[1]
|
马伦昆, 张智勇. 颅骨游离骨瓣移植后成活机制的研究进展[J]. 组织工程与重建外科, 2021, 17(3): 266-268.
|
[2]
|
Giannoudis, P.V., Einhorn, T.A. and Marsh, D. (2007) Fracture Healing: The Diamond Concept. Injury, 38, S3-S6. https://doi.org/10.1016/s0020-1383(08)70003-2
|
[3]
|
Lu, C., Saless, N., Hu, D., Wang, X., Xing, Z., Hou, H., et al. (2011) Mechanical Stability Affects Angiogenesis during Early Fracture Healing. Journal of Orthopaedic Trauma, 25, 494-499. https://doi.org/10.1097/bot.0b013e31822511e0
|
[4]
|
Jagodzinski, M. and Krettek, C. (2007) Effect of Mechanical Stability on Fracture Healing—An Update. Injury, 38, S3-S10. https://doi.org/10.1016/j.injury.2007.02.005
|
[5]
|
Lienau, J., Schell, H., Duda, G.N., Seebeck, P., Muchow, S. and Bail, H.J. (2005) Initial Vascularization and Tissue Differentiation Are Influenced by Fixation Stability. Journal of Orthopaedic Research, 23, 639-645. https://doi.org/10.1016/j.orthres.2004.09.006
|
[6]
|
Glatt, V., Evans, C.H. and Tetsworth, K. (2017) A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing. Frontiers in Physiology, 7, Article 678. https://doi.org/10.3389/fphys.2016.00678
|
[7]
|
Augat, P., Hollensteiner, M. and von Rüden, C. (2021) The Role of Mechanical Stimulation in the Enhancement of Bone Healing. Injury, 52, S78-S83. https://doi.org/10.1016/j.injury.2020.10.009
|
[8]
|
Claes, L.E., Heigele, C.A., Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevicius, K.J., et al. (1998) Effects of Mechanical Factors on the Fracture Healing Process. Clinical Orthopaedics and Related Research, 355, S132-S147. https://doi.org/10.1097/00003086-199810001-00015
|
[9]
|
Özerdem, Ö.R., Anlatici, R., Bahar, T., Kayaselçuk, F., Barutçu, Ö., Tuncer, I., et al. (2003) Roles of Periosteum, Dura, and Adjacent Bone on Healing of Cranial Osteonecrosis. Journal of Craniofacial Surgery, 14, 371-379. https://doi.org/10.1097/00001665-200305000-00016
|
[10]
|
Gosain, A.K., Gosain, S.A., Sweeney, W.M., Song, L. and Amarante, M.T.J. (2011) Regulation of Osteogenesis and Survival within Bone Grafts to the Calvaria: The Effect of the Dura versus the Pericranium. Plastic and Reconstructive Surgery, 128, 85-94. https://doi.org/10.1097/prs.0b013e31821740cc
|
[11]
|
Zhai, Y., Zhou, Z., Xing, X., Nuzzle, M. and Zhang, X. (2025) Differential Bone and Vessel Type Formation at Superior and Dura Periosteum during Cranial Bone Defect Repair. Bone Research, 13, Article No. 8. https://doi.org/10.1038/s41413-024-00379-9
|
[12]
|
Lemperle, S.M., Calhoun, C.J., Curran, R.W. and Holmes, R.E. (1998) Bony Healing of Large Cranial and Mandibular Defects Protected from Soft-Tissue Interposition: A Comparative Study of Spontaneous Bone Regeneration, Osteoconduction, and Cancellous Autografting in Dogs. Plastic and Reconstructive Surgery, 101, 660-672. https://doi.org/10.1097/00006534-199803000-00013
|
[13]
|
Marupanthorn, K., Tantrawatpan, C., Kheolamai, P., Tantikanlayaporn, D. and Manochantr, S. (2017) Bone Morphogenetic Protein-2 Enhances the Osteogenic Differentiation Capacity of Mesenchymal Stromal Cells Derived from Human Bone Marrow and Umbilical Cord. International Journal of Molecular Medicine, 39, 654-662. https://doi.org/10.3892/ijmm.2017.2872
|
[14]
|
Sheng, M.H.-C., Zhou, X., Bonewald, L.F., Baylink, D.J. and Lau, K.-H.W. (2013) Disruption of the Insulin-Like Growth Factor-1 Gene in Osteocytes Impairs Developmental Bone Growth in Mice. Bone, 52, 133-144. https://doi.org/10.1016/j.bone.2012.09.027
|
[15]
|
Ritz, M., Graumann, U., Gutierrez, B., Hausmann, O. and E, (2010) Traumatic Spinal Cord Injury Alters Angiogenic Factors and TGF-Beta1 That May Affect Vascular Recovery. Current Neurovascular Research, 7, 301-310. https://doi.org/10.2174/156720210793180756
|
[16]
|
刘松, 李文斌, 邵国, 张春阳, 冯士军. 硬脑膜在颅骨/脑膜/脑组织系统生长发育中的作用机制研究进展[J]. 天津医药, 2024, 52(11): 1226-1232.
|
[17]
|
寇正雄, 张海燕, 侯晓峰, 张占阅, 张安龙, 梅小龙, 叶小健, 张春阳. 硬脑膜对颅骨生长影响的研究进展[J]. 中国医刊, 2021, 56(10): 1059-1062.
|
[18]
|
Hobar, C.P., Schreiber, J.S., McCarthy, J.G. and Thomas, P.A. (1993) The Role of the Dura in Cranial Bone Regeneration in the Immature Animal. Plastic and Reconstructive Surgery, 92, 405-410. https://doi.org/10.1097/00006534-199309000-00003
|
[19]
|
Gosain, A.K., Santoro, T.D., Song, L., Capel, C.C., Sudhakar, P.V. and Matloub, H.S. (2003) Osteogenesis in Calvarial Defects: Contribution of the Dura, the Pericranium, and the Surrounding Bone in Adult versus Infant Animals. Plastic and Reconstructive Surgery, 112, 515-527. https://doi.org/10.1097/01.prs.0000070728.56716.51
|
[20]
|
Greenwald, J.A., Mehrara, B.J., Spector, J.A., Fagenholz, P.J., Saadeh, P.B., Steinbrech, D.S., et al. (2000) Immature versus Mature Dura Mater: II. Differential Expression of Genes Important to Calvarial Reossification. Plastic and Reconstructive Surgery, 106, 630-638. https://doi.org/10.1097/00006534-200009030-00016
|
[21]
|
Lowery, J.W. and Rosen, V. (2018) The BMP Pathway and Its Inhibitors in the Skeleton. Physiological Reviews, 98, 2431-2452. https://doi.org/10.1152/physrev.00028.2017
|
[22]
|
Yazici, C., Takahata, M., Reynolds, D.G., Xie, C., Samulski, R.J., Samulski, J., et al. (2011) Self-Complementary AAV2.5-BMP2-Coated Femoral Allografts Mediated Superior Bone Healing versus Live Autografts in Mice with Equivalent Biomechanics to Unfractured Femur. Molecular Therapy, 19, 1416-1425. https://doi.org/10.1038/mt.2010.294
|
[23]
|
Burkus, J.K., Hei, S.E., Gornet, M.F. and Zdeblick, T.A. (2004) The Effectiveness of rhBMP-2 in Replacing Autograft: An Integrated Analysis of Three Human Spine Studies. Orthopedics, 27, 723-728. https://doi.org/10.3928/0147-7447-20040701-12
|
[24]
|
Guo, Y., Yuan, Y., Wu, L., Ho, T., Jing, J., Sugii, H., et al. (2018) BMP-IHH-Mediated Interplay between Mesenchymal Stem Cells and Osteoclasts Supports Calvarial Bone Homeostasis and Repair. Bone Research, 6, Article No. 30. https://doi.org/10.1038/s41413-018-0031-x
|
[25]
|
Vural, A.C., Odabas, S., Korkusuz, P., Yar Sağlam, A.S., Bilgiç, E., Çavuşoğlu, T., et al. (2016) Cranial Bone Regeneration via BMP-2 Encoding Mesenchymal Stem Cells. Artificial Cells, Nanomedicine, and Biotechnology, 45, 544-550. https://doi.org/10.3109/21691401.2016.1160918
|
[26]
|
Zhou, T., Wang, F., Liu, K., Zhou, H. and Shang, J. (2024) An Injectable Carboxymethyl Chitosan-Based Hydrogel with Controlled Release of BMP-2 for Efficient Treatment of Bone Defects. International Journal of Biological Macromolecules, 282, Article 137120. https://doi.org/10.1016/j.ijbiomac.2024.137120
|
[27]
|
Durham, E.L., Howie, R.N., Hall, S., Larson, N., Oakes, B., Houck, R., et al. (2018) Optimizing Bone Wound Healing Using BMP2 with Absorbable Collagen Sponge and Talymed Nanofiber Scaffold. Journal of Translational Medicine, 16, Article No. 321. https://doi.org/10.1186/s12967-018-1697-y
|
[28]
|
Zhang, C., Li, L., Feng, K., Fan, D., Xue, W. and Lu, J. (2017) ‘Repair’ Treg Cells in Tissue Injury. Cellular Physiology and Biochemistry, 43, 2155-2169. https://doi.org/10.1159/000484295
|
[29]
|
Ono, T. and Takayanagi, H. (2017) Osteoimmunology in Bone Fracture Healing. Current Osteoporosis Reports, 15, 367-375. https://doi.org/10.1007/s11914-017-0381-0
|
[30]
|
Okamoto, K., Nakashima, T., Shinohara, M., Negishi-Koga, T., Komatsu, N., Terashima, A., et al. (2017) Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 97, 1295-1349. https://doi.org/10.1152/physrev.00036.2016
|
[31]
|
Einhorn, T.A. and Gerstenfeld, L.C. (2014) Fracture Healing: Mechanisms and Interventions. Nature Reviews Rheumatology, 11, 45-54. https://doi.org/10.1038/nrrheum.2014.164
|
[32]
|
Al-Sebaei, M.O., Daukss, D.M., Belkina, A.C., Kakar, S., Wigner, N.A., Cusher, D., et al. (2014) Role of Fas and Treg Cells in Fracture Healing as Characterized in the Fas-Deficient (Lpr) Mouse Model of Lupus. Journal of Bone and Mineral Research, 29, 1478-1491. https://doi.org/10.1002/jbmr.2169
|
[33]
|
Chen, R., Zhang, X., Li, B., Tonetti, M.S., Yang, Y., Li, Y., et al. (2024) Progranulin-Dependent Repair Function of Regulatory T Cells Drives Bone-Fracture Healing. Journal of Clinical Investigation, 135, e180679. https://doi.org/10.1172/jci180679
|
[34]
|
苟茂荣. 蝶骨平台-鞍结节-鞍底微骨瓣在经鼻内镜入路颅底重建中的结局及影响因素研究[D]: [硕士学位论文]. 延安: 延安大学, 2024.
|
[35]
|
周卓亚. 原位骨瓣在内镜扩大经蝶入路颅底重建的应用[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2021.
|