. 169. https://doi.org/10.1186/s13578-023-01124-1
|