[1]
|
Clézardin, P., Coleman, R., Puppo, M., Ottewell, P., Bonnelye, E., Paycha, F., et al. (2021) Bone Metastasis: Mechanisms, Therapies, and Biomarkers. Physiological Reviews, 101, 797-855. https://doi.org/10.1152/physrev.00012.2019
|
[2]
|
Ayers, C., Kansagara, D., Lazur, B., Fu, R., Kwon, A. and Harrod, C. (2023) Effectiveness and Safety of Treatments to Prevent Fractures in People with Low Bone Mass or Primary Osteoporosis: A Living Systematic Review and Network Meta-Analysis for the American College of Physicians. Annals of Internal Medicine, 176, 182-195. https://doi.org/10.7326/m22-0684
|
[3]
|
Yu, B. and Wang, C. (2022) Osteoporosis and Periodontal Diseases—An Update on Their Association and Mechanistic Links. Periodontology 2000, 89, 99-113. https://doi.org/10.1111/prd.12422
|
[4]
|
Miron, R.J. (2023) Optimized Bone Grafting. Periodontology 2000, 94, 143-160. https://doi.org/10.1111/prd.12517
|
[5]
|
Urban, I.A., Montero, E., Amerio, E., Palombo, D. and Monje, A. (2023) Techniques on Vertical Ridge Augmentation: Indications and Effectiveness. Periodontology 2000, 93, 153-182. https://doi.org/10.1111/prd.12471
|
[6]
|
Urban, I., Montero, E., Sanz‐Sánchez, I., Palombo, D., Monje, A., Tommasato, G., et al. (2023) Minimal Invasiveness in Vertical Ridge Augmentation. Periodontology 2000, 91, 126-144. https://doi.org/10.1111/prd.12479
|
[7]
|
Yu, S., Saleh, M.H.A. and Wang, H. (2023) Simultaneous or Staged Lateral Ridge Augmentation: A Clinical Guideline on the Decision‐Making Process. Periodontology 2000, 93, 107-128. https://doi.org/10.1111/prd.12512
|
[8]
|
Sun, W., Ye, B., Chen, S., Zeng, L., Lu, H., Wan, Y., et al. (2023) Neuro-Bone Tissue Engineering: Emerging Mechanisms, Potential Strategies, and Current Challenges. Bone Research, 11, Article No. 65. https://doi.org/10.1038/s41413-023-00302-8
|
[9]
|
Sivakumar, P.M., Yetisgin, A.A., Sahin, S.B., Demir, E. and Cetinel, S. (2022) Bone Tissue Engineering: Anionic Polysaccharides as Promising Scaffolds. Carbohydrate Polymers, 283, Article ID: 119142. https://doi.org/10.1016/j.carbpol.2022.119142
|
[10]
|
Zhang, Z., Hao, Z., Xian, C., Fang, Y., Cheng, B., Wu, J., et al. (2022) Neuro-Bone Tissue Engineering: Multiple Potential Translational Strategies between Nerve and Bone. Acta Biomaterialia, 153, 1-12. https://doi.org/10.1016/j.actbio.2022.09.023
|
[11]
|
Guo, L., Liang, Z., Yang, L., Du, W., Yu, T., Tang, H., et al. (2021) The Role of Natural Polymers in Bone Tissue Engineering. Journal of Controlled Release, 338, 571-582. https://doi.org/10.1016/j.jconrel.2021.08.055
|
[12]
|
Lewns, F.K., Tsigkou, O., Cox, L.R., Wildman, R.D., Grover, L.M. and Poologasundarampillai, G. (2023) Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for in Vitro Models. Advanced Materials, 35, e2301670. https://doi.org/10.1002/adma.202301670
|
[13]
|
Wang, J., Wu, Y., Li, G., Zhou, F., Wu, X., Wang, M., et al. (2024) Engineering Large‐Scale Self‐Mineralizing Bone Organoids with Bone Matrix‐Inspired Hydroxyapatite Hybrid Bioinks. Advanced Materials, 36, e2309875. https://doi.org/10.1002/adma.202309875
|
[14]
|
Kim, W., Jang, C.H. and Kim, G. (2022) Bone Tissue Engineering Supported by Bioprinted Cell Constructs with Endothelial Cell Spheroids. Theranostics, 12, 5404-5417. https://doi.org/10.7150/thno.74852
|
[15]
|
Laird, N.Z., Acri, T.M., Tingle, K. and Salem, A.K. (2021) Gene-and RNAi-Activated Scaffolds for Bone Tissue Engineering: Current Progress and Future Directions. Advanced Drug Delivery Reviews, 174, 613-627. https://doi.org/10.1016/j.addr.2021.05.009
|
[16]
|
Adithya, S.P., Sidharthan, D.S., Abhinandan, R., Balagangadharan, K. and Selvamurugan, N. (2020) Nanosheets-incorporated Bio-Composites Containing Natural and Synthetic Polymers/ceramics for Bone Tissue Engineering. International Journal of Biological Macromolecules, 164, 1960-1972. https://doi.org/10.1016/j.ijbiomac.2020.08.053
|
[17]
|
Khorsandi, D., Fahimipour, A., Abasian, P., Saber, S.S., Seyedi, M., Ghanavati, S., et al. (2021) 3D and 4D Printing in Dentistry and Maxillofacial Surgery: Printing Techniques, Materials, and Applications. Acta Biomaterialia, 122, 26-49. https://doi.org/10.1016/j.actbio.2020.12.044
|
[18]
|
Donos, N., Akcali, A., Padhye, N., Sculean, A. and Calciolari, E. (2023) Bone Regeneration in Implant Dentistry: Which Are the Factors Affecting the Clinical Outcome? Periodontology 2000, 93, 26-55. https://doi.org/10.1111/prd.12518
|
[19]
|
Calciolari, E., Corbella, S., Gkranias, N., Viganó, M., Sculean, A. and Donos, N. (2023) Efficacy of Biomaterials for Lateral Bone Augmentation Performed with Guided Bone Regeneration. A Network Meta‐Analysis. Periodontology 2000, 93, 77-106. https://doi.org/10.1111/prd.12531
|
[20]
|
Khare, D., Basu, B. and Dubey, A.K. (2020) Electrical Stimulation and Piezoelectric Biomaterials for Bone Tissue Engineering Applications. Biomaterials, 258, Article ID: 120280.
|
[21]
|
Abbas, M., Alqahtani, M.S. and Alhifzi, R. (2023) Recent Developments in Polymer Nanocomposites for Bone Regeneration. International Journal of Molecular Sciences, 24, Article 3312. https://doi.org/10.3390/ijms24043312
|
[22]
|
Qing, Y., Li, R., Li, S., Li, Y., Wang, X. and Qin, Y. (2020) Advanced Black Phosphorus Nanomaterials for Bone Regeneration. International Journal of Nanomedicine, 15, 2045-2058. https://doi.org/10.2147/ijn.s246336
|
[23]
|
Perrin, S. and Colnot, C. (2022) Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration. Current Osteoporosis Reports, 20, 334-343. https://doi.org/10.1007/s11914-022-00737-8
|
[24]
|
Tao, J., Miao, R., Liu, G., Qiu, X., Yang, B., Tan, X., et al. (2022) Spatiotemporal Correlation between HIF‐1α and Bone Regeneration. The FASEB Journal, 36, e22520. https://doi.org/10.1096/fj.202200329rr
|
[25]
|
Toledano-Osorio, M., Manzano-Moreno, F.J., Ruiz, C., Toledano, M. and Osorio, R. (2021) Testing Active Membranes for Bone Regeneration: A Review. Journal of Dentistry, 105, Article ID: 103580. https://doi.org/10.1016/j.jdent.2021.103580
|
[26]
|
Gou, M., Wang, H., Xie, H. and Song, H. (2024) Macrophages in Guided Bone Regeneration: Potential Roles and Future Directions. Frontiers in Immunology, 15, Article 1396759. https://doi.org/10.3389/fimmu.2024.1396759
|
[27]
|
Xie, C., Ye, J., Liang, R., Yao, X., Wu, X., Koh, Y., et al. (2021) Advanced Strategies of Biomimetic Tissue‐Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 10, e2100408. https://doi.org/10.1002/adhm.202100408
|
[28]
|
Fu, J., Wang, Y., Jiang, Y., Du, J., Xu, J. and Liu, Y. (2021) Systemic Therapy of MSCs in Bone Regeneration: A Systematic Review and Meta-Analysis. Stem Cell Research & Therapy, 12, Article No. 377. https://doi.org/10.1186/s13287-021-02456-w
|
[29]
|
Olchowy, A., Olchowy, C., Zawiślak, I., Matys, J. and Dobrzyński, M. (2024) Revolutionizing Bone Regeneration with Grinder-Based Dentin Biomaterial: A Systematic Review. International Journal of Molecular Sciences, 25, Article 9583. https://doi.org/10.3390/ijms25179583
|
[30]
|
Lo, K.W. (2022) Effects on Bone Regeneration of Single-Dose Treatment with Osteogenic Small Molecules. Drug Discovery Today, 27, 1538-1544. https://doi.org/10.1016/j.drudis.2022.02.020
|
[31]
|
Zhao, X., Yao, M., Wang, Y., Feng, C., Yang, Y., Tian, L., et al. (2025) Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS Applied Materials & Interfaces, 17, 7223-7250. https://doi.org/10.1021/acsami.4c16786
|
[32]
|
Li, X., Zhao, Y., Miao, L., An, Y., Wu, F., Han, J., et al. (2025) Strategies for Promoting Neurovascularization in Bone Regeneration. Military Medical Research, 12, Article No. 9. https://doi.org/10.1186/s40779-025-00596-1
|
[33]
|
Schindeler, A., McDonald, M.M., Bokko, P. and Little, D.G. (2008) Bone Remodeling during Fracture Repair: The Cellular Picture. Seminars in Cell & Developmental Biology, 19, 459-466. https://doi.org/10.1016/j.semcdb.2008.07.004
|
[34]
|
Lu, Y., Mai, Z., Cui, L. and Zhao, X. (2023) Engineering Exosomes and Biomaterial-Assisted Exosomes as Therapeutic Carriers for Bone Regeneration. Stem Cell Research & Therapy, 14, Article No. 55. https://doi.org/10.1186/s13287-023-03275-x
|
[35]
|
Murphy, S.V., De Coppi, P. and Atala, A. (2019) Opportunities and Challenges of Translational 3D Bioprinting. Nature Biomedical Engineering, 4, 370-380. https://doi.org/10.1038/s41551-019-0471-7
|
[36]
|
Saleh Alghamdi, S., John, S., Roy Choudhury, N. and Dutta, N.K. (2021) Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers, 13, Article 753. https://doi.org/10.3390/polym13050753
|
[37]
|
Chia, H.N. and Wu, B.M. (2015) Recent Advances in 3D Printing of Biomaterials. Journal of Biological Engineering, 9, Article No. 4. https://doi.org/10.1186/s13036-015-0001-4
|
[38]
|
Li, X., Liu, B., Pei, B., Chen, J., Zhou, D., Peng, J., et al. (2020) Inkjet Bioprinting of Biomaterials. Chemical Reviews, 120, 10793-10833. https://doi.org/10.1021/acs.chemrev.0c00008
|
[39]
|
Heinrich, M.A., Liu, W., Jimenez, A., Yang, J., Akpek, A., Liu, X., et al. (2019) 3D Bioprinting: From Benches to Translational Applications. Small, 15, e1805510. https://doi.org/10.1002/smll.201805510
|
[40]
|
Hutmacher, D.W., Schantz, T., Zein, I., Ng, K.W., Teoh, S.H. and Tan, K.C. (2001) Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling. Journal of Biomedical Materials Research, 55, 203-216. https://doi.org/10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.3.co;2-z
|
[41]
|
Li, J., Rossignol, F. and Macdonald, J. (2015) Inkjet Printing for Biosensor Fabrication: Combining Chemistry and Technology for Advanced Manufacturing. Lab on a Chip, 15, 2538-2558. https://doi.org/10.1039/c5lc00235d
|
[42]
|
Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., et al. (2005) Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated via Selective Laser Sintering. Biomaterials, 26, 4817-4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
|
[43]
|
Qin, T., Li, X., Long, H., Bin, S. and Xu, Y. (2020) Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications. Materials, 13, Article 2268. https://doi.org/10.3390/ma13102268
|
[44]
|
Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N. and Khademhosseini, A. (2015) Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (Gelma) Hydrogels. Biomaterials, 73, 254-271. https://doi.org/10.1016/j.biomaterials.2015.08.045
|
[45]
|
Gudapati, H., Yan, J., Huang, Y. and Chrisey, D.B. (2014) Alginate Gelation-Induced Cell Death during Laser-Assisted Cell Printing. Biofabrication, 6, Article ID: 035022. https://doi.org/10.1088/1758-5082/6/3/035022
|
[46]
|
Ozbolat, I.T. and Hospodiuk, M. (2016) Current Advances and Future Perspectives in Extrusion-Based Bioprinting. Biomaterials, 76, 321-343. https://doi.org/10.1016/j.biomaterials.2015.10.076
|
[47]
|
Koushik, T.M., Miller, C.M. and Antunes, E. (2023) Bone Tissue Engineering Scaffolds: Function of Multi‐Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 12, e2202766. https://doi.org/10.1002/adhm.202202766
|
[48]
|
Kang, H., Hollister, S.J., La Marca, F., Park, P. and Lin, C. (2013) Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization with Laser Sintering. Journal of Biomechanical Engineering, 135, Article ID: 101013. https://doi.org/10.1115/1.4025102
|
[49]
|
Han, Y., Jia, B., Lian, M., Sun, B., Wu, Q., Sun, B., et al. (2021) High-Precision, Gelatin-Based, Hybrid, Bilayer Scaffolds Using Melt Electro-Writing to Repair Cartilage Injury. Bioactive Materials, 6, 2173-2186. https://doi.org/10.1016/j.bioactmat.2020.12.018
|
[50]
|
Gómez-Barrena, E., Rosset, P., Gebhard, F., Hernigou, P., Baldini, N., Rouard, H., et al. (2019) Feasibility and Safety of Treating Non-Unions in Tibia, Femur and Humerus with Autologous, Expanded, Bone Marrow-Derived Mesenchymal Stromal Cells Associated with Biphasic Calcium Phosphate Biomaterials in a Multicentric, Non-Comparative Trial. Biomaterials, 196, 100-108. https://doi.org/10.1016/j.biomaterials.2018.03.033
|
[51]
|
Schuckert, K., Jopp, S. and Teoh, S. (2009) Mandibular Defect Reconstruction Using Three-Dimensional Polycaprolactone Scaffold in Combination with Platelet-Rich Plasma and Recombinant Human Bone Morphogenetic Protein-2: De Novo Synthesis of Bone in a Single Case. Tissue Engineering Part A, 15, 493-499. https://doi.org/10.1089/ten.tea.2008.0033
|
[52]
|
Nakamura, A., Murata, D., Fujimoto, R., Tamaki, S., Nagata, S., Ikeya, M., et al. (2021) Bio-3D Printing IPSC-Derived Human Chondrocytes for Articular Cartilage Regeneration. Biofabrication, 13, Article ID: 044103. https://doi.org/10.1088/1758-5090/ac1c99
|
[53]
|
Tang, M., Xie, Q., Gimple, R.C., Zhong, Z., Tam, T., Tian, J., et al. (2020) Three-Dimensional Bioprinted Glioblastoma Microenvironments Model Cellular Dependencies and Immune Interactions. Cell Research, 30, 833-853. https://doi.org/10.1038/s41422-020-0338-1
|
[54]
|
Wang, M.M., Flores, R.L., Witek, L., Torroni, A., Ibrahim, A., Wang, Z., et al. (2019) Dipyridamole-Loaded 3D-Printed Bioceramic Scaffolds Stimulate Pediatric Bone Regeneration in Vivo without Disruption of Craniofacial Growth through Facial Maturity. Scientific Reports, 9, Article No. 18439. https://doi.org/10.1038/s41598-019-54726-6
|
[55]
|
Suarez-Martinez, A.D., Sole-Gras, M., Dykes, S.S., Wakefield, Z.R., Bauer, K., Majbour, D., et al. (2021) Bioprinting on Live Tissue for Investigating Cancer Cell Dynamics. Tissue Engineering Part A, 27, 438-453. https://doi.org/10.1089/ten.tea.2020.0190
|
[56]
|
Li, X., Lv, H., Zhao, R., Ying, M., Samuriwo, A.T. and Zhao, Y. (2021) Recent Developments in Bio-Scaffold Materials as Delivery Strategies for Therapeutics for Endometrium Regeneration. Materials Today Bio, 11, Article ID: 100101. https://doi.org/10.1016/j.mtbio.2021.100101
|
[57]
|
Zhang, M., Hu, W., Cai, C., Wu, Y., Li, J. and Dong, S. (2022) Advanced Application of Stimuli-Responsive Drug Delivery System for Inflammatory Arthritis Treatment. Materials Today Bio, 14, Article ID: 100223. https://doi.org/10.1016/j.mtbio.2022.100223
|
[58]
|
Huang, K., Lin, Y., Shie, M. and Lin, C. (2018) Effects of Bone Morphogenic Protein-2 Loaded on the 3D-Printed MesoCS Scaffolds. Journal of the Formosan Medical Association, 117, 879-887. https://doi.org/10.1016/j.jfma.2018.07.010
|
[59]
|
Ajdary, R., Huan, S., Zanjanizadeh Ezazi, N., Xiang, W., Grande, R., Santos, H.A., et al. (2019) Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 20, 2770-2778. https://doi.org/10.1021/acs.biomac.9b00527
|
[60]
|
Han, S.H., Cha, M., Jin, Y., Lee, K. and Lee, J.H. (2020) BMP-2 and HMSC Dual Delivery onto 3D Printed Pla-Biogel Scaffold for Critical-Size Bone Defect Regeneration in Rabbit Tibia. Biomedical Materials, 16, Article ID: 015019. https://doi.org/10.1088/1748-605x/aba879
|
[61]
|
Feng, C., Zhang, W., Deng, C., Li, G., Chang, J., Zhang, Z., et al. (2017) 3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration. Advanced Science, 4, Article ID: 1700401. https://doi.org/10.1002/advs.201700401
|
[62]
|
Li, W., Wang, M., Ma, H., Chapa-Villarreal, F.A., Lobo, A.O. and Zhang, Y.S. (2023) Stereolithography Apparatus and Digital Light Processing-Based 3D Bioprinting for Tissue Fabrication. iScience, 26, Article ID: 106039. https://doi.org/10.1016/j.isci.2023.106039
|
[63]
|
Saitta, L., Cutuli, E., Celano, G., Tosto, C., Sanalitro, D., Guarino, F., et al. (2023) Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring. Polymers, 15, Article 4461. https://doi.org/10.3390/polym15224461
|
[64]
|
O’Halloran, S., Pandit, A., Heise, A. and Kellett, A. (2022) Two‐Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. Advanced Science, 10, e2204072. https://doi.org/10.1002/advs.202204072
|
[65]
|
Getzler, Y.D.Y.L. and Mathers, R.T. (2022) Sustainable Polymers: Our Evolving Understanding. Accounts of Chemical Research, 55, 1869-1878. https://doi.org/10.1021/acs.accounts.2c00194
|
[66]
|
Wang, F., Tankus, E.B., Santarella, F., Rohr, N., Sharma, N., Märtin, S., et al. (2022) Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering. Polymers, 14, Article 669. https://doi.org/10.3390/polym14040669
|
[67]
|
Zhang, L., Onat, B., Dusson, G., McSloy, A., Anand, G., Maurer, R.J., et al. (2022) Equivariant Analytical Mapping of First Principles Hamiltonians to Accurate and Transferable Materials Models. npj Computational Materials, 8, Article No. 158. https://doi.org/10.1038/s41524-022-00843-2
|
[68]
|
Francés-Herrero, E., Lopez, R., Hellström, M., de Miguel-Gómez, L., Herraiz, S., Brännström, M., et al. (2022) Bioengineering Trends in Female Reproduction: A Systematic Review. Human Reproduction Update, 28, 798-837. https://doi.org/10.1093/humupd/dmac025
|
[69]
|
Lu, Z., Wang, T. and Zhang, R. (2023) Editorial: Affective Brain-Computer Interface in Emotion Artificial Intelligence and Medical Engineering. Frontiers in Computational Neuroscience, 17, Article 1237252. https://doi.org/10.3389/fncom.2023.1237252
|
[70]
|
Zhang, P., Ji, L., Zhou, G. and Yao, X. (2022) A Commentary on the Practice of Integrated Medical Curriculum in the Interdisciplinary Field of Medical Engineering. Annals of Medicine, 54, 812-819. https://doi.org/10.1080/07853890.2022.2050421
|