3D打印聚合物生物材料在骨组织工程中的应用
3D-Printed Polymeric Biomaterials in Bone Tissue Engineering
DOI: 10.12677/jcpm.2025.42279, PDF, HTML, XML,   
作者: 夏天一, 熊蠡茗*:华中科技大学同济医学院附属协和医院骨科,湖北 武汉
关键词: 聚合物3D打印骨组织工程Polymers 3D Printing Bone Tissue Engineering
摘要: 聚合物是由重复单体组成的大分子,这些单体可以来源于自然资源或人工合成。由于其卓越的物理化学性质和功能特性,聚合物在生物医学领域,特别是在组织工程中,受到了广泛关注。3D打印技术是一种通过数字模型逐层添加材料来制造三维物体的工艺,其与聚合物在骨组织工程中的结合已经得到了广泛认可。本综述概述了3D打印聚合物生物材料在骨组织工程中的应用。文章首先讨论了骨再生的基本过程,然后介绍了聚合物成分和3D打印技术的选择。此外,本综述全面阐述了3D打印聚合物生物材料的功能特性设计。最后,讨论了3D打印聚合物生物材料在骨组织工程中应用的现状、挑战及未来发展方向。
Abstract: Polymers are large molecules composed of repeating subunits called monomers, which can be derived from both natural sources and synthetic processes. Due to their exceptional physicochemical properties and functional characteristics, polymers have garnered significant attention in the biomedical field, particularly in tissue engineering. 3D printing technology, a process that manufactures three-dimensional objects by sequentially adding material based on digital models, has been widely recognized for its integration with polymers in bone tissue engineering. This review provides an overview of 3D-printed polymeric biomaterials in bone tissue engineering. It begins with a discussion of the fundamental process of bone regeneration, followed by a component selection for polymers and 3D printing technologies. Additionally, this review comprehensively addresses the functional properties design of 3D-printed polymeric biomaterials. Finally, the current status, challenges, and future directions for the application of 3D-printed polymeric biomaterials in bone tissue engineering are discussed.
文章引用:夏天一, 熊蠡茗. 3D打印聚合物生物材料在骨组织工程中的应用[J]. 临床个性化医学, 2025, 4(2): 1073-1084. https://doi.org/10.12677/jcpm.2025.42279

1. 引言

骨骼是肌肉骨骼系统的基本组成部分,发挥着许多重要功能,包括支撑、运动、保护、作为钙和磷的储存库、调节电解质平衡以及容纳和保护骨髓等[1]。随着全球老龄化人口的增加以及与年龄相关的代谢、免疫和神经系统疾病的发病率上升,老年人群日益易患骨质疏松和骨关节炎等骨科疾病。这些疾病加上骨折和难以愈合的骨缺损的高发,给临床治疗带来了重大挑战[2]。虽然骨组织对较小缺损具有显著的再生能力,但由骨质疏松等疾病引起的较大骨折和病理性骨缺损通常超过了骨组织的自然再生潜力,给临床治疗带来很大困难[3]。解决这些问题通常需要外部干预,如替换或修复受损骨组织,因此骨移植成为治疗严重骨缺损的关键方法[4]。如今,骨移植技术的需求不断增加,约有1500万患者每年因骨科疾病接受骨移植手术,导致骨科植入物需求急剧上升[5]

骨移植的金标准是自体移植,即从患者的髂骨、近端胫骨或远端股骨采集骨组织,并将其移植至骨缺损部位,以促进骨折愈合和骨再生[6]。虽然自体移植具有优良的免疫相容性、组织相容性和骨传导性,但也存在一些局限性,包括手术时间长、临床操作复杂、供体材料有限以及供体部位的潜在并发症[7]。异种和同种骨移植作为替代方案面临免疫原性、疾病易感性和供体来源等显著挑战。为了满足临床上对符合缺损尺寸、具有足够机械强度、无免疫原性、具有骨传导性且成本低廉的骨移植的需求,骨组织工程(bone tissue engineering, BTE)在骨科领域引起了广泛关注[8]

BTE的核心目标是开发能够有效替代或增强骨缺损部位骨组织的功能性骨替代物,同时避免免疫排斥、血管化或神经化延迟等并发症[9]。BTE植入物必须具备关键的生物材料特性,包括成骨诱导性、成骨导向性、成骨整合性、无免疫原性和生物相容性,同时在宿主环境中保持化学和机械稳定性。此外,它们还需具备可降解性、满足个性化患者需求并适于大规模生产[10]。因此,材料选择和制造方法对BTE的成功至关重要。最初,BTE植入物仅限于简单的金属支架;然而,随着技术的进步,该领域已扩展至包括合金支架、生物陶瓷、纳米颗粒、水凝胶以及多种其他材料和制造技术,如相分离、分子自组装、静电纺丝和泡沫复制[11]。然而,考虑到骨组织本身是具有复杂层次结构和不同孔径的天然纳米复合材料,并且是支持成骨细胞增殖和分化的活性基质,理想的BTE移植物不仅需提供稳定的机械结构,还需整合多种有机成分,如胶原蛋白、细胞、生物活性因子和矿物质[12]。纳米复合生物材料结合了可降解基质与纳米尺度的生物活性组分以及其他有机或无机填料,是目前BTE领域最有前景的材料,因为它们为骨再生提供了必要的物理化学性质和生理特性[13]

纳米复合生物材料必须具备一系列仿生特性,包括孔隙率、生物相容性和成骨导向性,这使得基质材料的选择异常严格[14]。在多种选择中,聚合物因其优异的机械强度、稳定性、增强的细胞黏附性、成骨导向性以及独特的可修饰性和可塑性而成为首选基质材料[15]。聚合物可分为来源于生物的天然聚合物和通过人工合成生产的合成聚合物。每种聚合物根据其物理化学和生理特性具有独特的优缺点,因此根据具体临床需求定制纳米复合材料至关重要。这要求合成的纳米复合材料紧密对接临床需求,注重精准性、智能性和个性化[16]

3D打印是一种增材制造技术,通过精确控制生物墨水或细胞的空间和时间,逐层构建三维物体,相较于传统的材料加工技术,如静电纺丝和自组装,具有更高的精度、定制性、操作简便性和成本效益[17]。此外,作为一种前沿的数字化制造技术,3D打印能够基于患者的个体化影像数据(如计算机断层扫描(Computed Tomography, CT)或磁共振成像(Magnetic Resonance Imaging, MRI)扫描)定制纳米复合骨移植物,精准地匹配骨缺损的尺寸和特征,从而优化愈合过程。因此,基于聚合物的3D打印纳米复合材料在BTE中的应用,已实现了革命性的进展。

本文综述了骨再生过程中各阶段的生理变化、代表性聚合物的特性以及3D打印技术的优势。我们总结了3D打印聚合物的关键性能设计及其在BTE中的应用。此外,还系统地探讨了3D打印聚合物在BTE中进一步临床应用和改进的潜力,以及面临的挑战与机遇。

2. 骨再生的基本过程

骨再生是一个复杂且精细调控的过程,涉及多种细胞和分子成分,包括与骨组织相关的细胞、免疫细胞、神经细胞、血细胞及各种生物活性因子。根据骨再生过程中的细胞和分子事件,骨再生可分为多个阶段,如血肿形成、炎症反应、中期骨痂形成及骨痂成熟[18]。这些细胞和分子的协调作用受到神经系统、免疫系统、循环系统和肌肉骨骼系统的严格调控,统筹整个骨再生过程[19]

在骨折的早期阶段,骨组织及其中广泛分布的血管和神经受到破坏,导致大量血细胞及来自骨髓造血微环境的细胞进入骨折部位,形成血肿,进而启动急性炎症反应[20]。血肿在骨折愈合中的关键作用已被广泛证实。一方面,血细胞、血小板及血浆纤维蛋白原形成纤维网,不仅防止了进一步的出血,还在骨折部位创造了初步的临时基质,为后续成骨细胞和免疫细胞的招募提供了基础[21]。另一方面,血肿中含有大量的血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)及其他与血管生成相关的因子,这些因子诱导强烈的促血管生成活性,刺激血管再生、新骨矿化以及外周神经的浸润[22]。骨折愈合的炎症阶段通常与炎症细胞的涌入和外周感觉神经的敏化相关,这一过程在血管破裂后开始[23]

被敏化的外周神经释放神经递质和神经肽,招募炎症细胞(图1(a))。第一波招募的细胞为中性粒细胞,它们参与抗原呈递,并释放炎性细胞因子,如白介素-6 (Interleukin-6, IL-6)和趋化因子配体2 (C-C Motif Chemokine Ligand 2, CCL2),进一步招募第二波炎症细胞,即单核细胞和巨噬细胞[24]。巨噬细胞被认为是骨免疫调节的关键细胞。在炎症反应的早期阶段,巨噬细胞极化为M1型,促进炎症的发展并招募更多的炎症细胞到骨缺损部位,从而在骨折部位形成一个促炎的免疫微环境[25]。这种促炎表型贯穿于炎症的早中期,M1型巨噬细胞及其他促炎细胞分泌大量炎性因子,如肿瘤坏死因子-α (Tumor Necrosis Factor Alpha, TNF-α)、诱导型一氧化氮合酶(inducible Nitric Oxide Synthase, iNOS)和IL-6,进而促进破骨细胞的增殖、分化和功能活性。巨噬细胞还吞噬坏死的骨碎片,导致显著的骨吸收[26]。约一周后,炎症反应进入晚期,巨噬细胞转变为M2型,分泌IL-10、CCL2、骨形态发生蛋白(Bone Morphogenetic Proteins, BMPs)、成纤维生长因子(Fibroblast Growth Factor, FGF)及其他细胞因子,骨免疫微环境趋向抗炎表型[27] (图1(b))。大量的成骨前体细胞被招募至骨缺损部位,破骨细胞的活性受到抑制,成骨细胞分化得到增强,骨矿化增加,骨愈合过程进入中期骨痂形成阶段[28]

在炎症反应的后期,骨缺损部位的骨膜细胞在骨免疫微环境的调控下增殖并分化为软骨细胞前体,最终经历钙化[29]。成骨细胞吸收这些钙化软骨结构,并招募骨细胞,促进骨矿化和纤维骨的形成[30] (图1(c))。与此同时,炎症阶段招募的大量免疫细胞逐渐发生组织化,形成颗粒组织,并与新生血管及增殖的成骨前体细胞协同作用[31]。纤维骨、透明软骨和颗粒组织共同构成中期骨痂。随着骨折的进展,骨折部位的中期骨痂逐渐增大,并在骨折后第14天达到顶峰[32]。随着骨矿化的加剧,成骨前体细胞开始广泛地进行成骨作用,逐步取代透明软骨和纤维骨。最终,透明软骨和纤维骨转化为板层骨(图1(d)) [33]

板层骨的形成伴随着血管和神经的广泛长入,触发成骨级联反应。成骨细胞进一步增强骨矿化,导致丰富的板层骨矿化。此外,成骨细胞广泛暴露于矿化骨基质,进一步促进松质骨的形成[34]。松质骨和板层骨共同构成健康的骨组织。

(a) 血肿机化期及炎症早期。(b) 炎症晚期。(c) 原始骨痂形成期。(d) 骨痂塑形改造期。

Figure 1. Physiological manifestations during different stages of bone regeneration

1. 骨再生不同阶段的生理表现

3. BTE中的3D打印技术

目前,各种3D打印策略已经被广泛开发,用于生物材料和增材制造,以定制复合材料或仿生结构,广泛应用于医学组织工程[35]。先进技术如熔融沉积建模(Fused Deposition Modeling, FDM)、直接喷墨写入(Direct Ink Writing, DIW)、选择性激光烧结(Selective Laser Sintering, SLS)、立体光刻(Stereolithography, SLA)、支撑浴和牺牲性制造等已出现,并在金属、生物陶瓷和聚合物的3D打印中得到广泛应用[36]

3.1. FDM

FDM是最早用于3D打印聚合物的技术之一,起源可追溯至20世纪80年代。其原料为热塑性聚合物,以丝状或粉末的形式提供。聚合物在加热的打印机挤出器中被熔化,并通过喷嘴挤出,逐层沉积在构建板上,迅速固化。FDM的主要优点包括易于控制、打印速度快、聚合物成型精度高以及优异的机械强度。此外,由于操作简便、成本低廉且原材料无需溶剂或其他添加剂,FDM成为一种具备成本效益的选择。在实际应用中,FDM通常用于大规模增材制造,如解剖模型和外科手术切割引导[37]。然而,该技术也存在一些局限性,如高打印温度可能导致聚合物生物材料或生物活性因子的降解。该技术还受到喷嘴尺寸和聚合物流速的限制,因此不适用于制造多孔的可植入聚合物[37]。未来在材料和打印技术上的改进,可能会使FDM克服这些局限性。

3.2. DIW

DIW是最常用的3D打印方法之一,其过程为将聚合物颗粒在加热腔内熔化形成液滴,然后通过喷嘴使用挤出螺旋或更常见的压缩空气将其挤出[38]。DIW的主要优点在于能够高效且精确地沉积聚合物、生物分子、金属颗粒和活细胞,从而实现复合材料的制造[39]。与FDM相比,DIW的打印速度较慢,但提供了更精确的控制,能够有效调节材料的表面孔隙率和孔径[40]。然而,DIW也存在一些缺点,包括设备复杂、成本较高以及由于喷墨挤出方式造成的材料浪费或污染[41]。近年来,由压电和静电力驱动的DIW打印机技术取得了进展,克服了高温熔化过程中的挑战,实现了低温打印[40]

3.3. SLS

SLS采用10.6 μm波长的CO2激光作为热源,选择性地熔化聚合物粉末,粉末冷却后熔合成打印结构的每一层[42]。SLS具有极高的打印速度(5 kHz)和高分辨率,非常适合制造复杂的大体积医疗器械[43]。然而,SLS也存在显著的缺点。材料无法回收增加了生产成本,并且打印部件的机械性能常常不理想。与FDM类似,SLS中的高打印温度也可能导致聚合物生物材料或生物活性因子的降解[43]

尽管这些技术为生物医学应用提供了有前景的优点,但它们各自也具有固有的局限性。材料科学和打印技术的进步对于提升3D打印聚合物在医学领域的能力和拓宽应用具有至关重要的意义。

常见3D打印技术的性能比较详见表1

Table 1. Comparison of 3D printing technologies applied in BTE

1. 应用于BTE的3D打印技术性能比较

3D打印技术

成本

易操作性

个性化定制性

分辨率

打印速度

参考文献

DIW

100 μm~1 mm

[41]

FDM

100 μm~1 mm

[37]

SLS

50~100 μm

[43]

SLA

10~100 μm

[44]

支撑水浴

25~100 μm

[45]

牺牲材料制造

50~100 μm

[46]

4. 3D打印聚合物生物材料在BTE中的应用

4.1. 个性化定制支架与骨修复导板

除了3D打印医疗器械所共有的一般特性,如生物降解性和生物相容性外,3D打印BTE器械还必须满足骨组织的独特生理需求。具体而言,3D打印器械在骨缺损部位提供的支撑至关重要。这些器械可以部分替代缺失的骨组织,并为骨愈合提供必要的生理环境,从而改善治疗效果[47]。因此,3D打印用于骨组织工程的医疗器械需要具备个性化形状、精确控制的内部结构以及适合骨组织再生的物理化学性质[48]。因此,3D打印个性化支架和骨修复模板的使用,代表了聚合物在骨组织工程中最广泛的应用之一。聚合物具有优异的机械性能和生理特性,结合3D打印的定制能力,可以创建复杂的解剖结构,有效促进骨再生。例如,Han等人使用明胶和聚乳酸–羟基乙酸共聚物(Poly(lactic-co-glycolic acid), PLGA)生产了一系列复合水凝胶支架,其中孔径和机械性能(如弹性模量)通过3D打印精确控制,以模拟骨组织结构,使其适用于各种骨缺损的应用[49] (图2(a))。此外,3D打印的聚合物支架相比传统支架表现出更优越的机械性能[48]。研究表明,3D打印的人工椎体相比传统钛椎体在防止塌陷和降解方面更为有效[48]。虽然3D打印的复合支架展现出较强的机械性能,但对于大规模骨缺损的重建仍显不足。因此,利用3D打印构建复杂结构和个性化设计的能力,以及聚合物的生物相容性,将生物因子或细胞融入支架中以增强支架功能,为3D打印复合支架开辟了广阔的未来前景[50]。有研究将富血小板血浆(Platelet-Rich Plasma, PRP)和骨形态发生蛋白-2 (Bone Morphogenetic Protein-2, BMP-2)嵌入到3D打印的PCL支架中,结果显示,与传统聚己内酯(Polycaprolactone, PCL)支架相比,定制的新型支架加速了缺损部位新骨的形成[51]。通过基于3D打印的梯度生物打印技术,Nakamura等人成功控制了复合支架中来自不同来源的骨细胞的分布密度,使细胞分布与天然骨结构对齐,从而有效调节了骨缺损部位细胞的分化与愈合[52]

4.2. 生物活性结构

生物活性结构是通过3D打印制造的个性化构建体,融合了具有生物调控功能的复合材料。这些结构通常通过将生物活性分子,如生长因子、激素和细胞外基质(extracellular matrix, ECM)成分,与高生物相容性基底材料结合,从而增强其生物调控能力[53]。生物活性表面涂层是广泛应用的生物活性结构之一。研究表明,BMP-2和西洛他唑涂层支架用于颅面和牙槽缺损治疗时,显著促进了骨再生。此外,西洛他唑的存在抑制了BMP-2诱导的异位骨矿化,从而减少了并发症[54] (图2(b))。另一种涂层由聚乙二醇(Polyethylene Glycol, PEG)水凝胶制成,内含软骨素硫酸盐和基质金属蛋白酶敏感肽,能够诱导BMSCs迁移至骨缺损部位并分泌细胞外基质成分,促进骨愈合[52]。除了各种生物活性因子外,去细胞化细胞外基质(decellularized extracellular matrix, dECM)生物墨水作为一种新型生物活性结构,已引起越来越多的关注。dECM与天然细胞外基质结构高度相似,能够增强细胞与基质、细胞间的相互作用,从而改善骨组织愈合的骨内微环境[55]。从软骨和脂肪组织提取的dECM生物墨水,与PCL混合,通过3D打印形成高强度支架。研究表明,这些支架中的dECM为BMSCs的增殖和分化提供了合适的生长环境,诱导其分化为成骨细胞[53]

4.3. 生物递送装置

一系列旨在精确将治疗物质输送到体内特定靶区的设备,如药物输送、生物大分子包装,甚至活细胞培养,被称为生物递送装置[56]。在BTE中,这些能够将成骨药物、生物因子、激素以及如BMSCs等活细胞精确输送到骨缺损部位,确保其在最佳位置发挥作用,从而促进骨再生[57]。3D打印纳米颗粒是最常见的输送形式之一。携带活性分子的高分子可以与支架、水凝胶及其他复合材料结合,在植入后发挥作用。例如,BMP-2纳米颗粒与PCL结合,形成与介孔硅酸钙(Mesoporous Calcium Silicate, MesoCS)支架组合的3D MesoCS/PCL支架,展现出优异的生物相容性和成骨特性。MesoCS促进植入部位羟基磷灰石层的形成,增强骨矿化,而BMP-2则确保持续释放,进一步促进骨再生[58]。低乙酰化纳米纤维素由于与细胞外基质ECM的相似性,可作为聚合物载体用于3D打印合成细胞递送装置中的细胞培养[59] (图2(c))。另一项研究中,研究者3D打印了一种新型多孔空心聚乳酸(Polylactic Acid, PLA)笼,用于同时输送包裹在生物凝胶中的BMP-2和BMSCs,表现出良好的生物相容性,且成功地将BMP-2与BMSCs输送至靶区,产生了满意的成骨效果[60]。传统的3D打印支架在细胞输送方面存在显著局限性,主要由于其单通道、无孔结构,阻碍了治疗物质向需要的特定部位输送,从而影响骨矿化和血管生成。为克服这一挑战,Wu等人通过3D打印采用生物陶瓷、金属和高分子等材料,开发了仿生荷叶根结构的支架。这些支架突破了传统3D打印支架在治疗物质输送上的局限性,大大增加了其作用空间。与传统支架相比,新型支架显著增强了BMSCs的迁移和分化以及小血管的形成[61] (图2(d))。

(a) 基于明胶-PLGA的全层TGF-β1负载复合水凝胶支架。图源:[49],经授权转载;(b) 负载BMP-2和西洛他唑涂层支架。图源:[54],经授权转载;(c) 乙酰化纳米纤维素支架的3D打印构建。图源:[59],经授权转载;(d) 3D打印的仿生荷叶根结构用于细胞递送和BTE。图源:[61],经授权转载。

Figure 2. Application of 3D printed polymers materials in BTE

2. 3D打印多聚物材料在BTE中的应用

5. 总结与未来发展方向

3D打印聚合物骨移植在BTE中具有显著优势,包括个性化、成本效益、高精度和高效性。这些特性使其在骨科中得到广泛应用,特别是在骨折愈合、骨质疏松治疗以及颅面和口腔区域的骨缺损重建中。然而,3D打印技术和聚合物生物材料在应对临床应用中的复杂和动态需求时,仍面临若干限制。

首先,骨组织是一种高度复杂且精细的结构,具有从微米到纳米级别的层次化多孔结构。立体光刻(Stereolithography, SLA)是BTE中最广泛使用的3D打印技术之一,以其高分辨率而闻名。然而,SLA的分辨率范围为10~100微米,这不足以复制骨组织的层次结构[62]。因此,提升3D打印技术的分辨率成为一个关键的研究领域,具有显著的临床转化潜力。例如,SLA的一种亚型——投影微立体光刻(Projection Micro Stereolithography, µSLA)可以实现小于5微米分辨率的活细胞和生物材料的灰度3D图案化[63]。高分辨率3D打印技术的发展并未止步于此;双光子聚合(Two-Photon Polymerization, 2PP)突破了纳米级分辨率(10~100纳米),展示了其精确制造复杂微观和纳米级结构的能力,能够复制天然组织的三维结构和功能[64]

聚合物具有多种有利于骨再生的特性,包括促进细胞粘附、新骨矿化和生物可降解性。此外,聚合物可以与纳米粒子、生物大分子、活细胞和ECM成分轻松结合,创造出具有独特生物活性的复合材料[65]。然而,聚合物种类繁多,每种聚合物具有不同的特性,这为平衡不同聚合物的优点并控制分子药物的加载与释放带来了挑战,这仍然是临床应用中的一个重大问题。

3D打印聚合物生物材料在BTE中的应用已突破传统制造技术的局限,其核心价值体现在通过数字化建模精准重构骨组织的分级多孔结构(孔隙率 > 70%,孔径200~600 μm)和仿生力学环境(弹性模量0.5~3 GPa)。当前研究证实,PCL/羟基磷灰石复合支架通过FDM可实现压缩强度15~25 MPa,与松质骨力学性能匹配度达90%以上[66]。而面向未来临床转化,人工智能(Artificial Intelligence, AI)辅助设计系统、动态生物材料数据库和智能医工协作平台的三元技术融合,正在重塑骨再生支架的研发范式。AI辅助设计系统已从概念验证阶段进入临床应用测试。基于深度卷积生成对抗网络的智能设计平台,可通过分析患者CT数据(层厚 < 0.5 mm)在15分钟内生成具有梯度孔隙结构的支架模型,其拓扑优化算法可确保支架承重区域孔隙率降低至30%同时维持周边区域80%的高孔隙率[67]

动态生物材料数据库的构建正在突破数据孤岛困境。动态生物材料数据库可采用图神经网络建立材料特性–工艺参数–体内性能的多维关系图谱,其实时反馈机制可通过体外降解实验数据(pH值、分子量变化)动态修正体内降解模型,使支架质量损失率预测误差从传统模型的±18%降低至±6% [68]。智能医工协作平台通过数字孪生技术可实现临床需求到工程方案的闭环转化。其集成外科医生的三维标注数据(平均每例手术产生的解剖标记点)与工程师的有限元分析结果,可自动生成满足特定生物力学需求(如椎体融合器需承受 > 500 N压缩载荷)的候选设计方案[69]。平台内置的增强现实模块允许临床团队在虚拟环境中进行植入物适配性评估,使设计迭代周期从传统的4~6周缩短至72小时[70]

这些技术突破正在催生骨再生医学的范式变革:从“经验驱动”转向“数据驱动”,从“通用型植入物”转向“动态适应性治疗系统”。尽管仍需解决临床级AI模型验证、跨平台数据互操作性等挑战,但技术融合带来的指数级创新已清晰可见。随着这些技术的成熟,它们将促进更有效、个性化和可持续的骨再生策略的创建,最终改善临床环境中的患者预后。

NOTES

*通讯作者。

参考文献

[1] Clézardin, P., Coleman, R., Puppo, M., Ottewell, P., Bonnelye, E., Paycha, F., et al. (2021) Bone Metastasis: Mechanisms, Therapies, and Biomarkers. Physiological Reviews, 101, 797-855.
https://doi.org/10.1152/physrev.00012.2019
[2] Ayers, C., Kansagara, D., Lazur, B., Fu, R., Kwon, A. and Harrod, C. (2023) Effectiveness and Safety of Treatments to Prevent Fractures in People with Low Bone Mass or Primary Osteoporosis: A Living Systematic Review and Network Meta-Analysis for the American College of Physicians. Annals of Internal Medicine, 176, 182-195.
https://doi.org/10.7326/m22-0684
[3] Yu, B. and Wang, C. (2022) Osteoporosis and Periodontal Diseases—An Update on Their Association and Mechanistic Links. Periodontology 2000, 89, 99-113.
https://doi.org/10.1111/prd.12422
[4] Miron, R.J. (2023) Optimized Bone Grafting. Periodontology 2000, 94, 143-160.
https://doi.org/10.1111/prd.12517
[5] Urban, I.A., Montero, E., Amerio, E., Palombo, D. and Monje, A. (2023) Techniques on Vertical Ridge Augmentation: Indications and Effectiveness. Periodontology 2000, 93, 153-182.
https://doi.org/10.1111/prd.12471
[6] Urban, I., Montero, E., Sanz‐Sánchez, I., Palombo, D., Monje, A., Tommasato, G., et al. (2023) Minimal Invasiveness in Vertical Ridge Augmentation. Periodontology 2000, 91, 126-144.
https://doi.org/10.1111/prd.12479
[7] Yu, S., Saleh, M.H.A. and Wang, H. (2023) Simultaneous or Staged Lateral Ridge Augmentation: A Clinical Guideline on the Decision‐Making Process. Periodontology 2000, 93, 107-128.
https://doi.org/10.1111/prd.12512
[8] Sun, W., Ye, B., Chen, S., Zeng, L., Lu, H., Wan, Y., et al. (2023) Neuro-Bone Tissue Engineering: Emerging Mechanisms, Potential Strategies, and Current Challenges. Bone Research, 11, Article No. 65.
https://doi.org/10.1038/s41413-023-00302-8
[9] Sivakumar, P.M., Yetisgin, A.A., Sahin, S.B., Demir, E. and Cetinel, S. (2022) Bone Tissue Engineering: Anionic Polysaccharides as Promising Scaffolds. Carbohydrate Polymers, 283, Article ID: 119142.
https://doi.org/10.1016/j.carbpol.2022.119142
[10] Zhang, Z., Hao, Z., Xian, C., Fang, Y., Cheng, B., Wu, J., et al. (2022) Neuro-Bone Tissue Engineering: Multiple Potential Translational Strategies between Nerve and Bone. Acta Biomaterialia, 153, 1-12.
https://doi.org/10.1016/j.actbio.2022.09.023
[11] Guo, L., Liang, Z., Yang, L., Du, W., Yu, T., Tang, H., et al. (2021) The Role of Natural Polymers in Bone Tissue Engineering. Journal of Controlled Release, 338, 571-582.
https://doi.org/10.1016/j.jconrel.2021.08.055
[12] Lewns, F.K., Tsigkou, O., Cox, L.R., Wildman, R.D., Grover, L.M. and Poologasundarampillai, G. (2023) Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for in Vitro Models. Advanced Materials, 35, e2301670.
https://doi.org/10.1002/adma.202301670
[13] Wang, J., Wu, Y., Li, G., Zhou, F., Wu, X., Wang, M., et al. (2024) Engineering Large‐Scale Self‐Mineralizing Bone Organoids with Bone Matrix‐Inspired Hydroxyapatite Hybrid Bioinks. Advanced Materials, 36, e2309875.
https://doi.org/10.1002/adma.202309875
[14] Kim, W., Jang, C.H. and Kim, G. (2022) Bone Tissue Engineering Supported by Bioprinted Cell Constructs with Endothelial Cell Spheroids. Theranostics, 12, 5404-5417.
https://doi.org/10.7150/thno.74852
[15] Laird, N.Z., Acri, T.M., Tingle, K. and Salem, A.K. (2021) Gene-and RNAi-Activated Scaffolds for Bone Tissue Engineering: Current Progress and Future Directions. Advanced Drug Delivery Reviews, 174, 613-627.
https://doi.org/10.1016/j.addr.2021.05.009
[16] Adithya, S.P., Sidharthan, D.S., Abhinandan, R., Balagangadharan, K. and Selvamurugan, N. (2020) Nanosheets-incorporated Bio-Composites Containing Natural and Synthetic Polymers/ceramics for Bone Tissue Engineering. International Journal of Biological Macromolecules, 164, 1960-1972.
https://doi.org/10.1016/j.ijbiomac.2020.08.053
[17] Khorsandi, D., Fahimipour, A., Abasian, P., Saber, S.S., Seyedi, M., Ghanavati, S., et al. (2021) 3D and 4D Printing in Dentistry and Maxillofacial Surgery: Printing Techniques, Materials, and Applications. Acta Biomaterialia, 122, 26-49.
https://doi.org/10.1016/j.actbio.2020.12.044
[18] Donos, N., Akcali, A., Padhye, N., Sculean, A. and Calciolari, E. (2023) Bone Regeneration in Implant Dentistry: Which Are the Factors Affecting the Clinical Outcome? Periodontology 2000, 93, 26-55.
https://doi.org/10.1111/prd.12518
[19] Calciolari, E., Corbella, S., Gkranias, N., Viganó, M., Sculean, A. and Donos, N. (2023) Efficacy of Biomaterials for Lateral Bone Augmentation Performed with Guided Bone Regeneration. A Network Meta‐Analysis. Periodontology 2000, 93, 77-106.
https://doi.org/10.1111/prd.12531
[20] Khare, D., Basu, B. and Dubey, A.K. (2020) Electrical Stimulation and Piezoelectric Biomaterials for Bone Tissue Engineering Applications. Biomaterials, 258, Article ID: 120280.
[21] Abbas, M., Alqahtani, M.S. and Alhifzi, R. (2023) Recent Developments in Polymer Nanocomposites for Bone Regeneration. International Journal of Molecular Sciences, 24, Article 3312.
https://doi.org/10.3390/ijms24043312
[22] Qing, Y., Li, R., Li, S., Li, Y., Wang, X. and Qin, Y. (2020) Advanced Black Phosphorus Nanomaterials for Bone Regeneration. International Journal of Nanomedicine, 15, 2045-2058.
https://doi.org/10.2147/ijn.s246336
[23] Perrin, S. and Colnot, C. (2022) Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration. Current Osteoporosis Reports, 20, 334-343.
https://doi.org/10.1007/s11914-022-00737-8
[24] Tao, J., Miao, R., Liu, G., Qiu, X., Yang, B., Tan, X., et al. (2022) Spatiotemporal Correlation between HIF‐1α and Bone Regeneration. The FASEB Journal, 36, e22520.
https://doi.org/10.1096/fj.202200329rr
[25] Toledano-Osorio, M., Manzano-Moreno, F.J., Ruiz, C., Toledano, M. and Osorio, R. (2021) Testing Active Membranes for Bone Regeneration: A Review. Journal of Dentistry, 105, Article ID: 103580.
https://doi.org/10.1016/j.jdent.2021.103580
[26] Gou, M., Wang, H., Xie, H. and Song, H. (2024) Macrophages in Guided Bone Regeneration: Potential Roles and Future Directions. Frontiers in Immunology, 15, Article 1396759.
https://doi.org/10.3389/fimmu.2024.1396759
[27] Xie, C., Ye, J., Liang, R., Yao, X., Wu, X., Koh, Y., et al. (2021) Advanced Strategies of Biomimetic Tissue‐Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 10, e2100408.
https://doi.org/10.1002/adhm.202100408
[28] Fu, J., Wang, Y., Jiang, Y., Du, J., Xu, J. and Liu, Y. (2021) Systemic Therapy of MSCs in Bone Regeneration: A Systematic Review and Meta-Analysis. Stem Cell Research & Therapy, 12, Article No. 377.
https://doi.org/10.1186/s13287-021-02456-w
[29] Olchowy, A., Olchowy, C., Zawiślak, I., Matys, J. and Dobrzyński, M. (2024) Revolutionizing Bone Regeneration with Grinder-Based Dentin Biomaterial: A Systematic Review. International Journal of Molecular Sciences, 25, Article 9583.
https://doi.org/10.3390/ijms25179583
[30] Lo, K.W. (2022) Effects on Bone Regeneration of Single-Dose Treatment with Osteogenic Small Molecules. Drug Discovery Today, 27, 1538-1544.
https://doi.org/10.1016/j.drudis.2022.02.020
[31] Zhao, X., Yao, M., Wang, Y., Feng, C., Yang, Y., Tian, L., et al. (2025) Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS Applied Materials & Interfaces, 17, 7223-7250.
https://doi.org/10.1021/acsami.4c16786
[32] Li, X., Zhao, Y., Miao, L., An, Y., Wu, F., Han, J., et al. (2025) Strategies for Promoting Neurovascularization in Bone Regeneration. Military Medical Research, 12, Article No. 9.
https://doi.org/10.1186/s40779-025-00596-1
[33] Schindeler, A., McDonald, M.M., Bokko, P. and Little, D.G. (2008) Bone Remodeling during Fracture Repair: The Cellular Picture. Seminars in Cell & Developmental Biology, 19, 459-466.
https://doi.org/10.1016/j.semcdb.2008.07.004
[34] Lu, Y., Mai, Z., Cui, L. and Zhao, X. (2023) Engineering Exosomes and Biomaterial-Assisted Exosomes as Therapeutic Carriers for Bone Regeneration. Stem Cell Research & Therapy, 14, Article No. 55.
https://doi.org/10.1186/s13287-023-03275-x
[35] Murphy, S.V., De Coppi, P. and Atala, A. (2019) Opportunities and Challenges of Translational 3D Bioprinting. Nature Biomedical Engineering, 4, 370-380.
https://doi.org/10.1038/s41551-019-0471-7
[36] Saleh Alghamdi, S., John, S., Roy Choudhury, N. and Dutta, N.K. (2021) Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers, 13, Article 753.
https://doi.org/10.3390/polym13050753
[37] Chia, H.N. and Wu, B.M. (2015) Recent Advances in 3D Printing of Biomaterials. Journal of Biological Engineering, 9, Article No. 4.
https://doi.org/10.1186/s13036-015-0001-4
[38] Li, X., Liu, B., Pei, B., Chen, J., Zhou, D., Peng, J., et al. (2020) Inkjet Bioprinting of Biomaterials. Chemical Reviews, 120, 10793-10833.
https://doi.org/10.1021/acs.chemrev.0c00008
[39] Heinrich, M.A., Liu, W., Jimenez, A., Yang, J., Akpek, A., Liu, X., et al. (2019) 3D Bioprinting: From Benches to Translational Applications. Small, 15, e1805510.
https://doi.org/10.1002/smll.201805510
[40] Hutmacher, D.W., Schantz, T., Zein, I., Ng, K.W., Teoh, S.H. and Tan, K.C. (2001) Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling. Journal of Biomedical Materials Research, 55, 203-216.
https://doi.org/10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.3.co;2-z
[41] Li, J., Rossignol, F. and Macdonald, J. (2015) Inkjet Printing for Biosensor Fabrication: Combining Chemistry and Technology for Advanced Manufacturing. Lab on a Chip, 15, 2538-2558.
https://doi.org/10.1039/c5lc00235d
[42] Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., et al. (2005) Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated via Selective Laser Sintering. Biomaterials, 26, 4817-4827.
https://doi.org/10.1016/j.biomaterials.2004.11.057
[43] Qin, T., Li, X., Long, H., Bin, S. and Xu, Y. (2020) Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications. Materials, 13, Article 2268.
https://doi.org/10.3390/ma13102268
[44] Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N. and Khademhosseini, A. (2015) Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (Gelma) Hydrogels. Biomaterials, 73, 254-271.
https://doi.org/10.1016/j.biomaterials.2015.08.045
[45] Gudapati, H., Yan, J., Huang, Y. and Chrisey, D.B. (2014) Alginate Gelation-Induced Cell Death during Laser-Assisted Cell Printing. Biofabrication, 6, Article ID: 035022.
https://doi.org/10.1088/1758-5082/6/3/035022
[46] Ozbolat, I.T. and Hospodiuk, M. (2016) Current Advances and Future Perspectives in Extrusion-Based Bioprinting. Biomaterials, 76, 321-343.
https://doi.org/10.1016/j.biomaterials.2015.10.076
[47] Koushik, T.M., Miller, C.M. and Antunes, E. (2023) Bone Tissue Engineering Scaffolds: Function of Multi‐Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 12, e2202766.
https://doi.org/10.1002/adhm.202202766
[48] Kang, H., Hollister, S.J., La Marca, F., Park, P. and Lin, C. (2013) Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization with Laser Sintering. Journal of Biomechanical Engineering, 135, Article ID: 101013.
https://doi.org/10.1115/1.4025102
[49] Han, Y., Jia, B., Lian, M., Sun, B., Wu, Q., Sun, B., et al. (2021) High-Precision, Gelatin-Based, Hybrid, Bilayer Scaffolds Using Melt Electro-Writing to Repair Cartilage Injury. Bioactive Materials, 6, 2173-2186.
https://doi.org/10.1016/j.bioactmat.2020.12.018
[50] Gómez-Barrena, E., Rosset, P., Gebhard, F., Hernigou, P., Baldini, N., Rouard, H., et al. (2019) Feasibility and Safety of Treating Non-Unions in Tibia, Femur and Humerus with Autologous, Expanded, Bone Marrow-Derived Mesenchymal Stromal Cells Associated with Biphasic Calcium Phosphate Biomaterials in a Multicentric, Non-Comparative Trial. Biomaterials, 196, 100-108.
https://doi.org/10.1016/j.biomaterials.2018.03.033
[51] Schuckert, K., Jopp, S. and Teoh, S. (2009) Mandibular Defect Reconstruction Using Three-Dimensional Polycaprolactone Scaffold in Combination with Platelet-Rich Plasma and Recombinant Human Bone Morphogenetic Protein-2: De Novo Synthesis of Bone in a Single Case. Tissue Engineering Part A, 15, 493-499.
https://doi.org/10.1089/ten.tea.2008.0033
[52] Nakamura, A., Murata, D., Fujimoto, R., Tamaki, S., Nagata, S., Ikeya, M., et al. (2021) Bio-3D Printing IPSC-Derived Human Chondrocytes for Articular Cartilage Regeneration. Biofabrication, 13, Article ID: 044103.
https://doi.org/10.1088/1758-5090/ac1c99
[53] Tang, M., Xie, Q., Gimple, R.C., Zhong, Z., Tam, T., Tian, J., et al. (2020) Three-Dimensional Bioprinted Glioblastoma Microenvironments Model Cellular Dependencies and Immune Interactions. Cell Research, 30, 833-853.
https://doi.org/10.1038/s41422-020-0338-1
[54] Wang, M.M., Flores, R.L., Witek, L., Torroni, A., Ibrahim, A., Wang, Z., et al. (2019) Dipyridamole-Loaded 3D-Printed Bioceramic Scaffolds Stimulate Pediatric Bone Regeneration in Vivo without Disruption of Craniofacial Growth through Facial Maturity. Scientific Reports, 9, Article No. 18439.
https://doi.org/10.1038/s41598-019-54726-6
[55] Suarez-Martinez, A.D., Sole-Gras, M., Dykes, S.S., Wakefield, Z.R., Bauer, K., Majbour, D., et al. (2021) Bioprinting on Live Tissue for Investigating Cancer Cell Dynamics. Tissue Engineering Part A, 27, 438-453.
https://doi.org/10.1089/ten.tea.2020.0190
[56] Li, X., Lv, H., Zhao, R., Ying, M., Samuriwo, A.T. and Zhao, Y. (2021) Recent Developments in Bio-Scaffold Materials as Delivery Strategies for Therapeutics for Endometrium Regeneration. Materials Today Bio, 11, Article ID: 100101.
https://doi.org/10.1016/j.mtbio.2021.100101
[57] Zhang, M., Hu, W., Cai, C., Wu, Y., Li, J. and Dong, S. (2022) Advanced Application of Stimuli-Responsive Drug Delivery System for Inflammatory Arthritis Treatment. Materials Today Bio, 14, Article ID: 100223.
https://doi.org/10.1016/j.mtbio.2022.100223
[58] Huang, K., Lin, Y., Shie, M. and Lin, C. (2018) Effects of Bone Morphogenic Protein-2 Loaded on the 3D-Printed MesoCS Scaffolds. Journal of the Formosan Medical Association, 117, 879-887.
https://doi.org/10.1016/j.jfma.2018.07.010
[59] Ajdary, R., Huan, S., Zanjanizadeh Ezazi, N., Xiang, W., Grande, R., Santos, H.A., et al. (2019) Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 20, 2770-2778.
https://doi.org/10.1021/acs.biomac.9b00527
[60] Han, S.H., Cha, M., Jin, Y., Lee, K. and Lee, J.H. (2020) BMP-2 and HMSC Dual Delivery onto 3D Printed Pla-Biogel Scaffold for Critical-Size Bone Defect Regeneration in Rabbit Tibia. Biomedical Materials, 16, Article ID: 015019.
https://doi.org/10.1088/1748-605x/aba879
[61] Feng, C., Zhang, W., Deng, C., Li, G., Chang, J., Zhang, Z., et al. (2017) 3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration. Advanced Science, 4, Article ID: 1700401.
https://doi.org/10.1002/advs.201700401
[62] Li, W., Wang, M., Ma, H., Chapa-Villarreal, F.A., Lobo, A.O. and Zhang, Y.S. (2023) Stereolithography Apparatus and Digital Light Processing-Based 3D Bioprinting for Tissue Fabrication. iScience, 26, Article ID: 106039.
https://doi.org/10.1016/j.isci.2023.106039
[63] Saitta, L., Cutuli, E., Celano, G., Tosto, C., Sanalitro, D., Guarino, F., et al. (2023) Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring. Polymers, 15, Article 4461.
https://doi.org/10.3390/polym15224461
[64] O’Halloran, S., Pandit, A., Heise, A. and Kellett, A. (2022) Two‐Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. Advanced Science, 10, e2204072.
https://doi.org/10.1002/advs.202204072
[65] Getzler, Y.D.Y.L. and Mathers, R.T. (2022) Sustainable Polymers: Our Evolving Understanding. Accounts of Chemical Research, 55, 1869-1878.
https://doi.org/10.1021/acs.accounts.2c00194
[66] Wang, F., Tankus, E.B., Santarella, F., Rohr, N., Sharma, N., Märtin, S., et al. (2022) Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering. Polymers, 14, Article 669.
https://doi.org/10.3390/polym14040669
[67] Zhang, L., Onat, B., Dusson, G., McSloy, A., Anand, G., Maurer, R.J., et al. (2022) Equivariant Analytical Mapping of First Principles Hamiltonians to Accurate and Transferable Materials Models. npj Computational Materials, 8, Article No. 158.
https://doi.org/10.1038/s41524-022-00843-2
[68] Francés-Herrero, E., Lopez, R., Hellström, M., de Miguel-Gómez, L., Herraiz, S., Brännström, M., et al. (2022) Bioengineering Trends in Female Reproduction: A Systematic Review. Human Reproduction Update, 28, 798-837.
https://doi.org/10.1093/humupd/dmac025
[69] Lu, Z., Wang, T. and Zhang, R. (2023) Editorial: Affective Brain-Computer Interface in Emotion Artificial Intelligence and Medical Engineering. Frontiers in Computational Neuroscience, 17, Article 1237252.
https://doi.org/10.3389/fncom.2023.1237252
[70] Zhang, P., Ji, L., Zhou, G. and Yao, X. (2022) A Commentary on the Practice of Integrated Medical Curriculum in the Interdisciplinary Field of Medical Engineering. Annals of Medicine, 54, 812-819.
https://doi.org/10.1080/07853890.2022.2050421