[1]
|
Johnson, D.E., Burtness, B., Leemans, C.R., Lui, V.W.Y., Bauman, J.E. and Grandis, J.R. (2020) Head and Neck Squamous Cell Carcinoma. Nature Reviews Disease Primers, 6, Article No. 92. https://doi.org/10.1038/s41572-020-00224-3
|
[2]
|
Miniuk, M., Reszeć-Giełażyn, J., Bortnik, P., Borsukiewicz, A. and Mroczek, A. (2024) Novel Predictive Biomarkers in the Head and Neck Squamous Cell Carcinoma (HNSCC). Journal of Clinical Medicine, 13, Article 5876. https://doi.org/10.3390/jcm13195876
|
[3]
|
Lin, P., Xie, W., Li, Y., Zhang, C., Wu, H., Wan, H., et al. (2024) Intratumoral and Peritumoral Radiomics of MRIs Predicts Pathologic Complete Response to Neoadjuvant Chemoimmunotherapy in Patients with Head and Neck Squamous Cell Carcinoma. Journal for ImmunoTherapy of Cancer, 12, e009616. https://doi.org/10.1136/jitc-2024-009616
|
[4]
|
Chen, X., Yu, Q., Peng, J., He, Z., Li, Q., Ning, Y., et al. (2023) A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma. Academic Radiology, 30, 3022-3031. https://doi.org/10.1016/j.acra.2023.06.029
|
[5]
|
Lambin, P., Leijenaar, R.T.H., Deist, T.M., Peerlings, J., de Jong, E.E.C., van Timmeren, J., et al. (2017) Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nature Reviews Clinical Oncology, 14, 749-762. https://doi.org/10.1038/nrclinonc.2017.141
|
[6]
|
Avanzo, M., Wei, L., Stancanello, J., Vallières, M., Rao, A., Morin, O., et al. (2020) Machine and Deep Learning Methods for Radiomics. Medical Physics, 47, e185-e202. https://doi.org/10.1002/mp.13678
|
[7]
|
Hagiwara, A., Fujita, S., Kurokawa, R., et al. (2023) From Simultaneous Rapid Acquisition Methods and Analysis Techniques Using Scoring, Machine Learning, Radiomics, and Deep Learning to the Generation of Novel Metrics. Investigative Radiology, 58, 548-560. https://doi.org/10.1097/rli.0000000000000962
|
[8]
|
Zhao, Q., He, Y., Wu, Y., Huang, D., Wang, Y., Sun, C., et al. (2021) Vocal Cord Lesions Classification Based on Deep Convolutional Neural Network and Transfer Learning. Medical Physics, 49, 432-442. https://doi.org/10.1002/mp.15371
|
[9]
|
Xu, J., Wang, J., Bian, X., Zhu, J., Tie, C., Liu, X., et al. (2021) Deep Learning for Nasopharyngeal Carcinoma Identification Using Both White Light and Narrow-Band Imaging Endoscopy. The Laryngoscope, 132, 999-1007. https://doi.org/10.1002/lary.29894
|
[10]
|
Yu, B., Huang, C., Xu, J., Liu, S., Guan, Y., Li, T., et al. (2021) Prediction of the Degree of Pathological Differentiation in Tongue Squamous Cell Carcinoma Based on Radiomics Analysis of Magnetic Resonance Images. BMC Oral Health, 21, Article No. 585. https://doi.org/10.1186/s12903-021-01947-9
|
[11]
|
Zheng, Y., Che, J., Yuan, M., Wu, Z., Pang, J., Zhou, R., et al. (2023) A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma. Academic Radiology, 30, 1591-1599. https://doi.org/10.1016/j.acra.2022.11.007
|
[12]
|
Liu, Q., Liu, S., Mao, Y., Kang, X., Yu, M. and Chen, G. (2024) Machine Learning Model to Preoperatively Predict T2/T3 Staging of Laryngeal and Hypopharyngeal Cancer Based on the CT Radiomic Signature. European Radiology, 34, 5349-5359. https://doi.org/10.1007/s00330-023-10557-8
|
[13]
|
Li, Q., Yu, Q., Gong, B., Ning, Y., Chen, X., Gu, J., et al. (2023) The Effect of Magnetic Resonance Imaging Based Radiomics Models in Discriminating Stage I-II and III-IVa Nasopharyngeal Carcinoma. Diagnostics, 13, Article 300. https://doi.org/10.3390/diagnostics13020300
|
[14]
|
Tomita, H., Kobayashi, T., Takaya, E., Mishiro, S., Hirahara, D., Fujikawa, A., et al. (2022) Deep Learning Approach of Diffusion-Weighted Imaging as an Outcome Predictor in Laryngeal and Hypopharyngeal Cancer Patients with Radiotherapy-Related Curative Treatment: A Preliminary Study. European Radiology, 32, 5353-5361. https://doi.org/10.1007/s00330-022-08630-9
|
[15]
|
Lan, T., Kuang, S., Liang, P., Ning, C., Li, Q., Wang, L., et al. (2024) MRI-Based Deep Learning and Radiomics for Prediction of Occult Cervical Lymph Node Metastasis and Prognosis in Early-Stage Oral and Oropharyngeal Squamous Cell Carcinoma: A Diagnostic Study. International Journal of Surgery, 110, 4648-4659. https://doi.org/10.1097/js9.0000000000001578
|
[16]
|
Chen, Z., Yu, Y., Liu, S., Du, W., Hu, L., Wang, C., et al. (2024) A Deep Learning and Radiomics Fusion Model Based on Contrast-Enhanced Computer Tomography Improves Preoperative Identification of Cervical Lymph Node Metastasis of Oral Squamous Cell Carcinoma. Clinical Oral Investigations, 28, Article No. 39. https://doi.org/10.1007/s00784-023-05423-2
|
[17]
|
Zhao, X., Li, W., Zhang, J., Tian, S., Zhou, Y., Xu, X., et al. (2023) Radiomics Analysis of CT Imaging Improves Preoperative Prediction of Cervical Lymph Node Metastasis in Laryngeal Squamous Cell Carcinoma. European Radiology, 33, 1121-1131. https://doi.org/10.1007/s00330-022-09051-4
|
[18]
|
Tomita, H., Yamashiro, T., Heianna, J., Nakasone, T., Kimura, Y., Mimura, H., et al. (2021) Nodal-Based Radiomics Analysis for Identifying Cervical Lymph Node Metastasis at Levels I and II in Patients with Oral Squamous Cell Carcinoma Using Contrast-Enhanced Computed Tomography. European Radiology, 31, 7440-7449. https://doi.org/10.1007/s00330-021-07758-4
|
[19]
|
Wang, W., Liang, H., Zhang, Z., Xu, C., Wei, D., Li, W., et al. (2024) Comparing Three-Dimensional and Two-Dimensional Deep-Learning, Radiomics, and Fusion Models for Predicting Occult Lymph Node Metastasis in Laryngeal Squamous Cell Carcinoma Based on CT Imaging: A Multicentre, Retrospective, Diagnostic Study. eClinicalMedicine, 67, Article 102385. https://doi.org/10.1016/j.eclinm.2023.102385
|
[20]
|
Wang, Y., Yu, T., Yang, Z., Zhou, Y., Kang, Z., Wang, Y., et al. (2022) Radiomics Based on Magnetic Resonance Imaging for Preoperative Prediction of Lymph Node Metastasis in Head and Neck Cancer: Machine Learning Study. Head & Neck, 44, 2786-2795. https://doi.org/10.1002/hed.27189
|
[21]
|
Aerts, H.J.W.L., Velazquez, E.R., Leijenaar, R.T.H., Parmar, C., Grossmann, P., Carvalho, S., et al. (2014) Correction: Corrigendum: Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications, 5, Article No. 4644. https://doi.org/10.1038/ncomms5644
|
[22]
|
Cui, J., Wang, L., Tan, G., Chen, W., He, G., Huang, H., et al. (2020) Development and Validation of Nomograms to Accurately Predict Risk of Recurrence for Patients with Laryngeal Squamous Cell Carcinoma: Cohort Study. International Journal of Surgery, 76, 163-170. https://doi.org/10.1016/j.ijsu.2020.03.010
|
[23]
|
Zhou, G., Liu, Z. and Myers, J.N. (2016) TP53 Mutations in Head and Neck Squamous Cell Carcinoma and Their Impact on Disease Progression and Treatment Response. Journal of Cellular Biochemistry, 117, 2682-2692. https://doi.org/10.1002/jcb.25592
|
[24]
|
Fischer, C.A., Jung, M., Zlobec, I., Green, E., Storck, C., Tornillo, L., et al. (2011) Co‐Overexpression of P21 and Ki‐67 in Head and Neck Squamous Cell Carcinoma Relative to a Significantly Poor Prognosis. Head & Neck, 33, 267-273. https://doi.org/10.1002/hed.21440
|
[25]
|
Dumitru, C.S., Ceausu, A.R., Comsa, S. and Raica, M. (2022) Loss of E-Cadherin Expression Correlates with Ki-67 in Head and Neck Squamous Cell Carcinoma. In Vivo, 36, 1150-1154. https://doi.org/10.21873/invivo.12814
|
[26]
|
Tian, R., Li, Y., Jia, C., Mou, Y., Zhang, H., Wu, X., et al. (2022) Radiomics Model for Predicting TP53 Status Using CT and Machine Learning Approach in Laryngeal Squamous Cell Carcinoma. Frontiers in Oncology, 12, Article 823428. https://doi.org/10.3389/fonc.2022.823428
|
[27]
|
Zheng, Y., Chen, J., Zhang, M., Wu, Z., Tang, G., Zhang, Y., et al. (2023) CT Radiomics Nomogram for Prediction of the Ki-67 Index in Head and Neck Squamous Cell Carcinoma. European Radiology, 33, 2160-2170. https://doi.org/10.1007/s00330-022-09168-6
|
[28]
|
Zheng, Y., Pang, J., Liu, Z., Yuan, M., Li, J., Wu, Z., et al. (2024) A CT-Based Deep Learning Radiomics Nomogram for the Prediction of EGFR Mutation Status in Head and Neck Squamous Cell Carcinoma. Academic Radiology, 31, 628-638. https://doi.org/10.1016/j.acra.2023.06.026
|
[29]
|
Park, C.J., Choi, S.H., Kim, D., Kim, S.B., Han, K., Ahn, S.S., et al. (2024) MRI Radiomics May Predict Early Tumor Recurrence in Patients with Sinonasal Squamous Cell Carcinoma. European Radiology, 34, 3151-3159. https://doi.org/10.1007/s00330-023-10389-6
|
[30]
|
Chen, L., Wang, H., Zeng, H., Zhang, Y. and Ma, X. (2020) Evaluation of CT-Based Radiomics Signature and Nomogram as Prognostic Markers in Patients with Laryngeal Squamous Cell Carcinoma. Cancer Imaging, 20, Article No. 28. https://doi.org/10.1186/s40644-020-00310-5
|
[31]
|
Diamant, A., Chatterjee, A., Vallières, M., Shenouda, G. and Seuntjens, J. (2019) Deep Learning in Head & Neck Cancer Outcome Prediction. Scientific Reports, 9, Article No. 2764. https://doi.org/10.1038/s41598-019-39206-1
|
[32]
|
Zhang, B., Luo, C., Zhang, X., Hou, J., Liu, S., Gao, M., et al. (2023) Integrative Scoring System for Survival Prediction in Patients with Locally Advanced Nasopharyngeal Carcinoma: A Retrospective Multicenter Study. JCO Clinical Cancer Informatics, 7, e2200015. https://doi.org/10.1200/cci.22.00015
|
[33]
|
Lin, M., Lin, N., Yu, S., Sha, Y., Zeng, Y., Liu, A., et al. (2023) Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma with Deep Learning and Multi-Parametric MRI-Based Radiomics Nomogram. Academic Radiology, 30, 2201-2211. https://doi.org/10.1016/j.acra.2022.11.013
|