紫檀茋在小鼠烟曲霉菌性角膜炎中的作用研究
The Role of Pterocarpus in Aspergillus fumigatus Keratitis in Mice
DOI: 10.12677/acm.2025.1541100, PDF, HTML, XML,   
作者: 刘婧仪, 贺 铜, 栾军杰*:青岛大学,青岛医学院,山东 青岛;青岛大学附属医院,眼科,山东 青岛
关键词: 紫檀茋烟曲霉菌抗炎Nrf2 HO-1Pterostilbene Aspergillus fumigatus Anti-Inflammation Nrf2 HO-1
摘要: 紫檀茋(Pterostilbene, PTE)是一种白藜芦醇的天然类似物,主要存在于葡萄、蓝莓等浆果中。已有研究表明,紫檀茋具有抗菌、抗炎、抗氧化、抗癌、调节脂肪代谢、神经保护等多种药理活性,但紫檀茋在真菌性角膜炎中的作用尚未被研究。本文旨在探索紫檀茋对小鼠烟曲霉菌性角膜炎的治疗作用及潜在机制。方法:在体外实验中,使用烟曲霉菌感染人角膜上皮细胞后用紫檀茋处理细胞,采用PCR技术检测细胞中Nrf2、HO-1以及IL-6、TNF-α、IL-1β因子的mRNA水平。建立烟曲霉菌性角膜炎小鼠模型,给予紫檀茋或DMSO治疗,对小鼠眼球固定切片并进行HE染色,观察炎症细胞聚集情况。结果:紫檀茋增加了烟曲霉菌诱导的HCEC细胞中Nrf2、HO-1的含量,同时降低了炎症因子水平,减轻了烟曲霉菌性角膜炎的炎症细胞聚集。结论:紫檀茋可以影响Nrf2、HO-1的表达并减轻烟曲霉菌性角膜炎的炎症反应。
Abstract: Pterostilbene (PTE) is a naturally occurring analogue of resveratrol, which is found in berries, such as grapes and blueberries. PTE has been shown to possess various pharmacological activities, including antibacterial, anti-inflammatory, antioxidant, anticancer, modulation of lipid metabolism, and neuroprotection. However, the role of PTE in fungal keratitis has not yet been investigated. The aim of this paper is to explore the therapeutic effect and potential mechanism of PTE on Aspergillus fumigatus keratitis in mice. Methods: In vitro experiments were conducted to investigate the effects of Aspergillus fumigatus infection on HCECs. The cells were stimulated with PTE, and the mRNA levels of Nrf2 and HO-1, as well as IL-6, TNF-α, and IL-1β factors, were detected by PCR. In vivo experiments were performed by infecting the cornea of C57BL/6 mice to establish a mouse model of Aspergillus fumigatus keratitis, and treatment was given with PTE or DMSO. Fixed sections of mouse eyes were made and stained with HE staining, to observe the aggregation of cells. Results: PTE enhanced the expression of Nrf2 and HO-1 in Aspergillus fumigatus-induced HCECs. Concurrently, the levels of inflammatory factors were diminished, and the inflammatory cell aggregation in Aspergillus fumigatus keratitis was mitigated. Conclusions: PTE can affect Nrf2/HO-1 signaling pathway and reduce inflammatory response of Aspergillus fumigus keratitis.
文章引用:刘婧仪, 贺铜, 栾军杰. 紫檀茋在小鼠烟曲霉菌性角膜炎中的作用研究[J]. 临床医学进展, 2025, 15(4): 1623-1630. https://doi.org/10.12677/acm.2025.1541100

1. 引言

真菌性角膜炎(Fungal Keratitis, FK)是因致病性真菌侵入角膜组织引起的化脓性感染性疾病,是一种重要的致盲性角膜疾病,在热带及亚热带农业地区较为常见[1]。其致病菌种具有显著的地域差异,其中以镰刀菌属和曲霉菌属、念珠菌属为主[2] [3]。由于真菌菌丝穿透性强、病原体培养周期长、早期诊断不及时等原因,该病的治疗难度极大[4]。目前,真菌性角膜炎的治疗主要以局部应用抗真菌药物为主,如那他霉素、伏立康唑、两性霉素B等,但药物刺激性大、渗透性差、停留时间短等弊端无法避免[5]。另外,真菌性角膜炎的严重程度及其导致的角膜损伤程度主要取决于真菌病原体的毒力和机体的免疫反应[6]

在真菌性角膜炎的疾病病程中,真菌侵入角膜后引发的宿主免疫反应包括先天性免疫和适应性免疫,而先天性免疫可以作为宿主防御的第一道防线,在感染早期发挥作用[7]。在先天性免疫反应中,病原体本身或其表面的相关分子模式(PAMP)可以被机体的模式识别受体(PRR)识别,从而产生一系列炎症因子和趋化因子,并招募巨噬细胞、中性粒细胞等免疫细胞聚集于病灶发挥免疫作用[8]-[10]

紫檀茋(Pterostilbene, PTE)是一种白藜芦醇的二甲基化类似物,但比白藜芦醇具有更高的生物利用度和更长的半衰期[11]-[13]。已有大量文献显示,紫檀茋具有抗炎、抗菌、抗癌、神经保护、抗氧化、调节血脂、调节血糖等功能[12] [14] [15]。在抗菌方面,紫檀茋已经被证实可以抑制白色念珠菌、表皮葡萄球菌、大肠杆菌等病原体生物膜的形成,并破坏已形成的生物膜[16]。在小鼠脑出血模型中,紫檀茋可以通过逆转线粒体动力蛋白OPA1的下调、促进线粒体融合,减少线粒体碎片和超氧化物的形成,最终减轻神经炎症和脑损伤[17]。另外,紫檀茋还可以上调心肌组织中的Nrf2/HO-1信号通路,这可能是紫檀茋预防糖尿病大鼠心脏过度氧化应激和炎症反应的潜在机制[18]

核因子e2相关因子2 (Nrf2)是一种细胞保护因子,在被激活后发生核转位,并增加血红素加氧酶-1 (HO-1)的表达。两者可以协同调节机体氧化应激和炎症反应,在癌症、炎症、组织损伤、年龄退行性疾病等方面发挥不可忽视的作用[19]-[22]。值得注意的是,Nrf2/HO-1信号通路已被证实参与烟曲霉菌性角膜炎的病理过程,并可以通过该通路改善疾病进展[23]

因此,本文将围绕紫檀茋在烟曲霉菌性角膜炎中的作用进行研究,致力于寻找一种新型、安全、有效的药物,为真菌性角膜炎的治疗提供新选择。

2. 材料与方法

2.1. 实验药品

实验中所需紫檀茋购自MedChemExpress公司(CAS No.537-42-8),使用DMSO (二甲基亚砜,北京Solarbio公司)溶解紫檀茋粉末后,储存于−80℃冰箱冷藏。实验前将紫檀茋溶液用相应溶质(PBS溶液或细胞培养液)稀释,且保证最终溶液中DMSO浓度小于千分之五,然后进行后续实验。

2.2. 菌株

实验所用菌株为烟曲霉菌标准株3.0772 (中国微生物中心),低温保存于−80℃。用涂菌棒将烟曲霉菌菌株接种于固体培养基后,置于37℃环境中。3~4天后,向培养基表面滴加适量无菌PBS溶液后刮取烟曲霉菌菌落孢子,经过滤收集于离心管内,置于4℃冰箱储存。取烟曲霉菌孢子于锥形瓶中,加入沙氏培养基在28℃环境中培养5~7天,直至锥形瓶中出现大块团状菌落。取出菌团并撕成小块,用菌丝研磨棒充分研磨并收集于新离心管中。将离心机冷却至4℃,5000 rpm离心15分钟后去除上清液,用无菌PBS洗涤后再次离心,重复三次。加入适量75%乙醇,充分震荡后置于4℃冰箱过夜。次日重复离心、PBS洗涤过程三次,最后向沉淀中加入高糖DMEM溶液,震荡混匀后分装并储存于−20℃冰箱,即为烟曲霉菌灭活菌丝。

2.3. 实验细胞处理

将1 mL HCEC细胞(人角膜上皮细胞,厦门眼科中心)悬液接种于12孔板中,并置于37℃细胞培养箱直至细胞贴壁且细胞密度达到80%。向孔板中加入60 μL烟曲霉菌灭活菌丝刺激细胞1小时,随后向实验组加入紫檀茋溶液,溶剂对照组加入DMSO溶液。烟曲霉菌灭活菌丝刺激8小时后,向细胞孔板中加入无菌PBS溶液清洗3次,每孔加入500 μL Trizol细胞裂解液。将HCECs细胞及裂解液收集于ep管中并提取总RNA,使用NanoDrop ND-1000系统测定所提RNA浓度,并将其逆转录为cDNA。将cDNA样本稀释后,同SYBR、引物、DEPC水混合并加入八连排,随后置于PCR仪中进行扩增,最后根据循环数计算样本中不同因子mRNA的表达水平。引物序列见表1

Table 1. Nucleotide primer sequences for qRT-PCR

1. qRT-PCR核苷酸引物序列

Gene

Forward primer (5′-3′)

Reverse primer (5′-3′)

β-actin (Human)

GCTCCTCCTGAGCGCAAG

CATCTGCTGGAAGGTGGACA

IL-1β (Human)

ATGCACCTGTACGATCACTGA

ACAAAGGACATGGAGAACACC

TNF-α (Human)

TGCTTGTTCCTCAGCCTCTT

CAGAGGGCTGATTAGAGAGAGGT

IL-6 (Human)

AAGCCAGAGCTGTGCAGATGAGTA

TGTCCTGCAGCCACTGGTTC

HO-1 (Human)

AAGACTGCGTTCCTGCTCAAC

AAAGCCCTACAGCAACTGTCG

Nrf2 (Human)

TCAGCGACGGAAAGAGTATGA

CCACTGGTTTCTGACTGGATGT

2.4. 动物模型

本实验动物模型选用8~10周龄C57BL/6雌鼠,由山东朋悦有限公司提供。为小鼠交替提供12小时白光、12小时黑暗环境,并按照青岛大学附属医院动物委员会规定处理小鼠。实验前检查小鼠眼球及全身情况健康无异常,将小鼠随机分为2组,每组不少于12只。使用水合氯醛对小鼠进行腹腔麻醉后,在裂隙灯下对所有小鼠右侧眼球角膜基质内注射2 μL烟曲霉菌分生孢子(浓度为3 × 107 CFU/L),左眼不予处理。建模后,对实验组小鼠右眼进行紫檀茋溶液点眼处理,每日4次;对照组小鼠右眼使用DMSO溶液处理,两组小鼠其余处理条件相同。于建模后第三天,将所有小鼠断颈处死并完整取下小鼠眼球置于组织固定液中,进行后续实验。

2.5. HE染色

将存放于组织固定液中的小鼠眼球置于酒精中脱水,用石蜡包埋并切成4 μm厚度切片。用二甲苯将标本脱蜡,并用无水乙醇清洗二甲苯。随后将标本分别置于不同浓度的酒精中覆水,并流水冲洗。使用苏木精染剂染色5分钟后再次流水冲洗。之后将标本用1%稀氨水反蓝后,伊红染剂染色3分钟。最后置于酒精中脱水并用中性树胶封片。

2.6. 统计学分析

使用SPSS软件及GraphPad Prism软件对实验结果进行数据分析。计量资料数据以x ± s表示,两组间均数比较采用两独立样本的t检验,多组间均数比较采用单因素方差分析,当P < 0.05时认为组间差距具有统计学意义。

3. 结果

3.1. 紫檀茋增加烟曲霉菌诱导的HCEC细胞中Nrf2和HO-1的表达

为了探究紫檀茋是否会影响HCEC细胞中Nrf2和HO-1的含量,我们利用PCR技术对HCEC细胞中的基因表达进行了相关检测。结果表明,与空白对照组相比,在单一烟曲霉菌灭活菌丝刺激后,Nrf2和HO-1 mRNA的表达量都有所上升。并且在紫檀茋处理后,Nrf2 mRNA含量进一步升高,大约为空白对照组的5倍。与之相似的是,紫檀茋的刺激同样进一步增强了HO-1 mRNA的表达,组间差异具有明显的统计学意义。见图1(A)图1(B)

注:(A) 与空白组相比,烟曲霉菌刺激组中Nrf2的mRNA含量明显升高,且在紫檀茋处理后进一步上升。(B) 同样,Nrf2在HCEC细胞中的表达在加入烟曲霉菌后增加,并且紫檀茋会进一步增强这一现象。(*P < 0.05,**P < 0.01,***P < 0.001,ns差异无统计学意义)

Figure 1. Effect of PTE on the expression of Nrf2 and HO-1 mRNA in HCEC cells induced by inactivated hyphae of Aspergillus fumigatus

1. 紫檀茋对烟曲霉菌灭活菌丝诱导的HCEC细胞中,Nrf2和HO-1 mRNA表达量的影响

3.2. 紫檀茋对烟曲霉菌刺激后的HCECs细胞中炎症因子的影响

我们利用烟曲霉菌灭活菌丝处理后的HCEC细胞建立模型,并用紫檀茋刺激并提取mRNA样本。我们的研究结果显示,在烟曲霉菌刺激后,HCEC细胞中IL-1β、IL-6和TNF-α在基因水平的表达量明显升高。接下来,我们使用紫檀茋处理经烟曲霉菌刺激过后的细胞发现,紫檀茋处理后的HCEC细胞中IL-1β的mRNA表达量明显降低,约为单独烟曲霉菌刺激组的四分之一。与此相似的是,紫檀茋处理组中IL-6和TNF-α的mRNA含量也显著减少,约为烟曲霉菌刺激组的三分之一和五分之二。见图2(A)图2(B)图2(C)

注:(A) 与正常组相比,烟曲霉菌刺激后HCEC细胞中IL-6的mRNA含量显著升高,且在紫檀茋处理后,表达量明显下降。(B) 同样,TNF-α的mRNA表达量也在烟曲霉菌刺激后升高,并在紫檀茋处理后显著下调。(C) 经烟曲霉菌灭活菌丝共培养后的HCEC细胞中,IL-1β的表达也因紫檀茋刺激后有所减少,差异具有统计学意义。(**P < 0.01,***P < 0.001,ns差异无统计学意义)

Figure 2. Effect of PTE on inflammatory factors in HCECs stimulated by Aspergillus fumigatus

2. 紫檀茋对烟曲霉菌刺激的HCECs细胞中炎症因子的影响

3.3. 紫檀茋下调烟曲霉菌性角膜炎中的炎症细胞聚集

为了检测紫檀茋是否可以减轻烟曲霉菌性角膜炎中角膜的细胞募集,我们进一步开展了HE染色实验。在建立小鼠烟曲霉菌性角膜炎模型后的第三天,感染组小鼠角膜组织各层水肿、增厚且伴有大量炎症细胞聚集。然而,经过紫檀茋溶液点眼处理后的小鼠角膜中,组织的炎症表现减轻,各层间炎症细胞明显减少。见图3(A)图3(B)图3(C)

注:(A) 在正常情况下,小鼠角膜各层细胞及组织HE染色(200倍)。(B) 在建立烟曲霉菌性角膜炎小鼠模型后,角膜各层间炎症细胞募集明显多于正常组(200倍)。(C) 经紫檀茋点眼治疗后,烟曲霉菌性角膜炎小鼠角膜组织内炎症细胞明显减少(200倍) (n = 6)

Figure 3. Effect of PTE on inflammatory cells in mouse cornea of Aspergillus fumigatus keratitis

3. 紫檀茋对烟曲霉菌性角膜炎小鼠角膜中炎症细胞的影响

4. 讨论

真菌性角膜炎是一种由真菌感染引起的严重的角膜疾病,镰刀菌和曲霉菌属约占致病真菌总量的70%左右[24]。由于广谱抗生素和类固醇的广泛使用、隐形眼镜的频繁佩戴等原因,FK的发病率不断攀升。另外,由于对病原菌诊断延迟、可用的抗真菌药物有限以及病原体的耐药性等原因,该病易导致患者治疗不理想甚至失明[25] [26]。因此,我们急需寻找一种安全有效、副作用小的抗真菌药物,用来改善真菌性角膜炎的病程及预后。

紫檀茋是一种多酚类天然化合物,最初是从红檀香木中提取出来[27]。相比于具有三个羟基的白藜芦醇,具有两个甲氧基和一个羟基的结构使得紫檀茋具有更强的亲脂性和细胞吸收潜能[11]。Nrf2被认为是调节抗氧化应激反应的核心转录因子[28],同时在炎症反应基因的表达方面起着至关重要的作用[29]。在正常生理状态下,Nrf2及其特异性抑制剂Keap1在细胞质中稳定结合[30]。当受到外界刺激时,Nrf2与Keap1分离并转移到细胞核中,激活下游基因HO-1等,从而在各种炎症及氧化应激反应中发挥作用[31]。在缺血缺氧性脑损伤疾病中,紫檀茋可以通过调节Nrf2/HO-1的表达减轻氧化应激反应,从而改善脑神经元损伤,成为治疗新生儿缺氧缺血性脑病的候选药物[32]。另有研究证实,紫檀茋可以激活Nrf2和HO-1,抑制p65和IκB的磷酸化,从而在急性肺损伤中发挥保护作用[33]。我们的研究发现,紫檀茋可以增加烟曲霉菌感染的HCEC细胞中Nrf2和HO-1的表达增加,我们认为这可能是紫檀茋参与烟曲霉菌性角膜炎疾病进程的一种潜在机制。先前已有众多文献表明,紫檀茋的药理作用体现在抗炎、抗真菌、抗氧化、抗癌等众多方面。在炎症性疾病中,Yen-Chun Koh等人已经发现,紫檀茋可以降低血管炎症标志物TNF-α以及血管细胞黏附分子-1等基因的表达,从而改善小鼠血管炎症[34]。同样,在高脂饮食诱导的结肠炎疾病中,经过紫檀茋处理后的小鼠组织中IL-6、IL-1β以及环氧化酶-2的表达明显减少[35]。我们的实验结果显示,在烟曲霉菌诱导的HCEC细胞中,IL-6、IL-1β以及TNF-α炎症因子的表达明显升高,然而经过紫檀茋处理后,炎症因子水平明显下降。与之相似的是,我们的研究同样印证了紫檀茋可以在炎症疾病中起到抗炎作用。此外,我们的研究还发现,紫檀茋能够减轻烟曲霉菌性角膜炎小鼠角膜中的炎症细胞聚集,从而改善疾病进程。在真菌性角膜炎中,当致病菌侵袭角膜组织后,机体启动免疫反应,释放各种趋化因子引起炎症细胞聚集于病灶清除真菌[36]。另有研究表明,紫檀茋可以降低关节炎动物模型中中性粒细胞的数量,减少炎症细胞的聚集[37]。这些研究均与我们的实验结果相一致。

5. 结论

综上所述,我们的研究证实了紫檀茋在体外可以增加烟曲霉菌诱导的HCEC细胞中Nrf2和HO-1的表达,同时降低IL-6、TNF-α和IL-1β炎症因子水平,并且减轻烟曲霉菌性角膜炎中的炎症细胞聚集。这使得紫檀茋成为一种有潜力的治疗真菌性角膜炎的新型药物。

NOTES

*通讯作者。

参考文献

[1] Oliveira dos Santos, C., Kolwijck, E., van der Lee, H.A., Tehupeiory-Kooreman, M.C., Al-Hatmi, A.M.S., Matayan, E., et al. (2019) In Vitro Activity of Chlorhexidine Compared with Seven Antifungal Agents against 98 fusarium Isolates Recovered from Fungal Keratitis Patients. Antimicrobial Agents and Chemotherapy, 63, 1-7.
https://doi.org/10.1128/aac.02669-18
[2] Donovan, C., Arenas, E., Ayyala, R.S., Margo, C.E. and Espana, E.M. (2022) Fungal Keratitis: Mechanisms of Infection and Management Strategies. Survey of Ophthalmology, 67, 758-769.
https://doi.org/10.1016/j.survophthal.2021.08.002
[3] Sharma, N., Bagga, B., Singhal, D., Nagpal, R., Kate, A., Saluja, G., et al. (2022) Fungal Keratitis: A Review of Clinical Presentations, Treatment Strategies and Outcomes. The Ocular Surface, 24, 22-30.
https://doi.org/10.1016/j.jtos.2021.12.001
[4] Mahmoudi, S., Masoomi, A., Ahmadikia, K., Tabatabaei, S.A., Soleimani, M., Rezaie, S., et al. (2018) Fungal Keratitis: An Overview of Clinical and Laboratory Aspects. Mycoses, 61, 916-930.
https://doi.org/10.1111/myc.12822
[5] Diao, W., Yin, M., Qi, Y., Fu, Y., Gu, L., Lin, J., et al. (2024) Resveratrol Has Neuroprotective Effects and Plays an Anti-Inflammatory Role through Dectin-1/p38 Pathway in Aspergillus Fumigatus Keratitis. Cytokine, 179, Article 156626.
https://doi.org/10.1016/j.cyto.2024.156626
[6] Mills, B., Radhakrishnan, N., Karthikeyan Rajapandian, S.G., Rameshkumar, G., Lalitha, P. and Prajna, N.V. (2021) The Role of Fungi in Fungal Keratitis. Experimental Eye Research, 202, Article 108372.
https://doi.org/10.1016/j.exer.2020.108372
[7] Heinekamp, T., Schmidt, H., Lapp, K., Pähtz, V., Shopova, I., Köster-Eiserfunke, N., et al. (2014) Interference of Aspergillus Fumigatus with the Immune Response. Seminars in Immunopathology, 37, 141-152.
https://doi.org/10.1007/s00281-014-0465-1
[8] Niu, Y., Zhao, G., Li, C., Lin, J., Jiang, N., Che, C., et al. (2018) Aspergillus Fumigatus Increased PAR-2 Expression and Elevated Proinflammatory Cytokines Expression through the Pathway of PAR-2/ERK1/2 in Cornea. Investigative Opthalmology & Visual Science, 59, 166-175.
https://doi.org/10.1167/iovs.17-21887
[9] Sun, Q., Li, C., Lin, J., Peng, X., Wang, Q., Jiang, N., et al. (2019) Celastrol Ameliorates Aspergillus fumigatus Keratitis via Inhibiting LOX-1. International Immunopharmacology, 70, 101-109.
https://doi.org/10.1016/j.intimp.2019.02.017
[10] Li, C., Zhao, G., Che, C., Lin, J., Li, N., Hu, L., et al. (2015) The Role of LOX-1 in Innate Immunity to Aspergillus fumigatus in Corneal Epithelial Cells. Investigative Opthalmology & Visual Science, 56, 3593-3603.
https://doi.org/10.1167/iovs.14-15989
[11] Kim, H., Seo, K. and Yokoyama, W. (2020) Chemistry of Pterostilbene and Its Metabolic Effects. Journal of Agricultural and Food Chemistry, 68, 12836-12841.
https://doi.org/10.1021/acs.jafc.0c00070
[12] Estrela, J.M., Ortega, A., Mena, S., Rodriguez, M.L. and Asensi, M. (2013) Pterostilbene: Biomedical Applications. Critical Reviews in Clinical Laboratory Sciences, 50, 65-78.
https://doi.org/10.3109/10408363.2013.805182
[13] Ma, Z., Zhang, X., Xu, L., Liu, D., Di, S., Li, W., et al. (2019) Pterostilbene: Mechanisms of Its Action as Oncostatic Agent in Cell Models and in Vivo Studies. Pharmacological Research, 145, Article 104265.
https://doi.org/10.1016/j.phrs.2019.104265
[14] Lin, W., Leland, J.V., Ho, C. and Pan, M. (2020) Occurrence, Bioavailability, Anti-Inflammatory, and Anticancer Effects of Pterostilbene. Journal of Agricultural and Food Chemistry, 68, 12788-12799.
https://doi.org/10.1021/acs.jafc.9b07860
[15] Nagarajan, S., Mohandas, S., Ganesan, K., Xu, B. and Ramkumar, K.M. (2022) New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects. Molecules, 27, Article 6316.
https://doi.org/10.3390/molecules27196316
[16] Kolouchová, I., Maťátková, O., Paldrychová, M., Kodeš, Z., Kvasničková, E., Sigler, K., et al. (2017) Resveratrol, Pterostilbene, and Baicalein: Plant-Derived Anti-Biofilm Agents. Folia Microbiologica, 63, 261-272.
https://doi.org/10.1007/s12223-017-0549-0
[17] Wu, Y., Hu, Q., Wang, X., Cheng, H., Yu, J., Li, Y., et al. (2023) Pterostilbene Attenuates Microglial Inflammation and Brain Injury after Intracerebral Hemorrhage in an Opa1-Dependent Manner. Frontiers in Immunology, 14, Article 1172334.
https://doi.org/10.3389/fimmu.2023.1172334
[18] Kosuru, R., Kandula, V., Rai, U., Prakash, S., Xia, Z. and Singh, S. (2018) Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats. Cardiovascular Drugs and Therapy, 32, 147-163.
https://doi.org/10.1007/s10557-018-6780-3
[19] Ghareghomi, S., Moosavi-Movahedi, F., Saso, L., Habibi-Rezaei, M., Khatibi, A., Hong, J., et al. (2023) Modulation of Nrf2/HO-1 by Natural Compounds in Lung Cancer. Antioxidants, 12, Article 735.
https://doi.org/10.3390/antiox12030735
[20] Yuan, L., Wang, Y., Li, N., Yang, X., Sun, X., Tian, H., et al. (2024) Mechanism of Action and Therapeutic Implications of Nrf2/HO-1 in Inflammatory Bowel Disease. Antioxidants, 13, Article 1012.
https://doi.org/10.3390/antiox13081012
[21] Ge, M., Yao, W., Yuan, D., Zhou, S., Chen, X., Zhang, Y., et al. (2017) Brg1-Mediated Nrf2/HO-1 Pathway Activation Alleviates Hepatic Ischemia–reperfusion Injury. Cell Death & Disease, 8, e2841-e2841.
https://doi.org/10.1038/cddis.2017.236
[22] Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cellular and Molecular Life Sciences, 73, 3221-3247.
https://doi.org/10.1007/s00018-016-2223-0
[23] Fan, Y., Li, C., Peng, X., Jiang, N., Hu, L., Gu, L., et al. (2020) Perillaldehyde Ameliorates Aspergillus fumigatus Keratitis by Activating the Nrf2/HO-1 Signaling Pathway and Inhibiting Dectin-1-Mediated Inflammation. Investigative Opthalmology & Visual Science, 61, 51.
https://doi.org/10.1167/iovs.61.6.51
[24] Soleimani, M., Izadi, A., Khodavaisy, S., Santos, C.O.D., Tehupeiory-Kooreman, M.C., Ghazvini, R.D., et al. (2023) Fungal Keratitis in Iran: Risk Factors, Clinical Features, and Mycological Profile. Frontiers in Cellular and Infection Microbiology, 13, Article 1094182.
https://doi.org/10.3389/fcimb.2023.1094182
[25] Henry, C.R., Flynn, H.W., Miller, D., Forster, R.K. and Alfonso, E.C. (2012) Infectious Keratitis Progressing to Endophthalmitis. Ophthalmology, 119, 2443-2449.
https://doi.org/10.1016/j.ophtha.2012.06.030
[26] Al-Hatmi, A.M.S., van Diepeningen, A.D., Curfs-Breuker, I., de Hoog, G.S. and Meis, J.F. (2014) Specific Antifungal Susceptibility Profiles of Opportunists in the Fusarium fujikuroi Complex. Journal of Antimicrobial Chemotherapy, 70, 1068-1071.
https://doi.org/10.1093/jac/dku505
[27] Obrador, E., Salvador-Palmer, R., Jihad-Jebbar, A., López-Blanch, R., Dellinger, T.H., Dellinger, R.W., et al. (2021) Pterostilbene in Cancer Therapy. Antioxidants, 10, Article 492.
https://doi.org/10.3390/antiox10030492
[28] Zhang, Y., Wei, Z., Liu, W., Wang, J., He, X., Huang, H., et al. (2016) Melatonin Protects against Arsenic Trioxide-Induced Liver Injury by the Upregulation of Nrf2 Expression through the Activation of PI3K/AKT Pathway. Oncotarget, 8, 3773-3780.
https://doi.org/10.18632/oncotarget.13931
[29] Nishikawa, S., Inoue, Y., Hori, Y., Miyajima, C., Morishita, D., Ohoka, N., et al. (2020) Anti-Inflammatory Activity of Kurarinone Involves Induction of HO-1 via the Keap1/Nrf2 Pathway. Antioxidants, 9, Article 842.
https://doi.org/10.3390/antiox9090842
[30] Xian, P., Hei, Y., Wang, R., Wang, T., Yang, J., Li, J., et al. (2019) Mesenchymal Stem Cell-Derived Exosomes as a Nanotherapeutic Agent for Amelioration of Inflammation-Induced Astrocyte Alterations in Mice. Theranostics, 9, 5956-5975.
https://doi.org/10.7150/thno.33872
[31] Sun, Y., Zhu, H., Zhao, R., Zhou, S., Wang, M., Yang, Y., et al. (2023) Remote Ischemic Conditioning Attenuates Oxidative Stress and Inflammation via the Nrf2/HO-1 Pathway in MCAO Mice. Redox Biology, 66, Article 102852.
https://doi.org/10.1016/j.redox.2023.102852
[32] Zeng, Q., Lian, W., Wang, G., Qiu, M., Lin, L. and Zeng, R. (2020) Pterostilbene Induces Nrf2/HO-1 and Potentially Regulates NF-κB and JNK-Akt/mTOR Signaling in Ischemic Brain Injury in Neonatal Rats. 3 Biotech, 10, Article No. 192.
https://doi.org/10.1007/s13205-020-02167-8
[33] Zhang, Y., Han, Z., Jiang, A., Wu, D., Li, S., Liu, Z., et al. (2021) Protective Effects of Pterostilbene on Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting NF-κB and Activating Nrf2/HO-1 Signaling Pathways. Frontiers in Pharmacology, 11, Article 591836.
https://doi.org/10.3389/fphar.2020.591836
[34] Koh, Y., Li, S., Chen, P., Wu, J., Kalyanam, N., Ho, C., et al. (2019) Prevention of Vascular Inflammation by Pterostilbene via Trimethylamine-N-Oxide Reduction and Mechanism of Microbiota Regulation. Molecular Nutrition & Food Research, 63, Article 1900514.
https://doi.org/10.1002/mnfr.201900514
[35] Fan-Jiang, P., Lee, P., Nagabhushanam, K., Ho, C. and Pan, M. (2021) Pterostilbene Attenuates High-Fat Diet and Dextran Sulfate Sodium-Induced Colitis via Suppressing Inflammation and Intestinal Fibrosis in Mice. Journal of Agricultural and Food Chemistry, 69, 7093-7103.
https://doi.org/10.1021/acs.jafc.1c02783
[36] Hu, L., Du, Z., Zhao, G., Jiang, N., Lin, J., Wang, Q., et al. (2014) Role of TREM-1 in Response to Aspergillus Fumigatus Infection in Corneal Epithelial Cells. International Immunopharmacology, 23, 288-293.
https://doi.org/10.1016/j.intimp.2014.09.011
[37] Perecko, T., Drabikova, K., Lojek, A., Ciz, M., Ponist, S., Bauerova, K., et al. (2013) The Effects of Pterostilbene on Neutrophil Activity in Experimental Model of Arthritis. BioMed Research International, 2013, 1-7.
https://doi.org/10.1155/2013/106041