[1]
|
Oliveira dos Santos, C., Kolwijck, E., van der Lee, H.A., Tehupeiory-Kooreman, M.C., Al-Hatmi, A.M.S., Matayan, E., et al. (2019) In Vitro Activity of Chlorhexidine Compared with Seven Antifungal Agents against 98 fusarium Isolates Recovered from Fungal Keratitis Patients. Antimicrobial Agents and Chemotherapy, 63, 1-7. https://doi.org/10.1128/aac.02669-18
|
[2]
|
Donovan, C., Arenas, E., Ayyala, R.S., Margo, C.E. and Espana, E.M. (2022) Fungal Keratitis: Mechanisms of Infection and Management Strategies. Survey of Ophthalmology, 67, 758-769. https://doi.org/10.1016/j.survophthal.2021.08.002
|
[3]
|
Sharma, N., Bagga, B., Singhal, D., Nagpal, R., Kate, A., Saluja, G., et al. (2022) Fungal Keratitis: A Review of Clinical Presentations, Treatment Strategies and Outcomes. The Ocular Surface, 24, 22-30. https://doi.org/10.1016/j.jtos.2021.12.001
|
[4]
|
Mahmoudi, S., Masoomi, A., Ahmadikia, K., Tabatabaei, S.A., Soleimani, M., Rezaie, S., et al. (2018) Fungal Keratitis: An Overview of Clinical and Laboratory Aspects. Mycoses, 61, 916-930. https://doi.org/10.1111/myc.12822
|
[5]
|
Diao, W., Yin, M., Qi, Y., Fu, Y., Gu, L., Lin, J., et al. (2024) Resveratrol Has Neuroprotective Effects and Plays an Anti-Inflammatory Role through Dectin-1/p38 Pathway in Aspergillus Fumigatus Keratitis. Cytokine, 179, Article 156626. https://doi.org/10.1016/j.cyto.2024.156626
|
[6]
|
Mills, B., Radhakrishnan, N., Karthikeyan Rajapandian, S.G., Rameshkumar, G., Lalitha, P. and Prajna, N.V. (2021) The Role of Fungi in Fungal Keratitis. Experimental Eye Research, 202, Article 108372. https://doi.org/10.1016/j.exer.2020.108372
|
[7]
|
Heinekamp, T., Schmidt, H., Lapp, K., Pähtz, V., Shopova, I., Köster-Eiserfunke, N., et al. (2014) Interference of Aspergillus Fumigatus with the Immune Response. Seminars in Immunopathology, 37, 141-152. https://doi.org/10.1007/s00281-014-0465-1
|
[8]
|
Niu, Y., Zhao, G., Li, C., Lin, J., Jiang, N., Che, C., et al. (2018) Aspergillus Fumigatus Increased PAR-2 Expression and Elevated Proinflammatory Cytokines Expression through the Pathway of PAR-2/ERK1/2 in Cornea. Investigative Opthalmology & Visual Science, 59, 166-175. https://doi.org/10.1167/iovs.17-21887
|
[9]
|
Sun, Q., Li, C., Lin, J., Peng, X., Wang, Q., Jiang, N., et al. (2019) Celastrol Ameliorates Aspergillus fumigatus Keratitis via Inhibiting LOX-1. International Immunopharmacology, 70, 101-109. https://doi.org/10.1016/j.intimp.2019.02.017
|
[10]
|
Li, C., Zhao, G., Che, C., Lin, J., Li, N., Hu, L., et al. (2015) The Role of LOX-1 in Innate Immunity to Aspergillus fumigatus in Corneal Epithelial Cells. Investigative Opthalmology & Visual Science, 56, 3593-3603. https://doi.org/10.1167/iovs.14-15989
|
[11]
|
Kim, H., Seo, K. and Yokoyama, W. (2020) Chemistry of Pterostilbene and Its Metabolic Effects. Journal of Agricultural and Food Chemistry, 68, 12836-12841. https://doi.org/10.1021/acs.jafc.0c00070
|
[12]
|
Estrela, J.M., Ortega, A., Mena, S., Rodriguez, M.L. and Asensi, M. (2013) Pterostilbene: Biomedical Applications. Critical Reviews in Clinical Laboratory Sciences, 50, 65-78. https://doi.org/10.3109/10408363.2013.805182
|
[13]
|
Ma, Z., Zhang, X., Xu, L., Liu, D., Di, S., Li, W., et al. (2019) Pterostilbene: Mechanisms of Its Action as Oncostatic Agent in Cell Models and in Vivo Studies. Pharmacological Research, 145, Article 104265. https://doi.org/10.1016/j.phrs.2019.104265
|
[14]
|
Lin, W., Leland, J.V., Ho, C. and Pan, M. (2020) Occurrence, Bioavailability, Anti-Inflammatory, and Anticancer Effects of Pterostilbene. Journal of Agricultural and Food Chemistry, 68, 12788-12799. https://doi.org/10.1021/acs.jafc.9b07860
|
[15]
|
Nagarajan, S., Mohandas, S., Ganesan, K., Xu, B. and Ramkumar, K.M. (2022) New Insights into Dietary Pterostilbene: Sources, Metabolism, and Health Promotion Effects. Molecules, 27, Article 6316. https://doi.org/10.3390/molecules27196316
|
[16]
|
Kolouchová, I., Maťátková, O., Paldrychová, M., Kodeš, Z., Kvasničková, E., Sigler, K., et al. (2017) Resveratrol, Pterostilbene, and Baicalein: Plant-Derived Anti-Biofilm Agents. Folia Microbiologica, 63, 261-272. https://doi.org/10.1007/s12223-017-0549-0
|
[17]
|
Wu, Y., Hu, Q., Wang, X., Cheng, H., Yu, J., Li, Y., et al. (2023) Pterostilbene Attenuates Microglial Inflammation and Brain Injury after Intracerebral Hemorrhage in an Opa1-Dependent Manner. Frontiers in Immunology, 14, Article 1172334. https://doi.org/10.3389/fimmu.2023.1172334
|
[18]
|
Kosuru, R., Kandula, V., Rai, U., Prakash, S., Xia, Z. and Singh, S. (2018) Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats. Cardiovascular Drugs and Therapy, 32, 147-163. https://doi.org/10.1007/s10557-018-6780-3
|
[19]
|
Ghareghomi, S., Moosavi-Movahedi, F., Saso, L., Habibi-Rezaei, M., Khatibi, A., Hong, J., et al. (2023) Modulation of Nrf2/HO-1 by Natural Compounds in Lung Cancer. Antioxidants, 12, Article 735. https://doi.org/10.3390/antiox12030735
|
[20]
|
Yuan, L., Wang, Y., Li, N., Yang, X., Sun, X., Tian, H., et al. (2024) Mechanism of Action and Therapeutic Implications of Nrf2/HO-1 in Inflammatory Bowel Disease. Antioxidants, 13, Article 1012. https://doi.org/10.3390/antiox13081012
|
[21]
|
Ge, M., Yao, W., Yuan, D., Zhou, S., Chen, X., Zhang, Y., et al. (2017) Brg1-Mediated Nrf2/HO-1 Pathway Activation Alleviates Hepatic Ischemia–reperfusion Injury. Cell Death & Disease, 8, e2841-e2841. https://doi.org/10.1038/cddis.2017.236
|
[22]
|
Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cellular and Molecular Life Sciences, 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
|
[23]
|
Fan, Y., Li, C., Peng, X., Jiang, N., Hu, L., Gu, L., et al. (2020) Perillaldehyde Ameliorates Aspergillus fumigatus Keratitis by Activating the Nrf2/HO-1 Signaling Pathway and Inhibiting Dectin-1-Mediated Inflammation. Investigative Opthalmology & Visual Science, 61, 51. https://doi.org/10.1167/iovs.61.6.51
|
[24]
|
Soleimani, M., Izadi, A., Khodavaisy, S., Santos, C.O.D., Tehupeiory-Kooreman, M.C., Ghazvini, R.D., et al. (2023) Fungal Keratitis in Iran: Risk Factors, Clinical Features, and Mycological Profile. Frontiers in Cellular and Infection Microbiology, 13, Article 1094182. https://doi.org/10.3389/fcimb.2023.1094182
|
[25]
|
Henry, C.R., Flynn, H.W., Miller, D., Forster, R.K. and Alfonso, E.C. (2012) Infectious Keratitis Progressing to Endophthalmitis. Ophthalmology, 119, 2443-2449. https://doi.org/10.1016/j.ophtha.2012.06.030
|
[26]
|
Al-Hatmi, A.M.S., van Diepeningen, A.D., Curfs-Breuker, I., de Hoog, G.S. and Meis, J.F. (2014) Specific Antifungal Susceptibility Profiles of Opportunists in the Fusarium fujikuroi Complex. Journal of Antimicrobial Chemotherapy, 70, 1068-1071. https://doi.org/10.1093/jac/dku505
|
[27]
|
Obrador, E., Salvador-Palmer, R., Jihad-Jebbar, A., López-Blanch, R., Dellinger, T.H., Dellinger, R.W., et al. (2021) Pterostilbene in Cancer Therapy. Antioxidants, 10, Article 492. https://doi.org/10.3390/antiox10030492
|
[28]
|
Zhang, Y., Wei, Z., Liu, W., Wang, J., He, X., Huang, H., et al. (2016) Melatonin Protects against Arsenic Trioxide-Induced Liver Injury by the Upregulation of Nrf2 Expression through the Activation of PI3K/AKT Pathway. Oncotarget, 8, 3773-3780. https://doi.org/10.18632/oncotarget.13931
|
[29]
|
Nishikawa, S., Inoue, Y., Hori, Y., Miyajima, C., Morishita, D., Ohoka, N., et al. (2020) Anti-Inflammatory Activity of Kurarinone Involves Induction of HO-1 via the Keap1/Nrf2 Pathway. Antioxidants, 9, Article 842. https://doi.org/10.3390/antiox9090842
|
[30]
|
Xian, P., Hei, Y., Wang, R., Wang, T., Yang, J., Li, J., et al. (2019) Mesenchymal Stem Cell-Derived Exosomes as a Nanotherapeutic Agent for Amelioration of Inflammation-Induced Astrocyte Alterations in Mice. Theranostics, 9, 5956-5975. https://doi.org/10.7150/thno.33872
|
[31]
|
Sun, Y., Zhu, H., Zhao, R., Zhou, S., Wang, M., Yang, Y., et al. (2023) Remote Ischemic Conditioning Attenuates Oxidative Stress and Inflammation via the Nrf2/HO-1 Pathway in MCAO Mice. Redox Biology, 66, Article 102852. https://doi.org/10.1016/j.redox.2023.102852
|
[32]
|
Zeng, Q., Lian, W., Wang, G., Qiu, M., Lin, L. and Zeng, R. (2020) Pterostilbene Induces Nrf2/HO-1 and Potentially Regulates NF-κB and JNK-Akt/mTOR Signaling in Ischemic Brain Injury in Neonatal Rats. 3 Biotech, 10, Article No. 192. https://doi.org/10.1007/s13205-020-02167-8
|
[33]
|
Zhang, Y., Han, Z., Jiang, A., Wu, D., Li, S., Liu, Z., et al. (2021) Protective Effects of Pterostilbene on Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting NF-κB and Activating Nrf2/HO-1 Signaling Pathways. Frontiers in Pharmacology, 11, Article 591836. https://doi.org/10.3389/fphar.2020.591836
|
[34]
|
Koh, Y., Li, S., Chen, P., Wu, J., Kalyanam, N., Ho, C., et al. (2019) Prevention of Vascular Inflammation by Pterostilbene via Trimethylamine-N-Oxide Reduction and Mechanism of Microbiota Regulation. Molecular Nutrition & Food Research, 63, Article 1900514. https://doi.org/10.1002/mnfr.201900514
|
[35]
|
Fan-Jiang, P., Lee, P., Nagabhushanam, K., Ho, C. and Pan, M. (2021) Pterostilbene Attenuates High-Fat Diet and Dextran Sulfate Sodium-Induced Colitis via Suppressing Inflammation and Intestinal Fibrosis in Mice. Journal of Agricultural and Food Chemistry, 69, 7093-7103. https://doi.org/10.1021/acs.jafc.1c02783
|
[36]
|
Hu, L., Du, Z., Zhao, G., Jiang, N., Lin, J., Wang, Q., et al. (2014) Role of TREM-1 in Response to Aspergillus Fumigatus Infection in Corneal Epithelial Cells. International Immunopharmacology, 23, 288-293. https://doi.org/10.1016/j.intimp.2014.09.011
|
[37]
|
Perecko, T., Drabikova, K., Lojek, A., Ciz, M., Ponist, S., Bauerova, K., et al. (2013) The Effects of Pterostilbene on Neutrophil Activity in Experimental Model of Arthritis. BioMed Research International, 2013, 1-7. https://doi.org/10.1155/2013/106041
|