[1]
|
Boyle, R.W. and Jonasson, I.R. (1984) The Geochemistry of Antimony and Its Use as an Indicator Element in Geochemical Prospecting. Journal of Geochemical Exploration, 20, 223-302. https://doi.org/10.1016/0375-6742(84)90071-2
|
[2]
|
张天羽, 李聪颖, 孙赛军, 等. 锑的地球化学性质与华南锑矿带成因初探[J]. 岩石学报, 2020, 36(1): 44-54.
|
[3]
|
Williams-Jones, A.E. and Norman, C. (1997) Controls of Mineral Parageneses in the System Fe-Sb-S-O. Economic Geology, 92, 308-324. https://doi.org/10.2113/gsecongeo.92.3.308
|
[4]
|
Long, Z.Y., Qiu, K.F., Santosh, M., et al. (2022) Fingerprinting the Metal Source and Cycling of the World’s Largest Antimony Deposit in Xikuangshan, China. GSA Bulletin, 135, 286-294.
|
[5]
|
董延涛, 袁博, 牛颖超. 我国锑矿资源产业高质量发展研究[J]. 现代矿业, 2020, 36(10): 19-21.
|
[6]
|
Ding, J., Zhang, Y., Ma, Y., Wang, Y., Zhang, J. and Zhang, T. (2021) Metallogenic Characteristics and Resource Potential of Antimony in China. Journal of Geochemical Exploration, 230, Article ID: 106834. https://doi.org/10.1016/j.gexplo.2021.106834
|
[7]
|
Tzamos, E., Grieco, G., Bussolesi, M., et al. (2019) Mineralogical and Geochemical Investigation of Sb-Bearing Minerals from Greek Ores. 15th International Congress of the Geological Society of Greece, Athens, 22-24 May 2019, 1-3.
|
[8]
|
李中平. 中国锑行业发展现状及高质量发展建议[J]. 中国国土资源经济, 2021, 34(3): 17-20, 68.
|
[9]
|
USGS (2022) Mineral Commodity Summaries 2022.
|
[10]
|
王永磊, 徐珏, 张长青, 等. 中国锑矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2208-2215.
|
[11]
|
余金杰, 闫升好. 锑矿床研究若干问题初探[J]. 矿床地质, 2000, 19(2): 166-172.
|
[12]
|
张国林, 姚金炎, 谷相平. 中国锑矿床类型及时空分布规律[J]. 矿产与地质, 1998, 12(5): 19-25.
|
[13]
|
易建斌. 全球锑矿床成矿学基本特征及超大型锑矿床成矿背景初探[J]. 大地构造与成矿学, 1994(3): 199-208.
|
[14]
|
丁建华, 杨毅恒, 邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质, 2013, 40(3): 846-858.
|
[15]
|
肖启明, 曾笃仁, 金富秋, 等. 中国锑矿床时空分布规律及找矿方向[J]. 地质与勘探, 1992(12): 9-14.
|
[16]
|
Jiada, W. (1993) Antimony Vein Deposits of China. Ore Geology Reviews, 8, 213-232. https://doi.org/10.1016/0169-1368(93)90017-s
|
[17]
|
唐宇蔷, 孔华, 吴堑虹, 等. 板溪锑矿床流体包裹体研究[J]. 地质找矿论丛, 2017, 32(3): 391-396.
|
[18]
|
Li, H., Wu, Q., Evans, N.J., Zhou, Z., Kong, H., Xi, X., et al. (2018) Geochemistry and Geochronology of the Banxi Sb Deposit: Implications for Fluid Origin and the Evolution of Sb Mineralization in Central-Western Hunan, South China. Gondwana Research, 55, 112-134. https://doi.org/10.1016/j.gr.2017.11.010
|
[19]
|
Fu, S., Wang, T., Yan, J., Pan, L., Wei, L., Lan, Q., et al. (2022) Formation of the Banxi Sb Deposit in Eastern Yangtze Block: Evidence from Individual Fluid Inclusion Analyses, Trace Element Chemistry, and He-Ar-S Isotopes. Ore Geology Reviews, 146, Article ID: 104949. https://doi.org/10.1016/j.oregeorev.2022.104949
|
[20]
|
Deng, C., Zhang, J., Hu, R., Luo, K., Zhu, Y. and Yin, R. (2021) Mercury Isotope Constraints on the Genesis of Late Mesozoic Sb Deposits in South China. Science China Earth Sciences, 65, 269-281. https://doi.org/10.1007/s11430-021-9851-x
|
[21]
|
林芳梅. 湘中锡矿山锑矿床成矿流体研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014.
|
[22]
|
金景福. 超大型锑矿床定位机制剖析——以锡矿山锑矿床为例[J]. 矿物岩石地球化学通报, 2002, 21(3): 145-151.
|
[23]
|
A’xiang, H. and Jiantang, P. (2018) Fluid Inclusions and Ore Precipitation Mechanism in the Giant Xikuangshan Mesothermal Antimony Deposit, South China: Conventional and Infrared Microthermometric Constraints. Ore Geology Reviews, 95, 49-64. https://doi.org/10.1016/j.oregeorev.2018.02.005
|
[24]
|
Fu, S., Hu, R., Yin, R., Yan, J., Mi, X., Song, Z., et al. (2019) Mercury and in Situ Sulfur Isotopes as Constraints on the Metal and Sulfur Sources for the World’s Largest Sb Deposit at Xikuangshan, Southern China. Mineralium Deposita, 55, 1353-1364. https://doi.org/10.1007/s00126-019-00940-1
|
[25]
|
Fu, S., Lan, Q. and Yan, J. (2020) Trace Element Chemistry of Hydrothermal Quartz and Its Genetic Significance: A Case Study from the Xikuangshan and Woxi Giant Sb Deposits in Southern China. Ore Geology Reviews, 126, Article ID: 103732. https://doi.org/10.1016/j.oregeorev.2020.103732
|
[26]
|
Zhai, D., Mathur, R., Liu, S., Liu, J., Godfrey, L., Wang, K., et al. (2021) Antimony Isotope Fractionation in Hydrothermal Systems. Geochimica et Cosmochimica Acta, 306, 84-97. https://doi.org/10.1016/j.gca.2021.05.031
|
[27]
|
李俊, 宋焕斌. 贵州半坡锑矿床成矿流体地球化学[J]. 昆明理工大学学报, 1999(1): 79-85.
|
[28]
|
肖宪国. 贵州半坡锑矿床年代学、地球化学及成因[D]: [博士学位论文]. 昆明: 昆明理工大学, 2014.
|
[29]
|
Nesbitt, B.E., Muehlenbachs, K. and Murowchick, J.B. (1989) Genetic Implications of Stable Isotope Characteristics of Mesothermal Au Deposits and Related Sb and Hg Deposits in the Canadian Cordillera. Economic Geology, 84, 1489-1506. https://doi.org/10.2113/gsecongeo.84.6.1489
|
[30]
|
Dill, H.G., Weiser, T., Bernhardt, I.R. and Kilibarda, C.R. (1995) The Composite Gold-Antimony Vein Deposit at Kharma (Bolivia). Economic Geology, 90, 51-66. https://doi.org/10.2113/gsecongeo.90.1.51
|
[31]
|
Dill, H.G., Pertold, Z. and Riera Kilibarda, C. (1997) Sediment-hosted and Volcanic-Hosted Sb Vein Mineralization in the Potosi Region, Central Bolivia. Economic Geology, 92, 623-632. https://doi.org/10.2113/gsecongeo.92.5.623
|
[32]
|
Dill, H.G. (1998) Evolution of Sb Mineralisation in Modern Fold Belts: A Comparison of the Sb Mineralisation in the Central Andes (Bolivia) and the Western Carpathians (Slovakia). Mineralium Deposita, 33, 359-378. https://doi.org/10.1007/s001260050155
|
[33]
|
Chen, J., Yang, R., Du, L., Zheng, L., Gao, J., Lai, C., et al. (2018) Mineralogy, Geochemistry and Fluid Inclusions of the Qinglong Sb-(Au) Deposit, Youjiang Basin (Guizhou, SW China). Ore Geology Reviews, 92, 1-18. https://doi.org/10.1016/j.oregeorev.2017.11.009
|
[34]
|
熊灿娟, 刘建中, 刘帅, 等. 晴隆大厂锑矿流体包裹体研究[J]. 贵州大学学报(自然科学版), 2013, 30(6): 47-52.
|
[35]
|
陈娴, 苏文超, 黄勇. 贵州晴隆锑矿床成矿流体He-Ar同位素地球化学[J]. 岩石学报, 2016, 32(11): 3312-3320.
|
[36]
|
Chen, J., Huang, Z., Yang, R., Du, L. and Liao, M. (2021) Gold and Antimony Metallogenic Relations and Ore-Forming Process of Qinglong Sb(Au) Deposit in Youjiang Basin, SW China: Sulfide Trace Elements and Sulfur Isotopes. Geoscience Frontiers, 12, 605-623. https://doi.org/10.1016/j.gsf.2020.08.010
|
[37]
|
常江, 李益智, 赵京, 等. 广西五圩矿田箭猪坡铅锌矿床流体包裹体特征及其地质意义[J]. 矿产与地质, 2016, 30(2): 270-277.
|
[38]
|
Zhang, J., Huang, W., Liang, H., Wu, J. and Chen, X. (2018) Genesis of the Jianzhupo Sb-Pb-Zn-Ag Deposit and Formation of an Ore Shoot in the Wuxu Ore Field, Guangxi, South China. Ore Geology Reviews, 102, 654-665. https://doi.org/10.1016/j.oregeorev.2018.09.026
|
[39]
|
Pavlova, G.G. and Borovikov, A.A. (2010) Silver-Antimony Deposits of Central Asia: Physico-Chemical Model of Formation and Sources of Mineralisation. Australian Journal of Earth Sciences, 57, 755-775. https://doi.org/10.1080/08120091003736540
|
[40]
|
Wilkinson, J.J. (2001) Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55, 229-272. https://doi.org/10.1016/s0024-4937(00)00047-5
|
[41]
|
Pokrovski, G.S., Borisova, A.Y., Roux, J., Hazemann, J., Petdang, A., Tella, M., et al. (2006) Antimony Speciation in Saline Hydrothermal Fluids: A Combined X-Ray Absorption Fine Structure Spectroscopy and Solubility Study. Geochimica et Cosmochimica Acta, 70, 4196-4214. https://doi.org/10.1016/j.gca.2006.06.1549
|
[42]
|
Krupp, R.E. (1988) Solubility of Stibnite in Hydrogen Sulfide Solutions, Speciation, and Equilibrium Constants, from 25 to 350˚C. Geochimica et Cosmochimica Acta, 52, 3005-3015. https://doi.org/10.1016/0016-7037(88)90164-0
|
[43]
|
Munoz, M., Courjault‐Radé, P. and Tollon, F. (1992) The Massive Stibnite Veins of the French Palaeozoic Basement: A Metallogenic Marker of Late Variscan Brittle Extension. Terra Nova, 4, 171-177. https://doi.org/10.1111/j.1365-3121.1992.tb00468.x
|
[44]
|
Hagemann, S.G. and Lüders, V. (2003) P-T-X Conditions of Hydrothermal Fluids and Precipitation Mechanism of Stibnite-Gold Mineralization at the Wiluna Lode-Gold Deposits, Western Australia: Conventional and Infrared Microthermometric Constraints. Mineralium Deposita, 38, 936-952. https://doi.org/10.1007/s00126-003-0351-6
|
[45]
|
Spycher, N.F. and Reed, M.H. (1989) As (III) and Sb(III) Sulfide Complexes: An Evaluation of Stoichiometry and Stability from Existing Experimental Data. Geochimica et Cosmochimica Acta, 53, 2185-2194. https://doi.org/10.1016/0016-7037(89)90342-6
|
[46]
|
Wood, S.A., Crerar, D.A. and Borcsik, M.P. (1987) Solubility of the Assemblage Pyrite-Pyrrhotite-Magnetite-Sphalerite-Galena-Gold-Stibnite-Bismuthinite-Argen-Tite-Molybdenite in H2O-NaCl-CO2 Solutions from 200 Degrees to 350 Degrees C Degrees. Economic Geology, 82, 1864-1887. https://doi.org/10.2113/gsecongeo.82.7.1864
|
[47]
|
Zotov, A.V., Shikina, N.D. and Akinfiev, N.N. (2003) Thermodynamic Properties of the Sb(III) Hydroxide Complex Sb(OH)3(aq) at Hydrothermal Conditions. Geochimica et Cosmochimica Acta, 67, 1821-1836. https://doi.org/10.1016/s0016-7037(02)01281-4
|
[48]
|
朱赖民, 胡瑞忠. 黔西南微细浸染型金矿床中金和锑共生分异现象及其热力学分析[J]. 中国科学(D辑: 地球科学), 1999(6): 481-488.
|
[49]
|
Obolensky, A.A., Gushchina, L.V., Borisenko, A.S., Borovikov, A.A. and Pavlova, G.G. (2007) Antimony in Hydrothermal Processes: Solubility, Conditions of Transfer, and Metal-Bearing Capacity of Solutions. Russian Geology and Geophysics, 48, 992-1001. https://doi.org/10.1016/j.rgg.2007.11.006
|
[50]
|
苏文超, 朱路艳, 格西, 等. 贵州晴隆大厂锑矿床辉锑矿中流体包裹体的红外显微测温学研究[J]. 岩石学报, 2015, 31(4): 918-924.
|
[51]
|
孙晓明, 莫儒伟, 翟伟, 等. 藏南沙拉岗锑矿流体包裹体红外显微测温研究[J]. 岩石学报, 2014, 30(1): 189-198.
|
[52]
|
余盼, 郑义, 王岳军, 等. 湖南新宁星子岩锑矿流体包裹体特征及矿床成因[J]. 地学前缘, 2018, 25(5): 266-276.
|
[53]
|
Wang, Z., Xia, Y., Song, X., Liu, J., Yang, C. and Yan, B. (2012) Study on the Evolution of Ore-Formation Fluids for Au-Sb Ore Deposits and the Mechanism of Au-Sb Paragenesis and Differentiation in the Southwestern Part of Guizhou Province, China. Chinese Journal of Geochemistry, 32, 56-68. https://doi.org/10.1007/s11631-013-0607-5
|
[54]
|
Zhu, Y. and Peng, J. (2015) Infrared Microthermometric and Noble Gas Isotope Study of Fluid Inclusions in Ore Minerals at the Woxi Orogenic Au-Sb-W Deposit, Western Hunan, South China. Ore Geology Reviews, 65, 55-69. https://doi.org/10.1016/j.oregeorev.2014.08.014
|
[55]
|
金景福, 陶琰, 曾令交. 锡矿山式锑矿床的成矿流体研究[J]. 矿物岩石地球化学通报, 2001(3): 156-164.
|