抗中性粒细胞胞浆抗体相关性血管炎肺损伤
Antineutrophil Cytoplasmic Antibody-Associated Vasculitis-Related Lung Injury
DOI: 10.12677/acm.2025.1541102, PDF, HTML, XML,   
作者: 何依婷*, 罗征秀#:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: ANCA相关性血管炎间质性肺疾病抗中性粒细胞胞浆抗体ANCA-Associated Vasculitis Interstitial Lung Diseases Antineutrophil Cytoplasmic Antibodies
摘要: ANCA相关性血管炎(ANCA-associated vasculitis, AAV)是一种以小血管受累为主,同时也伴有中血管受累,以坏死性小血管炎为主要病理表现并伴随着全身多系统累及的异质性自身免疫性疾病。作为全身性疾病,肺的累及是AAV最常见的受累器官之一,同时,肺受累也是AAV预后不佳的重要指标。本综述将对ANCA相关性血管炎肺损伤的流行病学、机制、临床特点、治疗进行讨论。
Abstract: ANCA-associated vasculitis (AAV) is a heterogeneous autoimmune disease with mostly small vessels involvement, but also medium vessels, and the main pathological manifestation is necrotizing small vasculitis which is accompanied with systemic multi-system involvements. As a systemic disease, the lung is one of the target organs commonly involved in AAV, which predicts increased mortality. This review discusses the epidemiology, mechanism, clinical features, and treatment of lung injury in ANCA-associated vasculitis.
文章引用:何依婷, 罗征秀. 抗中性粒细胞胞浆抗体相关性血管炎肺损伤[J]. 临床医学进展, 2025, 15(4): 1637-1648. https://doi.org/10.12677/acm.2025.1541102

1. 介绍

抗中性粒细胞抗体(Anti-neutrophil cytoplasm antibody, ANCA)是对中性粒细胞以及单核细胞的细胞质(c-ANCA)和核周(p-ANCA)区域中的多种抗原具有反应性的物质[1]-[4]。其主要抗原分别是髓过氧化物酶(MPO)以及蛋白酶3 (PR3),MPO是p-ANCA的主要靶抗原,而PR3是GPA患者c-ANCA的主要靶抗原。ANCA相关性血管炎(ANCA-associated vasculitis, AAV)是一种以小血管受累为主,同时也伴有中血管受累,以坏死性小血管炎为主要病理表现并伴随着全身多系统累及的异质性自身免疫性疾病。AAV在临床上根据临床及病理特点可分为微镜下多血管炎(microscopic polyangiitis, MPA)、肉芽肿多发性血管炎(granulomatosis with polyangiitis, GPA)、嗜酸性肉芽肿多发性血管炎(eosinophilic granulomatosis with polyangiitis, EGPA)三种临床综合征[5]。其肺损伤通常会有五种主要表现,分别是坏死性肉芽肿性炎(肺结节)、气管支气管炎、肺血管炎的表现、间质性肺炎以及哮喘[6]

2. 流行病学

目前,AAV的患病率约为300/百万人,年发病率为13~20/百万人[7]。肺部受累在MPA患者中的占比约30%~50%;67%~85%的GPA患者也会出现肺损伤;而EGPA患者约60%会出现,其中95%都会出现哮喘[6]。AAV-ILD发病率在不同临床类型以及人种中都有所差距[8]。据报道,高达45%的MPA患者,而仅有23%的GPA患者出现ILD。抗MPO抗体是与ILD相关的主要ANCA亚型,约占46%~71%,而抗PR3抗体见于0%~29%的患者[8]。亚洲与欧洲患者相比,ILD发病率更高,可能与亚洲患者中MPO抗体阳性占比大相关[9] [10]。在一项纳入了207人的系统评价中发现DAH的发病率为8%~36% [11]。DAH在MPA患者中更常见,发病率约为25%~60% [12],而GPA患者为22%~30%,在EGPA患者中更为罕见,发病率仅为3%~4% [13] [14]。AAV患者DAH复发率为10%~30% [15] [16]。在儿童患者中,以女性患儿为主,大多在青春期起病,诊断的中位年龄约为10.7~14岁,确诊中位时间通常为2个月[17]。AAV儿童的发病率在不同地区的研究中有差异,但相同的是近年来各地区发病率均有上升[18] [19]。国外研究发现,儿童期的AAV患者以GPA多见[20],但国内多个单中心研究均提示,我国患儿以MPA为主[21]-[24]

3. 病因学

目前AAV发生的确切原因仍不清楚,但据现有的研究显示,它也是受遗传学、环境因素以及先天性和获得性免疫系统反应的多因素影响[25] [26]

3.1. 易感基因

关于AAV发病与基因关系的研究,科学家们一开始着眼于潜在致病基因中单核苷酸多态性(SNPs)的研究,分析了与覆盖约90%人类基因组的全基因关联组研究(genome-wide association studies, GWAS) [27]。Paul A. Lyons博士等人研究显示,GPA和MPA之间具有遗传区别,其中,GPA与HLA-DP、SERPINA1、PRTN3和SEMA6A相关联,而MPA主要与HLA-DQ相关。这个结果也就证实了,GPA和MPA是不同的两种自身免疫性综合征[28]。在EGPA中,MPO-ANCA阳性和ANCA阴性亚群,在出现嗜酸性粒细胞增多和哮喘表型的位点相似;但两个亚群与HLA-DQ、IL-5和GPA33的相关性不同。两个EGPA亚群之间的遗传差异支持了该综合征基于ANCA的二分法。ANCA阳性疾病通常表现为血管炎的特征,而MPO-ANCA阳性与其密切相关,而ANCA阴性疾病表现出较高的嗜酸性表现,可能与黏膜屏障功能障碍有关[29]

黏蛋白5B (MUC5B)基因编码黏蛋白5B前体蛋白,有助于气道黏液的产生,于呼吸道清洁以及防御细菌中发挥作用[9] [30]。MUC5B启动子基因多态性是特发性肺纤维化(IPF)最强的基因危险因素,至少50%IPF的患者该基因阳性[31] [32]。同时,MUC5B变异已被证明与类风湿性关节炎-ILD和纤维化性超敏性肺炎相关[32]。在日本的一项研究中发现,与健康对照组相比MUC5B启动子rs35705950突变在AAV-ILD患者中有增高。同时,该突变也是IPF最强的易感突变基因[33]

在我国的一些研究中也发现了Toll样受体2 (TLR-2 597T/C)基因的多态性易诱发我国北方汉族人群的MPA,同时该基因的多态性可能我国广西汉族人群中AAV患者蛋白尿的发生率、血红蛋白水平相关[34] [35]。在薛超等人的研究中报道了转化生长因子β-1基因(TGF-β-1 509C/T)多态性虽然与广西汉族人群AAV肾损害的发病无关,但它可能是AAV患者出现重度蛋白尿、中及重度系膜增生和肾小管间质损害程度的易感基因[36]。未来关注基因型–表型、基因型–预后和药物基因组学的研究可能会提高我们对AAV的理解,并完善我们的患者管理方法。

3.2. 感染

一些学者提出ANCA是与靶抗原(如PR3)的肽链互补的肽链(complementary PR3, cPR-3)所引发自身免疫反应的产物[37]。在cPR-3抗原诱发的基础上,研究者发现,金黄色葡萄球菌具有类似cPR-3的肽,因此,从理论上讲,这种微生物的感染可能会引发或增强对cPR3的肽类似物的免疫反应,这反过来会导致特异性抗体与PR3反应。既往的研究表明,PR3-ANCA GPA患者中有60%~70%鼻腔中慢性携带着金黄色葡萄球菌,这种慢性携带状态与复发的风险增加有关,尤其是存在具有很强免疫刺激能力的产TSST-1的金黄色葡萄球菌情况下[38]-[40]

3.3. 药物

药物导致的AAV是属于药物导致血管炎(drug-induced vasculitis, DIV) [41]的一部分,丙基硫氧嘧啶,米诺环素,别嘌醇等已经被明确可以导致AAV [42],疫苗的接种也可能会导致AAV的产生,Muhammad Tariq Shakoor等[43]报道一名既往肾功能正常的78岁女性中,在接种辉瑞COVID-19疫苗后出现ANCA相关性血管炎。与原发性AAV的靶抗原大多为MPO或者PR3不同的是,药物导致的AAV所针对的抗原也包括别的中性粒细胞颗粒蛋白,例如天青素,组织蛋白酶G,弹性蛋白酶或乳铁蛋白[44]

3.4. 环境因素

AAV累及肺部导致肺血管炎,可能与外源性吸入物质有关,虽然目前没有明确的证据。以前的流行病学研究表明,ANCA血管炎与粉尘和重金属(即二氧化硅,汞和铅)的高度暴露之间存在显着关联。GPA患者还报告了吸入烟雾,农药和碳氢化合物的强烈职业暴露[26]。在许多的报道中,季节也是AAV发病的高危因素,大多数的研究支持冬季是疾病的高发期,但该结论仍有争议[7]

4. 发病机制

AAV患者自身抗体的产生源于机体免疫T淋巴细胞、B淋巴细胞对自身中性粒细胞胞浆中的MPO、PR3的免疫耐受消失,其中EGPA比较明确,主要是由TH2驱动的疾病[14]。而ANCA可以活化中性粒细胞,被ANCA激活的中性粒细胞定位于脆弱的微血管床,在那里它们诱导损伤并释放自身抗原,供抗原提呈细胞呈递,效应T细胞识别抗原,从而介导进一步损伤[45]。同时,在动物实验和临床观察中都发现了补体系统尤其是旁路途径也参与疾病的发生与发展,其中C5a至关重要[46]

4.1. 中性粒细胞胞外陷阱(NETs)

中性粒细胞胞外陷阱(NETs)已被证明在AAV的发病机理中起重要作用。NETs是指活化的中性粒细胞释放的DNA组蛋白和其他蛋白质所组成的网状结构,在ANCA相关性血管炎的发病、疾病活动、纤维化以及血栓形成中都有重要作用[9] [47]。其他免疫细胞的参与使中性粒细胞脱粒同时伴随着染色质的解聚,最终导致血管损伤和缺血,在肺中表现为肺泡毛细血管炎。这种效应是通过过量的细胞因子产生、活性氧(ROS)的释放、裂解酶以及NETs的形成,从而引起组织不断损害的恶性循环[48] [49]。凋亡中性粒细胞的清除能力受损也可能导致自身抗原长时间暴露于循环抗原提呈细胞。在NETs形成过程中伴随着中性粒细胞的死亡,这种新型的死亡方式被称为NETosis [50]。NETs可以在NETosis的过程中捕获和中和病原体,但同时NETs相关的细胞毒性蛋白有破坏宿主细胞的能力[51],还能激活血小板[52],这也是AAV可以引起肺血栓形成的原因之一。携带白介素-17 (IL-17)的NETs已被证明可以触发人肺成纤维细胞的激活和分化为肌成纤维细胞[53]

4.2. 抗MPO抗体

在体外试验中已显示,抗MPO抗体在可引起中性粒细胞的氧化爆发,激活MPO会和次氯酸(HOCl)的产生,从而对内皮细胞造成损伤。这些由抗MPO抗体产生的活性氧(ROS),在高水平的情况下具有细胞毒性,而由于ROS的促增殖特性,低水平的ROS可诱导成纤维细胞增殖[54]。在MPO与抗MPO抗体反应中产生的HOCl,会导致氧化应激(Oxidative stress),触发成纤维细胞增殖和远端肺实质中的细胞外基质沉积[54] [55],这可能是MPO引发肺纤维化的机制。而且在某些情况下,抗MPO抗体可以通过激活丝裂原激活的蛋白激酶途径来促进成纤维细胞的增殖细胞损伤。此外,MPO抗体的存在会触发自身免疫反应,导致中性粒细胞的激活,活化中性粒细胞会在局部释放蛋白水解酶以及NETs,均会导致肺组织的损伤[9]

4.3. 粘蛋白5B (MUC5B)

粘蛋白5B导致IPF、RA-ILD的机制是相同的[32]。MUC5B启动子区域的rs35705950中等位基因(T)与粘蛋白5B的过度表达有关[9]。虽然MUC5B失调导致肺纤维化发展的确切机制目前尚不清楚,但MUC5B过表达可能导致粘液纤毛功能障碍、颗粒保留和远端肺修复机制的破坏,导致慢性纤维增生和再生过程,导致蜂窝囊肿的形成[30] [56]

4.4. 反复肺泡出血

反复发生的肺泡出血可能会导致肺部纤维化,这也是AAV相关性ILD产生的可能机制。游离的血红蛋白可以通过血红蛋白的氧化为氧化态,从而诱导肺泡上皮损伤[57]。然而,这一理论与临床大多数的肺纤维化是在血管炎发展之前发生的情况相矛盾。出现这种矛盾的原因可能有两个方面。首先,疾病的发展存在个体差异,部分患者在早期阶段,免疫系统的异常激活可能在血管炎症状明显之前就已经引发了肺纤维化。其次,目前关于肺泡出血与肺纤维化因果关系的研究大多依赖于回顾性分析,样本选择和观察时间点的局限性可能导致结论出现偏差。目前有人提出,肺纤维化本身可以在慢性炎症过程中由于中性粒细胞的破坏而诱导MPO-ANCA的产生导致,这可能解释了部分患者ILD发作后才有ANCA的出现[8]

4.5. 补体旁路途径(Complement Alternative Pathway, cAP)

既往对于补体的关注相对不足,但AAV患者在临床常规检查中发现血浆中缺乏补体(如C3和C4),间接表明了在AAV发病过程中存在补体消耗,从而大多数临床医生得出结论,补体系统对AAV病理生理学至关重要[58]。ANCA导致的NETosis以及激活的中性粒细胞均可以激活补体旁路途径[59] [60]。C5a作为连接炎症反应和凝血系统的补体,在AAV发病机制中至关重要[46]。过敏性毒素C5a不仅激活中性粒细胞,还激活血管内皮细胞,促进其收缩,增加血管通透性[61]-[63]。ANCA诱导的中性粒细胞的激活导致C5a的产生,反过来,C5a增强了中性粒细胞的招募,进一步启动和放大炎症反应[46] [64]

5. 临床特征

5.1. 临床表现

AAV累及肺部可出现弥漫性肺泡出血(DAH)、坏死性肉芽肿性炎(肺结节)、气管支气管炎、间质性肺疾病(ILD)、哮喘五种表现。其中坏死性肉芽肿性炎(肺结节)、气管支气管炎是GPA的临床特征性表现;DAH是源于肺部的小血管炎,在MPA患者中更常发生,发病率约为25%~60%;ILD一组以肺泡单位的炎症和间质纤维化为基本病变的肺部疾病的总称,又称为弥漫性实质性肺疾病,也是在MPA尤其是抗MPO抗体阳性的MPA患者中多见;而哮喘是EGPA的特征性表现[6] [65] [66]

进行性呼吸困难和干咳是AAV相关的间质性肺损害的主要临床表现[67] [68],也可以出现肺炎、肺泡出血和咯血,部分患者也可以没有任何呼吸系统的临床表现,而仅有影像学的异常;有部分AAV患者可以仅表现为特发性间质性肺炎[69]。在一项研究中有15例(27%)以ILD起病的患者会进展为进行性肺纤维化[70]。PR3-ANCA阳性的血管炎的主要累及上呼吸道,与MPO-ANCA相比,它影响下呼吸道和肾脏的频率较低[71]。一些研究发现,与非MPA-ILD的患者相比,MPA-ILD患者的全身受累程度较轻,即血沉率较低,血红蛋白水平较高,弥漫性肺泡出血、周围神经和肾脏受累的频率较低[72] [73]

5.2. 实验室检查

疾病活动时,通常会出现正细胞正色素贫血(炎性)、白细胞的增多、炎症指标升高(CRP、ESR、PLT)、D二聚体的升高以及血小板增多,而降钙素原在不合并感染时通常是正常的[74] [75]。血清II型肺泡细胞表面抗原(KL-6)的检测在AAV中也是有意义的。许多研究表明,与不合并ILD的AAV患者相比AAV-ILD患者KL-6升高具有临床意义[76] [77],同时,升高的血清KL-6滴度,也可以反应AAV患者ILD的活动情况,高水平的KL-6可预示疾病结局不良[78] [79]。CCL2 是由各种细胞产生的单核细胞趋化剂,研究发现MPA合并ILD患者的血清CCL2水平显著高于未合并 ILD 的 MPA 患者,血清CCL2水平高的MPA患者可能并发ILD [80]。以ILD起病的患者,血清中更高的肺表面活性蛋白-D (SP-D)与进展为PPF可能相关[70]。检测患者血清ANCA抗体的种类及滴度也十分重要,高滴度的抗体可能预示着患者可能出现预后不良表现[67]

通过纤维支气管镜获取肺泡灌洗液检查会发现淋巴细胞性或嗜酸性肺泡炎,在肺泡出血的病例中,肺泡灌洗液的检查是金标准。EGPA作为主要由TH2驱动的疾病,因此对活动性EGPA患者支气管肺泡灌洗(BAL)和外周血的TH2细胞的分析显示,与非活性EGPA相比,嗜酸性粒细胞特异性介质,即白细胞介素-5 (IL-5)的表达会增加[14]

5.3. 病理学检查

肺组织活检在MPA中主要表现为肺毛细血管炎,GPA和EGPA表现为肉芽肿性炎[81]。AAV肺毛细血管炎,主要为中性粒细胞炎症和毛细血管壁纤维蛋白样坏死,可导致红细胞外渗,随后的气体交换损伤[82]。AAV肉芽肿活检可发现中性粒细胞性微脓肿、纤维蛋白样坏死、栅栏组织细胞和巨噬细胞形成肉芽肿性炎[83]

5.4. 影像学表现

Peining Zhou等[84]以204位成年AAV患者为研究对象进行CT检查发现大部分患者(159/204)主要表现为UIP,在MPA患者中UIP更常见,GPA患者更多表现为NSIP和OP,而EGPA患者更多的则是未分类肺炎表现。日本的一项人群队列研究中,150例未经治疗的MPA患者97%的患者在HRCT上显示了至少1种肺部异常,其中包括66%的肺间质受累。磨玻璃样改变是最常见,网状结构、小叶间隔增厚和蜂窝状改变也常被发现。气道的改变表现为细支气管炎、支气管壁增厚或支气管扩张[85]。在GPA的HRCT表现中更多发现的是肺部的结节,也有病例报道多在边缘区发现类似肺梗死的不规则楔形实变,也有阶段性支气管壁增厚、支气管扩张以及磨玻璃样改变[86]

5.5. 肺功能检查

作为评估肺受累情况及程度的重要手段,肺功能检查是AAV患者重要的检查项目之一。一项纳入22名韦格纳肉芽肿病患者的研究[87]发现,超过50%气道受累患者的FEV1%和最大呼气流量有减少。大多合并ILD的AAV患者表现为限制性肺通气障碍及扩散功能障碍。一项41名患者的肺功能测试[88]观察到,24%的患者有肺部症状,并且相同百分比的患者表现出DLCO下降,且FEV1%减少至仅10% [89]。合并哮喘的AAV患者肺功能同常规的哮喘患者,表现为可逆性的气道阻塞,同时 DLCO不变或者增加[6]

6. 治疗

在2021年美国风湿病/血管炎学会(ACR)和2022年欧洲抗风湿联盟(EULAR)提出的针对ANCA相关性血管炎的治疗中都将治疗分为了诱导缓解期和维持期两部分。目前针对AAV的治疗主要包括:糖皮质激素、免疫抑制剂、生物制剂、静脉输注丙球以及血浆置换等。目前利妥昔单抗(RTX)在该病治疗中的地位提高并超过环磷酰胺(CTX)。同时基于EGPA发病机制的不同,EULAR 2022年年会上提出针对C5a受体以及抗IL-5的治疗方案。由于使用了激素和免疫抑制剂,为了防止机会性感染,预防性使用磺胺类抗生素也是必要的[90]

奥马珠单抗(omalizumab)是一种IgE单抗可以抑制IgE驱动的嗜酸性粒细胞脱颗粒,并可能导致嗜酸性粒细胞凋亡[14],两个小样本量回顾性分析发现,使用奥马珠单抗可以减少EGPA合并哮喘患者激素的使用量[91] [92],但由于激素使用量的减少和疾病复发高度相关等因素,目前暂未推荐奥马珠单抗的使用。

针对出现DAH的患者,CTX及RTX的疗效差异仍具有争议。在John H [93]等人的随机双盲试验中发现,两者在诱导缓解期对肺泡出血患者的疗效未见差异,然而在一项更大型的研究[94]中发现RTX的疗效更优。最新的研究表明作为重症AAV患者辅助治疗手段的血浆置换,在DAH患者治疗中疗效未见明显差异[94]

对于AAV-ILD的患者,有研究表明在PR3-ANCA 阳性的复发性疾病患者及维持期治疗中,利妥昔单抗更优于环磷酰胺[95]。如果出现了纤维化的表现同时不伴有严重的疾病活动,可以选择同特发性肺纤维化一样的治疗。尼达尼布可以导致成纤维细胞增殖和活化的信号通路中断;哌非尼酮可以通过影响成纤维细胞增殖和纤维化相关蛋白和细胞因子来抗纤维化[96] [97]

7. 总结

ANCA相关性血管炎常累及肺部,而肺部受累也与死亡率的增加相关,目前肺部受累的临床表现研究比较完善,但缺乏对AAV出现肺损伤的高危因素的探索。同时目前关于儿童ANCA相关性血管炎的研究也较少,对儿童期发病的患者的生命全程研究更是甚少。未来可增加探究幼年起病与成年起病患者纳入前瞻的研究,关注临床特征、治疗及预后的差异。在临床特征方面,可以比较儿童与成人患者呼吸道症状的发生率和严重程度,例如咯血和呼吸困难,以及肺部影像学表现,如肺部浸润影和空洞形成在不同年龄段的频率和特点。在治疗方面,可以探讨儿童与成人在免疫抑制剂和糖皮质激素使用剂量、治疗周期上的最佳方案差异,特别是儿童由于生长发育的特点,药物副作用的发生情况需要特别关注。在预后方面,可以追踪不同起病年龄患者的复发率、生存率以及肺功能的长期变化,分析影响预后的关键因素,从而为临床精准治疗提供依据。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sundqvist, M., Gibson, K.M., Bowers, S.M., Niemietz, I. and Brown, K.L. (2020) Anti-Neutrophil Cytoplasmic Antibodies (ANCA): Antigen Interactions and Downstream Effects. Journal of Leukocyte Biology, 108, 617-626.
https://doi.org/10.1002/jlb.3vmr0220-438rr
[2] Charles, L.A., Caldas, M.L.R., Falk, R.J., Terrell, R.S. and Jennette, J.C. (1991) Antibodies against Granule Proteins Activate Neutrophils in Vitro. Journal of Leukocyte Biology, 50, 539-546.
https://doi.org/10.1002/jlb.50.6.539
[3] Niles, J., McCluskey, R., Ahmad, M. and Arnaout, M. (1989) Wegener’s Granulomatosis Autoantigen Is a novel Neutrophil Serine Proteinase [See Comments]. Blood, 74, 1888-1893.
https://doi.org/10.1182/blood.v74.6.1888.1888
[4] Falk, R.J. and Jennette, J.C. (1988) Anti-neutrophil Cytoplasmic Autoantibodies with Specificity for Myeloperoxidase in Patients with Systemic Vasculitis and Idiopathic Necrotizing and Crescentic Glomerulonephritis. New England Journal of Medicine, 318, 1651-1657.
https://doi.org/10.1056/nejm198806233182504
[5] Geetha, D. and Jefferson, J.A. (2020) Anca-associated Vasculitis: Core Curriculum 2020. American Journal of Kidney Diseases, 75, 124-137.
https://doi.org/10.1053/j.ajkd.2019.04.031
[6] Sacoto, G., Boukhlal, S., Specks, U., Flores-Suárez, L.F. and Cornec, D. (2020) Lung Involvement in Anca-Associated Vasculitis. La Presse Médicale, 49, Article ID: 104039.
https://doi.org/10.1016/j.lpm.2020.104039
[7] Zhao, W., Wang, Z., Shi, R., Zhu, Y., Zhang, S., Wang, R., et al. (2022) Environmental Factors Influencing the Risk of Anca-Associated Vasculitis. Frontiers in Immunology, 13, Article 991256.
https://doi.org/10.3389/fimmu.2022.991256
[8] Sebastiani, M., Manfredi, A., Vacchi, C., et al. (2020) Epidemiology and Management of Interstitial Lung Disease in AN-CA-Associated Vasculitis. Clinical and Experimental Rheumatology, 124, 221-231.
[9] Kadura, S. and Raghu, G. (2021) Antineutrophil Cytoplasmic Antibody-Associated Interstitial Lung Disease: A Review. European Respiratory Review, 30, Article ID: 210123.
https://doi.org/10.1183/16000617.0123-2021
[10] Furuta, S., Chaudhry, A.N., Hamano, Y., Fujimoto, S., Nagafuchi, H., Makino, H., et al. (2014) Comparison of Phenotype and Outcome in Microscopic Polyangiitis between Europe and Japan. The Journal of Rheumatology, 41, 325-333.
https://doi.org/10.3899/jrheum.130602
[11] West, S., Arulkumaran, N., Ind, P.W. and Pusey, C.D. (2013) Diffuse Alveolar Haemorrhage in Anca-Associated Vasculitis. Internal Medicine, 52, 5-13.
https://doi.org/10.2169/internalmedicine.52.8863
[12] Karras, A. (2018) Microscopic Polyangiitis: New Insights into Pathogenesis, Clinical Features and Therapy. Seminars in Respiratory and Critical Care Medicine, 39, 459-464.
https://doi.org/10.1055/s-0038-1673387
[13] Unizony, S., Villarreal, M., Miloslavsky, E.M., Lu, N., Merkel, P.A., Spiera, R., et al. (2016) Clinical Outcomes of Treatment of Anti-Neutrophil Cytoplasmic Antibody (Anca)-Associated Vasculitis Based on ANCA Type. Annals of the Rheumatic Diseases, 75, 1166-1169.
https://doi.org/10.1136/annrheumdis-2015-208073
[14] White, J. and Dubey, S. (2023) Eosinophilic Granulomatosis with Polyangiitis: A Review. Autoimmunity Reviews, 22, Article ID: 103219.
https://doi.org/10.1016/j.autrev.2022.103219
[15] Lin, Y., Zheng, W., Tian, X., Zhang, X., Zhang, F. and Dong, Y. (2009) Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Complicated with Diffuse Alveolar Hemorrhage. JCR: Journal of Clinical Rheumatology, 15, 341-344.
https://doi.org/10.1097/rhu.0b013e3181b59581
[16] Martínez-Martínez, M.U., Oostdam, D.A.H. and Abud-Mendoza, C. (2017) Diffuse Alveolar Hemorrhage in Autoimmune Diseases. Current Rheumatology Reports, 19, Article No. 27.
https://doi.org/10.1007/s11926-017-0651-y
[17] Jariwala, M. and Laxer, R.M. (2020) Childhood GPA, EGPA, and MPA. Clinical Immunology, 211, Article ID: 108325.
https://doi.org/10.1016/j.clim.2019.108325
[18] Sacri, A., Chambaraud, T., Ranchin, B., Florkin, B., See, H., Decramer, S., et al. (2015) Clinical Characteristics and Outcomes of Childhood-Onset Anca-Associated Vasculitis: A French Nationwide Study. Nephrology Dialysis Transplantation, 30, i104-i112.
https://doi.org/10.1093/ndt/gfv011
[19] Grisaru, S., Yuen, G.W.H., Miettunen, P.M. and Hamiwka, L.A. (2009) Incidence of Wegener’s Granulomatosis in Children. The Journal of Rheumatology, 37, 440-442.
https://doi.org/10.3899/jrheum.090688
[20] Bernardi, S., Seugé, L. and Boyer, O. (2022) Anca-Associated Vasculitis in Children. Nephrology Dialysis Transplantation, 38, 66-69.
https://doi.org/10.1093/ndt/gfac265
[21] 丁桂霞, 赵非, 吴红梅, 等. 儿童抗中性粒细胞胞浆抗体相关性小血管炎两例分析[C]//浙江省医学会儿科学分会,江苏省医学会儿科学分会, 上海市医学会儿科学分会. 第十三届江浙沪儿科学术会议暨2016年浙江省医学会儿科学学术年会论文汇编. 南京: 南京医科大学附属南京儿童医院, 2016: 970.
[22] 邹丽霞, 卢美萍, 徐益萍, 等. 肺脏受累的儿童抗中性粒细胞胞浆抗体相关小血管炎8例临床回顾分析[C]//浙江省医学会儿科学分会. 2018年浙江省医学会儿科学分会学术年会论文汇编. 杭州: 浙江大学医学院附属儿童医院, 2018: 176-177.
[23] 邹丽霞, 卢美萍, 徐益萍, 等. 儿童抗中性粒细胞胞浆抗体相关性血管炎10例病例系列报告[J]. 中国循证儿科杂志, 2020, 15(4): 297-301.
[24] 刘京祺, 李永珍, 帅兰军, 等. 儿童抗中性粒细胞胞质抗体相关性血管炎临床特征分析[J]. 中国当代儿科杂志, 2024, 26(8): 823-828.
[25] Nakazawa, D., Masuda, S., Tomaru, U. and Ishizu, A. (2018) Pathogenesis and Therapeutic Interventions for Anca-Associated Vasculitis. Nature Reviews Rheumatology, 15, 91-101.
https://doi.org/10.1038/s41584-018-0145-y
[26] Alba, M., Jennette, J. and Falk, R. (2018) Pathogenesis of Anca-Associated Pulmonary Vasculitis. Seminars in Respiratory and Critical Care Medicine, 39, 413-424.
https://doi.org/10.1055/s-0038-1673386
[27] Alberici, F., Martorana, D., Bonatti, F., et al. (2014) Genetics of ANCA-Associated Vasculitides: HLA and beyond. Clinical and Experimental Rheumatology, 32, S90-S97.
[28] Haubitz, M., Dhaygude, A. and Woywodt, A. (2009) Mechanisms and Markers of Vascular Damage in Anca-Associated Vasculitis. Autoimmunity, 42, 605-614.
https://doi.org/10.1080/08916930903002503
[29] Trivioli, G., Marquez, A., Martorana, D., Tesi, M., Kronbichler, A., Lyons, P.A., et al. (2022) Genetics of Anca-Associated Vasculitis: Role in Pathogenesis, Classification and Management. Nature Reviews Rheumatology, 18, 559-574.
https://doi.org/10.1038/s41584-022-00819-y
[30] Biondini, D., Cocconcelli, E., Bernardinello, N., Lorenzoni, G., Rigobello, C., Lococo, S., et al. (2021) Prognostic Role of MUC5B Rs35705950 Genotype in Patients with Idiopathic Pulmonary Fibrosis (IPF) on Antifibrotic Treatment. Respiratory Research, 22, Article No. 98.
https://doi.org/10.1186/s12931-021-01694-z
[31] Salvati, L., Palterer, B. and Parronchi, P. (2020) Spectrum of Fibrotic Lung Diseases. The New England Journal of Medicine, 383, 958-968.
[32] Juge, P.A., Lee, J.S., Ebstein, E., et al. (2018) MUC5B Promoter Variant and Rheumatoid Arthritis with Interstitial Lung Disease. The New England Journal of Medicine, 379, 2209-2219.
[33] Namba, N., Kawasaki, A., Sada, K., Hirano, F., Kobayashi, S., Yamada, H., et al. (2019) Association of MUC5B Promoter Polymorphism with Interstitial Lung Disease in Myeloperoxidase-Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Annals of the Rheumatic Diseases, 78, 1144-1146.
https://doi.org/10.1136/annrheumdis-2018-214263
[34] 韦素珍. 广西汉族人群Toll样受体2(597T/C)基因多态性与ANCA相关性小血管炎相关研究[D]: [硕士学位论文]. 南宁: 广西医科大学, 2016.
[35] Wu, Z., Xu, J., Sun, F., Chen, H., Wu, Q., Zheng, W., et al. (2014) Single Nucleotide Polymorphisms in the Toll-Like Receptor 2 (TLR2) Gene Are Associated with Microscopic Polyangiitis in the Northern Han Chinese Population. Modern Rheumatology, 25, 224-229.
https://doi.org/10.3109/14397595.2014.950034
[36] 项新. 广西汉族人群TGFβ1基因-509C/T多态性与ANCA相关性系统性小血管炎肾损害相关关系的研究[D]: [硕士学位论文]. 南宁: 广西医科大学, 2007.
[37] Pendergraft, W.F., Preston, G.A., Shah, R.R., Tropsha, A., Carter, C.W., Jennette, J.C., et al. (2003) Autoimmunity Is Triggered by CPR-3(105-201), a Protein Complementary to Human Autoantigen Proteinase-3. Nature Medicine, 10, 72-79.
https://doi.org/10.1038/nm968
[38] Tadema, H., Heeringa, P. and Kallenberg, C.G. (2011) Bacterial Infections in Wegener’s Granulomatosis: Mechanisms Potentially Involved in Autoimmune Pathogenesis. Current Opinion in Rheumatology, 23, 366-371.
https://doi.org/10.1097/bor.0b013e328346c332
[39] Stegeman, C.A., Tervaert, J.W.C., Sluiter, W.J., Manson, W.L., de Jong, P.E. and Kallenberg, C.G.M. (1994) Association of Chronic Nasal Carriage of staphylococcus Aureus and Higher Relapse Rates in Wegener Granulomatosis. Annals of Internal Medicine, 120, 12-17.
https://doi.org/10.7326/0003-4819-120-1-199401010-00003
[40] Popa, E.R., Stegeman, C.A., Abdulahad, W.H., van der Meer, B., Arends, J., Manson, W.M., et al. (2007) Staphylococcal Toxic-Shock-Syndrome-Toxin-1 as a Risk Factor for Disease Relapse in Wegener’s Granulomatosis. Rheumatology, 46, 1029-1033.
https://doi.org/10.1093/rheumatology/kem022
[41] Fathallah, N., Ouni, B., Mokni, S., Baccouche, K., Atig, A., Ghariani, N., et al. (2019) Vascularites médicamenteuses: À propos d’une série de 13 cas. Therapies, 74, 347-354.
https://doi.org/10.1016/j.therap.2018.07.005
[42] Weng, C. and Liu, Z. (2019) Drug-induced Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis. Chinese Medical Journal, 132, 2848-2855.
https://doi.org/10.1097/cm9.0000000000000539
[43] Shakoor, M.T., Birkenbach, M.P. and Lynch, M. (2021) Anca-Associated Vasculitis Following Pfizer-Biontech COVID-19 Vaccine. American Journal of Kidney Diseases, 78, 611-613.
https://doi.org/10.1053/j.ajkd.2021.06.016
[44] Yu, F., Chen, M., Gao, Y., Wang, S., Zou, W., Zhao, M., et al. (2007) Clinical and Pathological Features of Renal Involvement in Propylthiouracil-Associated Anca-Positive Vasculitis. American Journal of Kidney Diseases, 49, 607-614.
https://doi.org/10.1053/j.ajkd.2007.01.021
[45] Kitching, A.R., Anders, H., Basu, N., Brouwer, E., Gordon, J., Jayne, D.R., et al. (2020) Anca-Associated Vasculitis. Nature Reviews Disease Primers, 6, Article No. 71.
https://doi.org/10.1038/s41572-020-0204-y
[46] Chen, M., Jayne, D.R.W. and Zhao, M. (2017) Complement in Anca-Associated Vasculitis: Mechanisms and Implications for Management. Nature Reviews Nephrology, 13, 359-367.
https://doi.org/10.1038/nrneph.2017.37
[47] Misra, D.P., Thomas, K.N., Gasparyan, A.Y. and Zimba, O. (2021) Mechanisms of Thrombosis in Anca-Associated Vasculitis. Clinical Rheumatology, 40, 4807-4815.
https://doi.org/10.1007/s10067-021-05790-9
[48] Falk, R.J., Terrell, R.S., Charles, L.A. and Jennette, J.C. (1990) Anti-Neutrophil Cytoplasmic Autoantibodies Induce Neutrophils to Degranulate and Produce Oxygen Radicals in Vitro. Proceedings of the National Academy of Sciences of the United States of America, 87, 4115-4119.
https://doi.org/10.1073/pnas.87.11.4115
[49] Kessenbrock, K., Krumbholz, M., Schönermarck, U., Back, W., Gross, W.L., Werb, Z., et al. (2009) Netting Neutrophils in Autoimmune Small-Vessel Vasculitis. Nature Medicine, 15, 623-625.
https://doi.org/10.1038/nm.1959
[50] Thiam, H.R., Wong, S.L., Wagner, D.D. and Waterman, C.M. (2020) Cellular Mechanisms of Netosis. Annual Review of Cell and Developmental Biology, 36, 191-218.
https://doi.org/10.1146/annurev-cellbio-020520-111016
[51] Clark, S.R., Ma, A.C., Tavener, S.A., McDonald, B., Goodarzi, Z., Kelly, M.M., et al. (2007) Platelet TLR4 Activates Neutrophil Extracellular Traps to Ensnare Bacteria in Septic Blood. Nature Medicine, 13, 463-469.
https://doi.org/10.1038/nm1565
[52] Fuchs, T.A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D.D., et al. (2010) Extracellular DNA Traps Promote Thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 107, 15880-15885.
https://doi.org/10.1073/pnas.1005743107
[53] Frangou, E., Vassilopoulos, D., Boletis, J. and Boumpas, D.T. (2019) An Emerging Role of Neutrophils and Netosis in Chronic Inflammation and Fibrosis in Systemic Lupus Erythematosus (SLE) and Anca-Associated Vasculitides (AAV): Implications for the Pathogenesis and Treatment. Autoimmunity Reviews, 18, 751-760.
https://doi.org/10.1016/j.autrev.2019.06.011
[54] Guilpain, P., Chéreau, C., Goulvestre, C., Servettaz, A., Montani, D., Tamas, N., et al. (2010) The Oxidation Induced by Antimyeloperoxidase Antibodies Triggers Fibrosis in Microscopic Polyangiitis. European Respiratory Journal, 37, 1503-1513.
https://doi.org/10.1183/09031936.00148409
[55] Negreros, M. and Flores-Suárez, L.F. (2021) A Proposed Role of Neutrophil Extracellular Traps and Their Interplay with Fibroblasts in Anca-Associated Vasculitis Lung Fibrosis. Autoimmunity Reviews, 20, Article ID: 102781.
https://doi.org/10.1016/j.autrev.2021.102781
[56] Nakano, Y., Yang, I.V., Walts, A.D., Watson, A.M., Helling, B.A., Fletcher, A.A., et al. (2016) MUC5B Promoter Variant Rs35705950 Affects MUC5B Expression in the Distal Airways in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 193, 464-466.
https://doi.org/10.1164/rccm.201509-1872le
[57] Chintagari, N.R., Jana, S. and Alayash, A.I. (2016) Oxidized Ferric and Ferryl Forms of Hemoglobin Trigger Mitochondrial Dysfunction and Injury in Alveolar Type I Cells. American Journal of Respiratory Cell and Molecular Biology, 55, 288-298.
https://doi.org/10.1165/rcmb.2015-0197oc
[58] Kettritz, R. (2014) With Complements from ANCA Mice. Journal of the American Society of Nephrology, 25, 207-209.
https://doi.org/10.1681/asn.2013101043
[59] Lange, C., Csernok, E., Moosig, F., et al. (2017) Immune Stimulatory Effects of Neutrophil Extracellular Traps in Granulomatosis with Polyangiitis. Clinical and Experimental Rheumatology, 103, 33-39.
[60] Schreiber, A., Xiao, H., Jennette, J.C., Schneider, W., Luft, F.C. and Kettritz, R. (2009) C5a Receptor Mediates Neutrophil Activation and Anca-Induced Glomerulonephritis. Journal of the American Society of Nephrology, 20, 289-298.
https://doi.org/10.1681/asn.2008050497
[61] Foreman, K.E., Vaporciyan, A.A., Bonish, B.K., Jones, M.L., Johnson, K.J., Glovsky, M.M., et al. (1994) C5a-Induced Expression of P-Selectin in Endothelial Cells. Journal of Clinical Investigation, 94, 1147-1155.
https://doi.org/10.1172/jci117430
[62] Schraufstatter, I.U., Trieu, K., Sikora, L., Sriramarao, P. and DiScipio, R. (2002) Complement C3a and C5a Induce Different Signal Transduction Cascades in Endothelial Cells. The Journal of Immunology, 169, 2102-2110.
https://doi.org/10.4049/jimmunol.169.4.2102
[63] Brilland, B., Garnier, A., Chevailler, A., Jeannin, P., Subra, J. and Augusto, J. (2020) Complement Alternative Pathway in Anca-Associated Vasculitis: Two Decades from Bench to Bedside. Autoimmunity Reviews, 19, Article ID: 102424.
https://doi.org/10.1016/j.autrev.2019.102424
[64] Moiseev, S., Lee, J.M., Zykova, A., Bulanov, N., Novikov, P., Gitel, E., et al. (2020) The Alternative Complement Pathway in Anca-Associated Vasculitis: Further Evidence and a Meta-analysis. Clinical and Experimental Immunology, 202, 394-402.
https://doi.org/10.1111/cei.13498
[65] Griese, M. (2018) Chronic Interstitial Lung Disease in Children. European Respiratory Review, 27, Article ID: 170100.
https://doi.org/10.1183/16000617.0100-2017
[66] Podolanczuk, A.J., Wong, A.W., Saito, S., Lasky, J.A., Ryerson, C.J. and Eickelberg, O. (2021) Update in Interstitial Lung Disease 2020. American Journal of Respiratory and Critical Care Medicine, 203, 1343-1352.
https://doi.org/10.1164/rccm.202103-0559up
[67] Nozu, T., Kondo, M., Suzuki, K., Tamaoki, J. and Nagai, A. (2008) A Comparison of the Clinical Features of Anca-Positive and Anca-Negative Idiopathic Pulmonary Fibrosis Patients. Respiration, 77, 407-415.
https://doi.org/10.1159/000183754
[68] Hosoda, C., Baba, T., Hagiwara, E., Ito, H., Matsuo, N., Kitamura, H., et al. (2016) Clinical Features of Usual Interstitial Pneumonia with Anti‐Neutrophil Cytoplasmic Antibody in Comparison with Idiopathic Pulmonary Fibrosis. Respirology, 21, 920-926.
https://doi.org/10.1111/resp.12763
[69] Yamaguchi, K., Yamaguchi, A., Ito, M., Wakamatsu, I., Itai, M., Muto, S., et al. (2022) Clinical Differences among Patients with Myeloperoxidase–antineutrophil Cytoplasmic Antibody-Positive Interstitial Lung Disease. Clinical Rheumatology, 42, 479-488.
https://doi.org/10.1007/s10067-022-06388-5
[70] Sakamoto, S., Suzuki, A., Homma, S., Usui, Y., Shimizu, H., Sekiya, M., et al. (2023) Outcomes and Prognosis of Progressive Pulmonary Fibrosis in Patients with Antineutrophil Cytoplasmic Antibody-Positive Interstitial Lung Disease. Scientific Reports, 13, Article No. 17616.
https://doi.org/10.1038/s41598-023-45027-0
[71] Kronbichler, A., Lee, K.H., Denicolò, S., et al. (2020) Immunopathogenesis of ANCA-Associated Vasculitis. International Journal of Molecular Sciences, 21, Article 7319.
[72] Fernandez Casares, M., Gonzalez, A., Fielli, M., Caputo, F., Bottinelli, Y. and Zamboni, M. (2014) Microscopic Polyangiitis Associated with Pulmonary Fibrosis. Clinical Rheumatology, 34, 1273-1277.
https://doi.org/10.1007/s10067-014-2676-1
[73] Flores-Suárez, L.F., Ruiz, N., Rivera, L.M.S. and Pensado, L. (2015) Reduced Survival in Microscopic Polyangiitis Patients with Pulmonary Fibrosis in a Respiratory Referral Centre. Clinical Rheumatology, 34, 1653-1654.
https://doi.org/10.1007/s10067-015-2967-1
[74] Kronbichler, A., Bajema, I.M., Bruchfeld, A., Mastroianni Kirsztajn, G. and Stone, J.H. (2024) Diagnosis and Management of Anca-Associated Vasculitis. The Lancet, 403, 683-698.
https://doi.org/10.1016/s0140-6736(23)01736-1
[75] Scurt, F.G., Bose, K., Hammoud, B., Brandt, S., Bernhardt, A., Gross, C., et al. (2022) Old Known and Possible New Biomarkers of Anca-Associated Vasculitis. Journal of Autoimmunity, 133, Article ID: 102953.
https://doi.org/10.1016/j.jaut.2022.102953
[76] Conticini, E., d’Alessandro, M., Bergantini, L., Castillo, D., Cameli, P., Frediani, B., et al. (2022) KL-6 in Anca-Associated Vasculitis Patients with and without ILD: A Machine Learning Approach. Biology, 11, Article 94.
https://doi.org/10.3390/biology11010094
[77] 谭立明, 卢晓霞, 张倩, 等. 血清KL-6、DD及CRP在ANCA相关性血管炎合并间质性肺病检测中的临床价值[J]. 中国免疫学杂志, 2021, 37(8): 983-987.
[78] Iwata, Y., Wada, T., Furuichi, K., Kitagawa, K., Kokubo, S., Kobayashi, M., et al. (2001) Serum Levels of KL-6 Reflect Disease Activity of Interstitial Pneumonia Associated with Anca-Related Vasculitis. Internal Medicine, 40, 1093-1097.
https://doi.org/10.2169/internalmedicine.40.1093
[79] 刘玉鹏, 宣依依, 赵震, 等. 抗中性粒细胞胞浆抗体相关性血管炎合并肺间质病变患者血清KL-6水平分析[J]. 河南医学研究, 2019, 28(7): 1165-1168.
[80] 谢家琪. ANCA相关血管炎合并间质性肺疾病发病率、临床特征及预后分析[D]: [硕士学位论文]. 郑州: 郑州大学, 2021.
[81] Salvador, F. (2020) ANCA Associated Vasculitis. European Journal of Internal Medicine, 74, 18-28.
https://doi.org/10.1016/j.ejim.2020.01.011
[82] Park, J.A. (2021) Treatment of Diffuse Alveolar Hemorrhage: Controlling Inflammation and Obtaining Rapid and Effective Hemostasis. International Journal of Molecular Sciences, 22, Article 793.
https://doi.org/10.3390/ijms22020793
[83] Colby, T.V. and Specks, U. (1993) Wegener’s granulomatosis in the 1990s—A Pulmonary Pathologist’s Perspective. Monographs Pathology, 36, 195-218.
[84] Zhou, P., Li, Z., Gao, L., Zhao, B., Que, C., Li, H., et al. (2023) Patterns of Interstitial Lung Disease and Prognosis in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Respiration, 102, 257-273.
https://doi.org/10.1159/000529085
[85] Yamagata, M., Ikeda, K., Tsushima, K., Iesato, K., Abe, M., Ito, T., et al. (2016) Prevalence and Responsiveness to Treatment of Lung Abnormalities on Chest Computed Tomography in Patients with Microscopic Polyangiitis: A Multicenter, Longitudinal, Retrospective Study of One Hundred Fifty Consecutive Hospital‐Based Japanese Patients. Arthritis & Rheumatology, 68, 713-723.
https://doi.org/10.1002/art.39475
[86] Seo, J.B., Im, J.G., Chung, J.W., Song, J.W., Goo, J.M., Park, J.H., et al. (2000) Pulmonary Vasculitis: The Spectrum of Radiological Findings. The British Journal of Radiology, 73, 1224-1231.
https://doi.org/10.1259/bjr.73.875.11144805
[87] Rosenberg, D.M., Weinberger, S.E., Fulmer, J.D., et al. (1980) Functional Correlates of Lung Involvement in Wegener’s Granulomatosis. Use of Pulmonary Function Tests in Staging and Follow-Up. The American Journal of Medicine, 69, 387-394.
[88] Koldingsnes, W., Jacobsen, E.A., Sildnes, T., Hjalmarsen, A. and Nossent, H.C. (2005) Pulmonary Function and High‐resolution CT Findings Five Years after Disease Onset in Patients with Wegener’s Granulomatosis. Scandinavian Journal of Rheumatology, 34, 220-228.
https://doi.org/10.1080/03009740410011271
[89] Polychronopoulos, V.S., Prakash, U.B.S., Golbin, J.M., Edell, E.S. and Specks, U. (2007) Airway Involvement in Wegener’s Granulomatosis. Rheumatic Disease Clinics of North America, 33, 755-775.
https://doi.org/10.1016/j.rdc.2007.09.004
[90] Hellmich, B. and Jayne, D. (2024) Response To: Correspondence on ‘EULAR Recommendations for the Management of Anca-Associated Vasculitis: 2022 Update’ by Hellmich et al. Annals of the Rheumatic Diseases, 83, e21.
https://doi.org/10.1136/ard-2024-225606
[91] Jachiet, M., Samson, M., Cottin, V., Kahn, J., Le Guenno, G., Bonniaud, P., et al. (2016) Anti‐Ige Monoclonal Antibody (Omalizumab) in Refractory and Relapsing Eosinophilic Granulomatosis with Polyangiitis (Churg‐Strauss): Data on Seventeen Patients. Arthritis & Rheumatology, 68, 2274-2282.
https://doi.org/10.1002/art.39663
[92] Celebi Sozener, Z., Gorgulu, B., Mungan, D., Sin, B.A., Misirligil, Z., Aydin, O., et al. (2018) Omalizumab in the Treatment of Eosinophilic Granulomatosis with Polyangiitis (EGPA): Single-Center Experience in 18 Cases. World Allergy Organization Journal, 11, 39.
https://doi.org/10.1186/s40413-018-0217-0
[93] Stone, J.H., Merkel, P.A., Spiera, R., Seo, P., Langford, C.A., Hoffman, G.S., et al. (2010) Rituximab versus Cyclophosphamide for Anca-Associated Vasculitis. New England Journal of Medicine, 363, 221-232.
https://doi.org/10.1056/nejmoa0909905
[94] Cartin‐Ceba, R., Diaz‐Caballero, L., Al‐Qadi, M.O., Tryfon, S., Fervenza, F.C., Ytterberg, S.R., et al. (2016) Diffuse Alveolar Hemorrhage Secondary to Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: Predictors of Respiratory Failure and Clinical Outcomes. Arthritis & Rheumatology, 68, 1467-1476.
https://doi.org/10.1002/art.39562
[95] Kallenberg, C.G. (2015) Pathogenesis and Treatment of ANCA-Associated Vasculitides. Clinical and Experimental Rheumatology, 33, S11-S14.
[96] Morisset, J. and Lee, J.S. (2019) New Trajectories in the Treatment of Interstitial Lung Disease: Treat the Disease or Treat the Underlying Pattern? Current Opinion in Pulmonary Medicine, 25, 442-449.
https://doi.org/10.1097/mcp.0000000000000600
[97] Flaherty, K.R., Wells, A.U., Cottin, V., Devaraj, A., Walsh, S.L.F., Inoue, Y., et al. (2019) Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. New England Journal of Medicine, 381, 1718-1727.
https://doi.org/10.1056/nejmoa1908681