[1]
|
王延鹏, 李京波. 《心房颤动诊断和治疗中国指南》解读[J]. 心脑血管病防治, 2024, 24(11): 5-9.
|
[2]
|
Wolf, P.A., Dawber, T.R., Thomas, E. and Kannel, W.B. (2011) Epidemiologic Assessment of Chronic Atrial Fibrillation and Risk of Stroke: The Framingham Study. Neurology, 77, 1579-1579. https://doi.org/10.1212/01.wnl.0000407150.80523.a4
|
[3]
|
Lubitz, S.A., Benjamin, E.J. and Ellinor, P.T. (2010) Atrial Fibrillation in Congestive Heart Failure. Heart Failure Clinics, 6, 187-200. https://doi.org/10.1016/j.hfc.2009.11.001
|
[4]
|
赵志宏, 张邢炜. 中国心房颤动流行病学调查20年[J]. 中国心脏起搏与心电生理杂志, 2023, 37(3): 232-235.
|
[5]
|
Ruigómez, A., Johansson, S., Wallander, M. and García Rodríguez, L.A. (2005) Predictors and Prognosis of Paroxysmal Atrial Fibrillation in General Practice in the UK. BMC Cardiovascular Disorders, 5, Article No. 20. https://doi.org/10.1186/1471-2261-5-20
|
[6]
|
Kalarus, Z., Mairesse, G.H., Sokal, A., Boriani, G., Średniawa, B., Casado-Arroyo, R., et al. (2022) Searching for Atrial Fibrillation: Looking Harder, Looking Longer, and in Increasingly Sophisticated Ways. an EHRA Position Paper. Europace, 25, 185-198. https://doi.org/10.1093/europace/euac144
|
[7]
|
Jones, N.R., Taylor, C.J., Hobbs, F.D.R., Bowman, L. and Casadei, B. (2019) Screening for Atrial Fibrillation: A Call for Evidence. European Heart Journal, 41, 1075-1085. https://doi.org/10.1093/eurheartj/ehz834
|
[8]
|
Potpara, T.S., Stankovic, G.R., Beleslin, B.D., Polovina, M.M., Marinkovic, J.M., Ostojic, M.C., et al. (2012) A 12-Year Follow-Up Study of Patients with Newly Diagnosed Lone Atrial Fibrillation. Chest, 141, 339-347. https://doi.org/10.1378/chest.11-0340
|
[9]
|
Padfield, G.J., Steinberg, C., Swampillai, J., Qian, H., Connolly, S.J., Dorian, P., et al. (2017) Progression of Paroxysmal to Persistent Atrial Fibrillation: 10-Year Follow-Up in the Canadian Registry of Atrial Fibrillation. Heart Rhythm, 14, 801-807. https://doi.org/10.1016/j.hrthm.2017.01.038
|
[10]
|
Kerr, C.R., Humphries, K.H., Talajic, M., Klein, G.J., Connolly, S.J., Green, M., et al. (2005) Progression to Chronic Atrial Fibrillation after the Initial Diagnosis of Paroxysmal Atrial Fibrillation: Results from the Canadian Registry of Atrial Fibrillation. American Heart Journal, 149, 489-496. https://doi.org/10.1016/j.ahj.2004.09.053
|
[11]
|
阙冬冬, 宋旭东. 心房重构在房颤中的作用[J]. 实用心电学杂志, 2021, 30(6): 404-407.
|
[12]
|
Cardin, S., Libby, E., Pelletier, P., Le Bouter, S., Shiroshita-Takeshita, A., Le Meur, N., et al. (2007) Contrasting Gene Expression Profiles in Two Canine Models of Atrial Fibrillation. Circulation Research, 100, 425-433. https://doi.org/10.1161/01.res.0000258428.09589.1a
|
[13]
|
Scott, L., Li, N. and Dobrev, D. (2019) Role of Inflammatory Signaling in Atrial Fibrillation. International Journal of Cardiology, 287, 195-200. https://doi.org/10.1016/j.ijcard.2018.10.020
|
[14]
|
Yao, C., Veleva, T., Scott, L., Cao, S., Li, L., Chen, G., et al. (2018) Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation, 138, 2227-2242. https://doi.org/10.1161/circulationaha.118.035202
|
[15]
|
Martins, G.L., Duarte, R.C.F., Vieira, É.L.M., Rocha, N.P., Figueiredo, E.L., Silveira, F.R., et al. (2023) Evaluation of New Potential Inflammatory Markers in Patients with Nonvalvular Atrial Fibrillation. International Journal of Molecular Sciences, 24, Article No. 3326. https://doi.org/10.3390/ijms24043326
|
[16]
|
乔卫卫. 多ADP-核糖聚合酶-1在醛固酮诱导细胞凋亡中的作用及机制[D]: [博士学位论文]. 济南: 山东大学, 2014.
|
[17]
|
Meng, T., Wang, J., Tang, M., Liu, S., Ding, L. and Yan, Y. (2021) Diabetes Mellitus Promotes Atrial Structural Remodeling and Parp-1/Ikkα/NF-κB Pathway Activation in Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 2189-2199. https://doi.org/10.2147/dmso.s300616
|
[18]
|
Valli, H., Ahmad, S., Chadda, K.R., Al-Hadithi, A.B.A.K., Grace, A.A., Jeevaratnam, K., et al. (2017) Age-Dependent Atrial Arrhythmic Phenotype Secondary to Mitochondrial Dysfunction in Pgc-1β Deficient Murine Hearts. Mechanisms of Ageing and Development, 167, 30-45. https://doi.org/10.1016/j.mad.2017.09.002
|
[19]
|
秦小力, 张泰隆, 武忠. 组蛋白去乙酰化酶: 心房颤动治疗的潜在靶点[J]. 中国胸心血管外科临床杂志, 2020, 27(2): 214-217.
|
[20]
|
Brundel, B.J.J.M., Li, J. and Zhang, D. (2020) Role of HDACs in Cardiac Electropathology: Therapeutic Implications for Atrial Fibrillation. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1867, Article ID: 118459. https://doi.org/10.1016/j.bbamcr.2019.03.006
|
[21]
|
Tao, H., Yang, J., Hu, W., Shi, K. and Li, J. (2015) HDAC6 Promotes Cardiac Fibrosis Progression through Suppressing RASSF1A Expression. Cardiology, 133, 18-26. https://doi.org/10.1159/000438781
|
[22]
|
Zhang, D., Hu, X., Li, J., Hoogstra-Berends, F., Zhuang, Q., Esteban, M.A., et al. (2018) Converse Role of Class I and Class IIa HDACs in the Progression of Atrial Fibrillation. Journal of Molecular and Cellular Cardiology, 125, 39-49. https://doi.org/10.1016/j.yjmcc.2018.09.010
|
[23]
|
李靖. 免疫蛋白酶体亚基PSMB10参与血管紧张素II诱导的小鼠心房颤动的机制研究[D]: [博士学位论文]. 大连: 大连医科大学, 2018.
|
[24]
|
谷玉雷, 裴辉, 徐东, 等. 热休克蛋白22减轻转化生长因子β1诱导的成纤维细胞激活[J]. 中华急诊医学杂志, 2020, 29(8): 1072-1077.
|
[25]
|
Yue, Y.N., Li, B., Xu, G.Y. and Yang, S.X. (2021) Treating Atrial Fibrillation with Radiofrequency Ablation to Reverse Changes in MicroRNAs Regulating the Ion-Channel Proteins. Bratislava Medical Journal, 122, 396-404. https://doi.org/10.4149/bll_2021_066
|
[26]
|
Ye, Q., Liu, Q., Ma, X., Bai, S., Chen, P., Zhao, Y., et al. (2021) MicroRNA‐146b‐5p Promotes Atrial Fibrosis in Atrial Fibrillation by Repressing TIMP4. Journal of Cellular and Molecular Medicine, 25, 10543-10553. https://doi.org/10.1111/jcmm.16985
|
[27]
|
胡湖, 吴涛, 雷明盛, 等. miR-145对新西兰大耳白兔快速心房起搏模型心房有效不应期、房颤诱发率及心房电重构的影响[J]. 中国分子心脏病学杂志, 2022, 22(1): 4495-4500.
|
[28]
|
Han, X., Wang, S., Yong, Z., Zhang, X. and Wang, X. (2022) miR-29b Ameliorates Atrial Fibrosis in Rats with Atrial Fibrillation by Targeting TGFβRΙ and Inhibiting the Activation of Smad-2/3 Pathway. Journal of Bioenergetics and Biomembranes, 54, 81-91. https://doi.org/10.1007/s10863-022-09934-7
|
[29]
|
Liu, L., Chen, Y., Shu, J., Tang, C., Jiang, Y. and Luo, F. (2020) Identification of MicroRNAs Enriched in Exosomes in Human Pericardial Fluid of Patients with Atrial Fibrillation Based on Bioinformatic Analysis. Journal of Thoracic Disease, 12, 5617-5627. https://doi.org/10.21037/jtd-20-2066
|
[30]
|
Wang, H., Song, T., Zhao, Y., Zhao, J., Wang, X. and Fu, X. (2020) Long Non-Coding RNA LICPAR Regulates Atrial Fibrosis via TGF-β/Smad Pathway in Atrial Fibrillation. Tissue and Cell, 67, Article ID: 101440. https://doi.org/10.1016/j.tice.2020.101440
|
[31]
|
Cao, F., Li, Z., Ding, W., Yan, L. and Zhao, Q. (2019) LncRNA PVT1 Regulates Atrial Fibrosis via miR-128-3p-SP1-TGF-β1-Smad Axis in Atrial Fibrillation. Molecular Medicine, 25, Article No. 7. https://doi.org/10.1186/s10020-019-0074-5
|
[32]
|
Li, J., Zhang, Q. and Jiao, H. (2021) LncRNA NRON Promotes M2 Macrophage Polarization and Alleviates Atrial Fibrosis through Suppressing Exosomal miR-23a Derived from Atrial Myocytes. Journal of the Formosan Medical Association, 120, 1512-1519. https://doi.org/10.1016/j.jfma.2020.11.004
|
[33]
|
Zhang, P., Sun, J. and Li, W. (2020) Genome-Wide Profiling Reveals Atrial Fibrillation-Related Circular RNAs in Atrial Appendages. Gene, 728, Article ID: 144286. https://doi.org/10.1016/j.gene.2019.144286
|
[34]
|
Zhang, Y., Ke, X., Liu, J., Ma, X., Liu, Y., Liang, D., et al. (2018) Characterization of circRNA-Associated ceRNA Networks in Patients with Nonvalvular Persistent Atrial Fibrillation. Molecular Medicine Reports, 19, 638-650. https://doi.org/10.3892/mmr.2018.9695
|
[35]
|
Lozano-Velasco, E., Franco, D., Aranega, A. and Daimi, H. (2020) Genetics and Epigenetics of Atrial Fibrillation. International Journal of Molecular Sciences, 21, Article No. 5717. https://doi.org/10.3390/ijms21165717
|
[36]
|
Liu, B., Shi, X., Ding, K., Lv, M., Qian, Y., Zhu, S., et al. (2020) The Joint Analysis of Multi-Omics Data Revealed the Methylation-Expression Regulations in Atrial Fibrillation. Frontiers in Bioengineering and Biotechnology, 8, Article No. 187. https://doi.org/10.3389/fbioe.2020.00187
|
[37]
|
Nattel, S., Heijman, J., Zhou, L. and Dobrev, D. (2020) Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy. Circulation Research, 127, 51-72. https://doi.org/10.1161/circresaha.120.316363
|
[38]
|
Qin, M., Zeng, C. and Liu, X. (2019) The Cardiac Autonomic Nervous System: A Target for Modulation of Atrial Fibrillation. Clinical Cardiology, 42, 644-652. https://doi.org/10.1002/clc.23190
|
[39]
|
向家培, 赵劲波, 王勇, 等. 参松养心胶囊对心肌梗死模型小鼠心脏重构的影响[J]. 医药导报, 2016, 35(6): 588-592.
|
[40]
|
Hu, J., Zhang, J., Li, L., Wang, S., Yang, H., Fan, X., et al. (2021) PU.1 Inhibition Attenuates Atrial Fibrosis and Atrial Fibrillation Vulnerability Induced by Angiotensin‐ii by Reducing TGF‐β1/Smads Pathway Activation. Journal of Cellular and Molecular Medicine, 25, 6746-6759. https://doi.org/10.1111/jcmm.16678
|
[41]
|
张莉, 汪莲开, 陈世健, 等. 参松养心胶囊对糖尿病大鼠心房重构及心律失常的影响[J]. 中成药, 2015, 37(12): 2573-2578.
|
[42]
|
Ma, J., Yin, C., Ma, S., Qiu, H., Zheng, C., Chen, Q., et al. (2018) Shensong Yangxin Capsule Reduces Atrial Fibrillation Susceptibility by Inhibiting Atrial Fibrosis in Rats with Post-Myocardial Infarction Heart Failure. Drug Design, Development and Therapy, 12, 3407-3418. https://doi.org/10.2147/dddt.s182834
|
[43]
|
柴松波, 王硕仁, 姚立芳, 等. 参松养心胶囊对大鼠心梗后心室重构及其离体心脏动作电位影响的研究[J]. 北京中医药, 2009, 28(12): 967-971.
|
[44]
|
吴艳婷, 陈云, 刘海亭, 等. 参松养心胶囊和稳心颗粒对大鼠心肌纤维化的影响及其抗心律失常的机制研究[J]. 中西医结合心脑血管病杂志, 2017, 15(8): 924-927.
|
[45]
|
高慧燕, 李学文. 参松养心胶囊对大鼠心室肌细胞L型钙电流和瞬时外向钾电流的抑制作用[J]. 中国药房, 2014, 25(23): 2128-2130.
|
[46]
|
徐涛, 张煜, 王昊, 等. 参松养心胶囊对兔跨室壁复极离散度的影响[J]. 疑难病杂志, 2011, 10(12): 916-918.
|
[47]
|
李宁, 吴相锋, 马克娟, 等. 参松养心胶囊对心室肌细胞钾通道的影响[J]. 疑难病杂志, 2007(3): 133-137.
|
[48]
|
孙莉萍, 李宁, 张树林, 等. 参松养心胶囊对hHCN4起搏电流通道的影响[J]. 中西医结合心脑血管病杂志, 2010, 8(5): 530-531.
|
[49]
|
刘丽敏, 缪洪宇. 参松养心胶囊改善2型糖尿病患者QT离散度及心率变异性研究[J]. 中国中医基础医学杂志, 2012, 18(4): 402-403+406.
|
[50]
|
张淑娣, 赵红宜, 张淑娟, 等. 胆碱能抗炎通路在参松养心粉剂抑制犬阵发性心房颤动中的作用[J]. 武汉大学学报(医学版, 2017, 38(4): 535-538+543.
|
[51]
|
马彦卓, 孔令锋, 南凯, 等. 参松养心胶囊对血管紧张素Ⅱ引起的心肌细胞凋亡的影响[J]. 河南中医, 2017, 37(4): 602-604.
|
[52]
|
李青, 李文强, 王国泰, 等. 参松养心胶囊治疗阵发性心房颤动的效果分析[J]. 中国社区医师, 2024, 40(12): 28-30.
|
[53]
|
王宇航. 参松养心胶囊联合胺碘酮治疗阵发性房颤患者的效果[J]. 中国民康医学, 2021, 33(13): 72-74.
|
[54]
|
张颖. 参松养心胶囊联合普罗帕酮在阵发性房颤治疗中的应用[J]. 实用中西医结合临床, 2021, 21(20): 15-16+73.
|
[55]
|
王用, 史云桃, 王文彬, 等. 胺碘酮联合参松养心胶囊治疗阵发性房颤疗效分析[J]. 中西医结合心血管病电子杂志, 2019, 7(21): 165+168.
|
[56]
|
张新荣. 参松养心胶囊联合美托洛尔治疗阵发性心房颤动的临床观察[J]. 中外健康文摘: 医药月刊, 2008, 5(2): 128-129.
|
[57]
|
刘琰, 柳韶真, 苗莉, 等. 参松养心胶囊联合比索洛尔对老年阵发性房颤患者P波离散度及生活质量的影响[J]. 重庆医学, 2021, 50(20): 3469-3473.
|
[58]
|
张繁之. 参松养心胶囊与普罗帕酮对阵发性心房颤动消融术后患者近远期复发的影响[J]. 中国医学创新, 2022, 19(10): 90-95.
|
[59]
|
杜涛, 戴泽亮, 陈芝蔷, 等. 参松养心胶囊联合西药治疗阵发性房颤疗效和安全性的网状Meta分析[J]. 中华保健医学杂志, 2023, 25(4): 464-466.
|
[60]
|
Jiang, X., Luo, Y., Wang, X., Chen, Y., Wang, T., He, J., et al. (2022) Investigating the Efficiency and Tolerability of Traditional Chinese Formulas Combined with Antiarrhythmic Agents for Paroxysmal Atrial Fibrillation: A Systematic Review and Bayesian Network Meta-Analysis. Phytomedicine, 94, Article ID: 153832. https://doi.org/10.1016/j.phymed.2021.153832
|