[1]
|
Kaplan, G.G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. https://doi.org/10.1038/nrgastro.2015.150
|
[2]
|
Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., et al. (2017) The Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies: Digestive Disease Week. Gastroenterology, 152, S970-S971. https://doi.org/10.1016/s0016-5085(17)33292-4
|
[3]
|
Jones, G., Lyons, M., Plevris, N., Jenkinson, P.W., Bisset, C., Burgess, C., et al. (2019) IBD Prevalence in Lothian, Scotland, Derived by Capture-Recapture Methodology. Gut, 68, 1953-1960. https://doi.org/10.1136/gutjnl-2019-318936
|
[4]
|
Zhang, H., Zhang, M., Chen, X., Guo, M., Zhou, R., Lv, H., et al. (2022) Risk of Malignancy in Patients with Inflammatory Bowel Disease: A Population‐Based Cohort Study from China. International Journal of Cancer, 150, 1770-1778. https://doi.org/10.1002/ijc.33932
|
[5]
|
Guan, Q. (2019) A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. Journal of Immunology Research, 2019, Article ID: 7247238. https://doi.org/10.1155/2019/7247238
|
[6]
|
Pandian, N. and Kanneganti, T. (2022) Panoptosis: A Unique Innate Immune Inflammatory Cell Death Modality. The Journal of Immunology, 209, 1625-1633. https://doi.org/10.4049/jimmunol.2200508
|
[7]
|
Zhou, G., Yu, L., Fang, L., Yang, W., Yu, T., Miao, Y., et al. (2017) CD177+ Neutrophils as Functionally Activated Neutrophils Negatively Regulate IBD. Gut, 67, 1052-1063. https://doi.org/10.1136/gutjnl-2016-313535
|
[8]
|
Friedrich, M., Pohin, M., Jackson, M.A., Korsunsky, I., Bullers, S.J., Rue-Albrecht, K., et al. (2021) Il-1-Driven Stromal-Neutrophil Interactions Define a Subset of Patients with Inflammatory Bowel Disease That Does Not Respond to Therapies. Nature Medicine, 27, 1970-1981. https://doi.org/10.1038/s41591-021-01520-5
|
[9]
|
Camilleri, M., Madsen, K., Spiller, R., Van Meerveld, B.G. and Verne, G.N. (2012) Intestinal Barrier Function in Health and Gastrointestinal Disease. Neurogastroenterology & Motility, 24, 503-512. https://doi.org/10.1111/j.1365-2982.2012.01921.x
|
[10]
|
Foerster, E.G., Mukherjee, T., Cabral-Fernandes, L., Rocha, J.D.B., Girardin, S.E. and Philpott, D.J. (2021) How Autophagy Controls the Intestinal Epithelial Barrier. Autophagy, 18, 86-103. https://doi.org/10.1080/15548627.2021.1909406
|
[11]
|
Wardle, E. (2010) Th-17 Lymphocytes. Saudi Journal of Kidney Diseases and Transplantation: An Official Publication of the Saudi Center for Organ Transplantation, Saudi Arabia, 21, 954-956.
|
[12]
|
Nissilä, E., Korpela, K., Lokki, A.I., Paakkanen, R., Jokiranta, S., de Vos, W.M., et al. (2017) C4B Gene Influences Intestinal Microbiota through Complement Activation in Patients with Paediatric-Onset Inflammatory Bowel Disease. Clinical and Experimental Immunology, 190, 394-405. https://doi.org/10.1111/cei.13040
|
[13]
|
Steinbach, E.C. and Plevy, S.E. (2014) The Role of Macrophages and Dendritic Cells in the Initiation of Inflammation in IBD. Inflammatory Bowel Diseases, 20, 166-175. https://doi.org/10.1097/mib.0b013e3182a69dca
|
[14]
|
Mateer, S.W., Mathe, A., Bruce, J., Liu, G., Maltby, S., Fricker, M., et al. (2018) IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. The American Journal of Pathology, 188, 1625-1639. https://doi.org/10.1016/j.ajpath.2018.03.016
|
[15]
|
Stark, M.A., Huo, Y., Burcin, T.L., Morris, M.A., Olson, T.S. and Ley, K. (2005) Phagocytosis of Apoptotic Neutrophils Regulates Granulopoiesis via IL-23 and IL-17. Immunity, 22, 285-294. https://doi.org/10.1016/j.immuni.2005.01.011
|
[16]
|
dos Santos Ramos, A., Viana, G.C.S., de Macedo Brigido, M. and Almeida, J.F. (2021) Neutrophil Extracellular Traps in Inflammatory Bowel Diseases: Implications in Pathogenesis and Therapeutic Targets. Pharmacological Research, 171, Article ID: 105779. https://doi.org/10.1016/j.phrs.2021.105779
|
[17]
|
Fan, F.Y., Sang, L.X., et al. (2017) Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules, 22, Article 484.
|
[18]
|
Yao, H. and Tang, G. (2022) Macrophages in Intestinal Fibrosis and Regression. Cellular Immunology, 381, Article ID: 104614. https://doi.org/10.1016/j.cellimm.2022.104614
|
[19]
|
Spalinger, M.R., Sayoc-Becerra, A., Ordookhanian, C., Canale, V., Santos, A.N., King, S.J., et al. (2020) The JAK Inhibitor Tofacitinib Rescues Intestinal Barrier Defects Caused by Disrupted Epithelial-Macrophage Interactions. Journal of Crohn’s and Colitis, 15, 471-484. https://doi.org/10.1093/ecco-jcc/jjaa182
|
[20]
|
Liu, X., Zhou, M., Dai, Z., Luo, S., Shi, Y., He, Z., et al. (2022) Salidroside Alleviates Ulcerative Colitis via Inhibiting Macrophage Pyroptosis and Repairing the Dysbacteriosis‐Associated Th17/Treg Imbalance. Phytotherapy Research, 37, 367-382. https://doi.org/10.1002/ptr.7636
|
[21]
|
Kalischuk, L.D. and Buret, A.G. (2010) A Role for Campylobacter Jejuni-Induced Enteritis in Inflammatory Bowel Disease? American Journal of Physiology-Gastrointestinal and Liver Physiology, 298, G1-G9. https://doi.org/10.1152/ajpgi.00193.2009
|
[22]
|
Wolfgang, H., Bruce, E.S., Steve, L., et al. (2012) Secukinumab, a Human Anti-IL-17A Monoclonal Antibody, for Moderate to Severe Crohn’s Disease: Unexpected Results of a Randomised, Double-Blind Placebo-Controlled Trial. Gut, 61, 1693-1700.
|
[23]
|
Ananthakrishnan, A.N., Bernstein, C.N., Iliopoulos, D., Macpherson, A., Neurath, M.F., Ali, R.A.R., et al. (2017) Environmental Triggers in IBD: A Review of Progress and Evidence. Nature Reviews Gastroenterology & Hepatology, 15, 39-49. https://doi.org/10.1038/nrgastro.2017.136
|
[24]
|
Faleiro, R., Liu, J., Karunarathne, D., Edmundson, A., Winterford, C., Nguyen, T.H., et al. (2019) Crohn’s Disease Is Facilitated by a Disturbance of Programmed Death‐1 Ligand 2 on Blood Dendritic Cells. Clinical & Translational Immunology, 8, e1071. https://doi.org/10.1002/cti2.1071
|
[25]
|
Xavier, R.J. and Podolsky, D.K. (2007) Unravelling the Pathogenesis of Inflammatory Bowel Disease. Nature, 448, 427-434. https://doi.org/10.1038/nature06005
|
[26]
|
Efferth, T. and Oesch, F. (2021) The Immunosuppressive Activity of Artemisinin‐Type Drugs Towards Inflammatory and Autoimmune Diseases. Medicinal Research Reviews, 41, 3023-3061. https://doi.org/10.1002/med.21842
|
[27]
|
Yuan, S., Wang, M., Han, J., Feng, C., Wang, M., Wang, M., et al. (2023) Improved Colonic Inflammation by Nervonic Acid via Inhibition of NF-κB Signaling Pathway of DSS-Induced Colitis Mice. Phytomedicine, 112, Article ID: 154702. https://doi.org/10.1016/j.phymed.2023.154702
|
[28]
|
Shimizu, M. (2017) Multifunctions of Dietary Polyphenols in the Regulation of Intestinal Inflammation. Journal of Food and Drug Analysis, 25, 93-99. https://doi.org/10.1016/j.jfda.2016.12.003
|
[29]
|
Li, Z., Yu, E., Wang, G., Yu, D., Zhang, K., Gong, W., et al. (2018) Broad Bean (Vicia faba L.) Induces Intestinal Inflammation in Grass Carp (Ctenopharyngodon idellus C. et V) by Increasing Relative Abundances of Intestinal Gram-Negative and Flagellated Bacteria. Frontiers in Microbiology, 9, Article 1913. https://doi.org/10.3389/fmicb.2018.01913
|
[30]
|
Wei, W., Mu, S., Han, Y., Chen, Y., Kuang, Z., Wu, X., et al. (2022) Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells. Frontiers in Immunology, 13, Article 841254. https://doi.org/10.3389/fimmu.2022.841254
|
[31]
|
Yao, X., Huang, J., Zhong, H., Shen, N., Faggioni, R., Fung, M., et al. (2014) Targeting Interleukin-6 in Inflammatory Autoimmune Diseases and Cancers. Pharmacology & Therapeutics, 141, 125-139. https://doi.org/10.1016/j.pharmthera.2013.09.004
|
[32]
|
Li, X., Ling, Y., Huang, X., Zhou, T., Wu, S., Zhang, S., et al. (2023) Rosa roxburghii Tratt Fruit Extract Prevents DSS-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota and the IL-17 Signaling Pathway. Nutrients, 15, Article 4560. https://doi.org/10.3390/nu15214560
|
[33]
|
Segers, A. and de Vos, W.M. (2023) Mode of Action of Akkermansia muciniphila in the Intestinal Dialogue: Role of Extracellular Proteins, Metabolites and Cell Envelope Components. Microbiome Research Reports, 2, Article 6. https://doi.org/10.20517/mrr.2023.05
|
[34]
|
Hershberg, R.M. (2002) V. Polarized Compartmentalization of Antigen Processing and Toll-Like Receptor Signaling in Intestinal Epithelial Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 283, G833-G839. https://doi.org/10.1152/ajpgi.00208.2002
|
[35]
|
Heller, F., Florian, P., Bojarski, C., Richter, J., Christ, M., Hillenbrand, B., et al. (2005) Interleukin-13 Is the Key Effector Th2 Cytokine in Ulcerative Colitis That Affects Epithelial Tight Junctions, Apoptosis, and Cell Restitution. Gastroenterology, 129, 550-564. https://doi.org/10.1016/j.gastro.2005.05.002
|
[36]
|
Danese, S. (2011) Immune and Nonimmune Components Orchestrate the Pathogenesis of Inflammatory Bowel Disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 300, G716-G722. https://doi.org/10.1152/ajpgi.00472.2010
|
[37]
|
Ricciardelli, I., Lindley, K.J., Londei, M. and Quaratino, S. (2008) Anti Tumour Necrosis‐α Therapy Increases the Number of FOXP3+ Regulatory T Cells in Children Affected by Crohn’s Disease. Immunology, 125, 178-183. https://doi.org/10.1111/j.1365-2567.2008.02839.x
|
[38]
|
Ala, M. (2021) Tryptophan Metabolites Modulate Inflammatory Bowel Disease and Colorectal Cancer by Affecting Immune System. International Reviews of Immunology, 41, 326-345. https://doi.org/10.1080/08830185.2021.1954638
|
[39]
|
Wu, J., Wei, Z., Cheng, P., Qian, C., Xu, F., Yang, Y., et al. (2020) Rhein Modulates Host Purine Metabolism in Intestine through Gut Microbiota and Ameliorates Experimental Colitis. Theranostics, 10, 10665-10679. https://doi.org/10.7150/thno.43528
|
[40]
|
Fu, Y., Ni, J., Chen, J., Ma, G., Zhao, M., Zhu, S., et al. (2020) Dual-Functionalized MSCs That Express CX3CR1 and IL-25 Exhibit Enhanced Therapeutic Effects on Inflammatory Bowel Disease. Molecular Therapy, 28, 1214-1228. https://doi.org/10.1016/j.ymthe.2020.01.020
|
[41]
|
Liu, Y., Tang, B., Wang, F., Tang, L., Lei, Y., Luo, Y., et al. (2020) Parthenolide Ameliorates Colon Inflammation through Regulating Treg/Th17 Balance in a Gut Microbiota-Dependent Manner. Theranostics, 10, 5225-5241. https://doi.org/10.7150/thno.43716
|
[42]
|
Xia, X., Zhang, Y., Zhu, L., Ying, Y., Hao, W., Wang, L., et al. (2023) Liquiritin Apioside Alleviates Colonic Inflammation and Accompanying Depression-Like Symptoms in Colitis by Gut Metabolites and the Balance of Th17/Treg. Phytomedicine, 120, Article ID: 155039. https://doi.org/10.1016/j.phymed.2023.155039
|
[43]
|
徐小芳, 吕小平. PTGER4基因与炎症性肠病关系的研究进展[J]. 山东医药, 2019, 59(8): 100-103.
|
[44]
|
Yu, L., Zhou, B., Zhu, Y., Li, L., Zhong, Y., Zhu, L., et al. (2023) HSF1 Promotes CD69+ Treg Differentiation to Inhibit Colitis Progression. Theranostics, 13, 1892-1905. https://doi.org/10.7150/thno.78078
|