ATAD2在泌尿系恶性肿瘤中的研究进展
Research Advances of ATAD2 in Urological Malignancies
DOI: 10.12677/acm.2025.1541110, PDF, HTML, XML,    科研立项经费支持
作者: 刘辉权:赣南医科大学第一临床医学院,江西 赣州;赣南医科大学泌尿外科研究所,江西 赣州;邹晓峰*:赣南医科大学第一临床医学院,江西 赣州;赣南医科大学泌尿外科研究所,江西 赣州;赣南医科大学第一附属医院泌尿外科,江西 赣州;江西省结石防治工程技术研究中心,江西 赣州
关键词: ATAD2AAA + ATP酶结构域溴结构域泌尿系恶性肿瘤ATAD2 AAA + ATPase Domain Bromodomain Urological Malignancies
摘要: 泌尿系肿瘤作为严重危害人类健康的疾病类型,其年发病率持续处于较高水平。在前列腺癌、膀胱癌及肾细胞癌等主要类型中,相关研究已取得显著进展,然而晚期的诊断时机、术后复发风险以及耐药性问题仍导致患者预后效果不理想。深入探究其发病机制对实现早期诊治具有重要价值。近年研究发现,ATAD2蛋白在肿瘤进展过程中扮演着关键角色。作为一种进化保守的溴域家族成员,ATAD2通过其ATP酶结构域与溴结构域介导生物学效应,既能作为表观遗传调控因子,又可发挥转录辅助激活功能,进而调控细胞增殖、分化、凋亡及迁移等核心生物学过程。本综述将系统阐述ATAD2在泌尿系肿瘤领域的研究进展。
Abstract: Urological tumors, which significantly threaten human health, continue to exhibit a high annual incidence rate. Considerable progress has been made in research on major types, such as prostate cancer, bladder cancer, and renal cell carcinoma. However, late-stage diagnosis, the risk of postoperative recurrence, and issues with drug resistance contribute to unsatisfactory patient outcomes. An in-depth exploration of their pathogenesis holds great value for achieving early diagnosis and treatment. Recent studies have identified the ATAD2 protein as playing a critical role in tumor progression. As an evolutionarily conserved member of the bromodomain family, ATAD2 mediates biological effects through its ATPase domain and bromodomain, functioning both as an epigenetic regulator and a transcriptional co-activator. This regulation impacts core biological processes, such as cell proliferation, differentiation, apoptosis, and migration. This review aims to systematically elucidate the research progress of ATAD2 in the field of urological tumors.
文章引用:刘辉权, 邹晓峰. ATAD2在泌尿系恶性肿瘤中的研究进展[J]. 临床医学进展, 2025, 15(4): 1695-1702. https://doi.org/10.12677/acm.2025.1541110

1. 引言

前列腺癌、膀胱癌及肾癌是泌尿系统恶性肿瘤的主要类型,其日益攀升的发病率和死亡率已构成全球性公共卫生挑战[1]。据2022年流行病学统计,前列腺癌新发病例达1,466,680例,膀胱癌为613,791例,肾癌则为434,419例,对应的死亡病例分别为396,792例、220,349例和155,702例[2]。与历史数据相比,这三种恶性肿瘤的发病率呈现显著上升趋势[3]。流行病学特征分析表明,50岁以上人群的发病率随年龄增长而显著升高,同时存在明显的性别分布差异[4]。随着全球人口老龄化进程的加速,泌尿系统恶性肿瘤的发病率预计将持续攀升,这不仅对公共卫生体系造成巨大压力,也将显著增加医疗系统的经济负担[5]。目前研究表明,遗传易感性、环境暴露及生活方式等多重因素共同参与了泌尿系统肿瘤的发生发展,但各因素间的相互作用机制尚未完全明确[6]。在临床治疗方面,手术切除、放射治疗、化学药物治疗、免疫治疗及靶向治疗等多种手段被广泛应用于泌尿系统肿瘤的治疗,然而由于肿瘤异质性和个体差异,治疗效果存在显著差异。值得注意的是,该类型肿瘤的高复发率仍是临床治疗中的主要难题。基于此,深入探究泌尿系统肿瘤的发病机制并开发新型治疗策略已成为当前研究的迫切需求。

作为AAA结构域蛋白家族成员,ATAD2 (ATPase family AAA domain-containing 2)近年来被证实具有显著的致癌特性,其通过调控表观遗传过程影响肿瘤发生发展[7]。研究表明,该蛋白通过发挥转录共激活因子的作用,能够直接调控多种癌基因及抑癌基因的表达水平。自2007年首次发现以来,多项研究已证实ATAD2在多个关键肿瘤信号转导通路中发挥重要作用,涉及细胞周期调控(Rb/E2F-cMyc通路)、激素信号转导(类固醇激素信号通路)、细胞凋亡调控(p53和p38-MAPK通路)、细胞存活(AKT通路)、发育调控(hedgehog信号通路)、缺氧应激(HIF-1α信号通路)以及肿瘤转移(上皮间质转化通路)等多个生物学过程[8]。值得注意的是,在泌尿系统恶性肿瘤领域,ATAD2的研究日益受到关注,但针对其具体作用机制的系统性综述仍显不足。基于此,本研究的重点在于深入探讨ATAD2在前列腺癌、膀胱癌及肾癌中的生物学功能及其致癌机制,以期为该领域的后续研究提供更系统的理论依据和研究方向。

2. ATAD2概述

ATAD2由28个外显子组成,其蛋白质包含1390个氨基酸,分子质量为158.5 kDa,位于8号染色体的q24.13区域[8]。ATAD2结构域结构包括N末端酸性结构域、AAA + ATP酶结构域、溴结构域和C末端结构域[7]。AAA + ATP酶和溴结构域(BRD)是其发挥生物学功能的主要结构[9]。AAA+ATP酶结构域由保守的Walker A/B结构域、传感器I/II以及精氨酸指结构域组成[10]。这种酶结构包含ATP结合位点,可以催化ATP水解成ADP和磷酸根离子,并释放能量[11]。值得注意的是,这些能量对于生物体维持生物功能至关重要,例如DNA复制、启动和重塑过程;参与蛋白质合成、修饰和降解;以及促进营养物质和代谢物的转运[12]。BRD呈现出特定的三维构象,由四个α螺旋(αZ、αA、αB和αC)以及两个环状结构(ZA环和BC环)组成,其中包含多个与乙酰化赖氨酸相互作用所需的疏水性氨基酸[13]。该区域能够特异性识别含有乙酰化赖氨酸残基的多肽链,通过靶向ATAD2蛋白激活转录区域,调控染色质构象,并募集其他转录因子参与蛋白质的翻译后修饰过程[14]。AAA + ATP酶结构域通过水解ATP来保持BRD对乙酰化组蛋白尾部的可及性,或者有助于多个BRD更好地“捕获”蛋白质。这表明ATAD2的两个关键结构域在功能上是相关的[15]

ATAD2是其他转录因子的共激活因子,其中包括E2F靶基因(如MYC、细胞周期蛋白E1和EZH2等)。ATAD2结合了E2F和MYC通路,通过增强MYC依赖性转录参与侵袭性肿瘤的发展[16] [17]。雄激素受体(AR)和E2F1可能增强蛋白质水平的ATAD2基因表达,表明ATAD2是AR和E2F1的直接靶标[18]。AR结合序列和E2F DNA结合位点分别位于ATAD2调节区和ATAD2启动子序列的远端增强子[19]。因此,AR和E2F1都可以通过与相应的结合位点结合来调节ATAD2基因表达。此后,对ATAD2的研究变得更加全面和深入,从调节ATAD2蛋白表达的上游因子(如miR-372、miR-302、miR-200b-5p、miR-106b-5p、miR-520、miR-186、miR-217、miR-139-5p)到参与乳腺癌、肺癌、肝癌、胃癌、结直肠癌、胰腺癌、视网膜母细胞瘤等疾病发生发展的作用机制(见表1) [20]-[31]。特别是,ATAD2在肿瘤细胞的组蛋白修饰中起重要作用。近年来,通过解析ATAD2及其靶向小分子化合物的蛋白质晶体结构[32],研究者开发了包括JQ1、AZ13824374和AM879在内的多种BRD调节化合物[33]-[35],为抗肿瘤药物的研发提供了新的方向。

Table 1. Related upstream RNA of ATAD2 and its mechanism of action

1. ATAD2的相关上游RNA及其作用机制

肿瘤类型

相关MicroRNA/lncRNA

与ATAD2的关系

结果

参考文献

非小细胞肺癌

miR-139-5p

负调控

miRNA-139-5p通过靶向ATAD2抑制非小细胞肺癌细胞的增殖和促进细胞凋亡

[31]

肝细胞癌

miR-372

负调控

miR-372下调ATAD2的表达以影响肝细胞癌的增殖和转移

[21]

肝细胞癌

PCAT-14

正调控

PCAT-14通过miR-372调节ATAD2的表达和Hedgehog通路的激活诱导肝细胞癌细胞的增殖和侵袭

[20]

甲状腺癌

NEAT1

正调控

NEAT1_2可以作为竞争性内源性RNA,通过下调miR-106b-5p来调节ATAD2的表达

[25]

结直肠癌

miR-520a

负调控

ATAD2抑制通过增加miR-520a水平来抑制结直肠癌中血管内皮生长因子A的分泌

[27]

卵巢癌

miR-372

负调控

miR-372下调ATAD2的蛋白表达,抑制卵巢癌细胞的增殖

[22]

卵巢癌

miR-302

负调控

miR-302通过调节卵巢癌中的ATAD2抑制上皮–间充质转化和顺铂耐药

[23]

卵巢癌

miR-200b-5p

负调控

miR-200b-5p通过靶向抑制ATAD2表达和调节PI3K/Akt信号通路来抑制卵巢癌细胞增殖并促进细胞凋亡

[24]

乳腺癌

miR-302

负调控

miR-302通过下调ATAD2抑制乳腺癌细胞的增殖、迁移和侵袭

[30]

视网膜母细胞瘤

miR-186

负调控

miR-186的过表达通过下调ATAD2来失活Hedgehog信号通路,从而抑制视网膜母细胞瘤中的血管生成

[28]

胃癌

miR-520f

负调控

miR-520f通过下调ATAD2的表达以抑制胃癌细胞的增殖

[26]

胰腺癌

miR-217

负调控

miR-217介导的ATAD2表达抑制通过失活AKT信号通路减少胰腺癌细胞增殖和迁移,并诱导胰腺癌细胞凋亡和细胞周期停滞

[29]

3. ATAD2与前列腺癌

前列腺癌作为男性群体中发病率最高的恶性肿瘤,在65岁以上人群中尤为显著,已成为导致癌症相关死亡的重要因素。该疾病的病理演变通常经历从雄激素依赖性向去势抵抗性的转变,这一过程为临床治疗带来了严峻挑战[36]。在前列腺癌的分子机制中,AR扮演着核心角色,其通过调控雄激素介导的基因表达网络,对肿瘤细胞的增殖、存活及分化产生重要影响。研究表明,ATAD2在前列腺癌组织中呈现显著高表达[37],其表达调控机制涉及远端增强子区域的AR结合序列,同时受到E2F1转录因子的双重调控[38] [39]。值得注意的是,ATAD2对组蛋白甲基转移酶NSD2具有调控作用,后者作为NF-κB信号通路的关键染色质调节因子,通过介导细胞因子自分泌环路,在肿瘤细胞增殖、存活及肿瘤生长过程中发挥重要作用[40]。作为MYC的共激活因子,ATAD2在前列腺癌细胞的增殖、生存和分化过程中具有显著影响[14] [41]。通过建立前列腺癌骨转移的基因工程小鼠模型,并结合多个人类队列研究,Dutta等[42]证实ATAD2在骨转移灶中的表达水平显著高于原发肿瘤,且与转移进展密切相关,其表达特征与患者数据中MYC通路的激活状态具有显著相关性。

4. ATAD2与膀胱癌

作为泌尿系统最常见的恶性肿瘤之一,膀胱癌主要分为非肌层浸润性和肌层浸润性两种类型,其中前者约占新发病例的70%。临床数据显示,这类患者中复发率高达50%~70%,且10%~20%会发展为预后较差的肌层浸润性膀胱癌[43]。虽然目前对膀胱癌的发病机理、诊断技术及治疗方法有了显著进展,但肌层浸润性膀胱癌患者的生存率依然较低,复发问题亟待解决。研究表明,c-MYC基因在膀胱癌的发病和转移过程中发挥着重要的调控作用[44]。同时,AR的活性可能影响膀胱癌的发展进程和复发风险,这在一定程度上解释了该疾病存在的性别差异现象[45]。值得注意的是,尽管ATAD2已被证实是MYC和AR的共同辅助因子,但其在膀胱癌中的表达特征及其生物学功能尚未得到充分研究。因此,深入探讨ATAD2在膀胱癌发生发展中的分子机制将具有重要的科研价值。

5. ATAD2与肾癌

肾细胞癌(renal cell carcinoma, RCC)作为泌尿系统高发恶性肿瘤,具有显著的致死风险。其中,肾透明细胞癌(clear renal cell carcinoma, ccRCC)作为主要病理类型,其发病率占RCC总病例的80%左右[46]。与正常肾脏相比,ATAD2在原发性RCC中的表达增加,而与原发性肿瘤相比,在转移性RCC中的表达增加[47]。临床证据显示,ATAD2可作为RCC患者预后评估的独立风险指标,其表达水平对个体化治疗方案的选择和随访策略的制定具有重要参考价值。在分子机制层面,ATAD2的表达受到miR-372的负向调控,两者呈现显著负相关关系,且已被证实为miR-372的直接作用靶点[22]。这种调控关系直接影响RCC细胞的侵袭迁移能力及上皮间质转化过程[48]。从基因组定位来看,ATAD2位于8q24染色体区域,与MYC基因相距4.3Mb,作为MYC的共激活因子,通过增强MYC依赖性转录来促进肿瘤的恶性进展[19] [49]。最新研究揭示,ATAD2与TWIST1协同作用于MYC启动子区域,通过相互作用激活MYC,从而调控结直肠癌细胞的增殖过程[50]。在RCC中,ATAD2通过调节c-Myc转录活性,促进糖酵解相关基因表达,诱导Warburg效应,最终影响肿瘤的生长[51]。鉴于上述机制,ATAD2在ccRCC的靶向治疗领域展现出重要的临床应用前景。此外,ATAD2与RCC对酪氨酸激酶抑制剂耐药性相关。ccRCC中癌症干细胞使用由血管周细胞来源的蛋氨酸在ATAD2 mRNA中产生稳定的N6-甲基腺苷,以及产生的ATAD2蛋白复合物与SRY-box转录因子9来组装超级增强子,从而决定其在癌症干细胞中突出的靶基因,并影响ccRCC对酪氨酸激酶抑制剂治疗敏感性[52]

6. 总结与展望

ATAD2在泌尿系统恶性肿瘤中普遍呈显著高表达特征,其致癌机制涉及AAA+ATP酶结构域与BRD的分子协同效应,并通过调控AR、c-MYC及E2F1等重要转录因子,协同促进肿瘤演进并介导相关治疗耐药。相对于其致癌作用,进一步评估ATAD2作为抗癌靶点的潜力并了解其在癌症中的生物学作用至关重要。而针对ATAD2的抗癌治疗存在一定的问题和挑战。最难的问题之一是靶向ATAD2的新型强效小分子抑制剂的设计。首先,ATAD2中的BRD是一个很有前途的靶标。然而,与经典的BRD4结构域不同的是,ATAD2中的BRD具有更灵活和亲水性的特性,导致在设计配体时进行富有成效的相互作用更具挑战性。此外,ATAD2的ZA环比BRD4短两个残基,进一步影响其蛋白质发生赖氨酸乙酰化修饰位点的相对溶剂的暴露和亲水性。同样,AAA+ATP酶结构域作为药物靶点也面临一定的挑战。例如,该结构域缺乏详细的空间晶体结构,并且与其他AAA+ATP酶家族成员的高度相似性,这意味着可能会发生选择性差和相关副作用等一系列情况。其次,已报道的小分子抑制剂仍处于起步阶段,应进一步探索抗癌机制和药效学研究,以便于其更好地运用于抗癌治疗中。总之,进一步研究ATAD2在泌尿系肿瘤中的致癌机制以及开发靶向ATAD2抑制剂仍然是一项艰巨的任务,需要开展更多的研究,以为深入理解并有效治疗泌尿系肿瘤提供思路。

基金项目

江西省2023年度研究生创新专项资金项目(项目编号:YC2023-S952)。

NOTES

*通讯作者。

参考文献

[1] Zolfi, E., Khaleghi Mehr, F., Emtiazi, N. and Moradi, Y. (2025) A Review of the Carcinogenic Potential of Human Papillomavirus (HPV) in Urological Cancers. Virology Journal, 22, Article No. 53.
https://doi.org/10.1186/s12985-025-02682-1
[2] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[3] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[4] Zi, H., Liu, M., Luo, L., Huang, Q., Luo, P., Luan, H., et al. (2024) Global Burden of Benign Prostatic Hyperplasia, Urinary Tract Infections, Urolithiasis, Bladder Cancer, Kidney Cancer, and Prostate Cancer from 1990 to 2021. Military Medical Research, 11, Article No. 64.
https://doi.org/10.1186/s40779-024-00569-w
[5] Li, W., Zheng, L., Luo, P., Chen, T., Zou, J., Chen, Q., et al. (2024) Critical Role of Non-Coding RNA-Mediated Ferroptosis in Urologic Malignancies. Frontiers in Immunology, 15, Article ID: 1486229.
https://doi.org/10.3389/fimmu.2024.1486229
[6] Zou, J., Xu, B., Gao, H., Luo, P., Chen, T. and Duan, H. (2024) Microbiome in Urologic Neoplasms: Focusing on Tumor Immunity. Frontiers in Immunology, 15, Article ID: 1507355.
https://doi.org/10.3389/fimmu.2024.1507355
[7] Fu, J., Zhang, J., Chen, X., Liu, Z., Yang, X., He, Z., et al. (2023) ATPase Family AAA Domain-Containing Protein 2 (ATAD2): From an Epigenetic Modulator to Cancer Therapeutic Target. Theranostics, 13, 787-809.
https://doi.org/10.7150/thno.78840
[8] Nayak, A., Dutta, M. and Roychowdhury, A. (2021) Emerging Oncogene ATAD2: Signaling Cascades and Therapeutic Initiatives. Life Sciences, 276, Article ID: 119322.
https://doi.org/10.1016/j.lfs.2021.119322
[9] Liu, H., Wen, Q., Yan, S., Zeng, W., Zou, Y., Liu, Q., et al. (2022) Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules, 12, Article No. 1040.
https://doi.org/10.3390/biom12081040
[10] Zhang, G., Li, S., Cheng, K. and Chou, T. (2021) AAA ATPases as Therapeutic Targets: Structure, Functions, and Small-Molecule Inhibitors. European Journal of Medicinal Chemistry, 219, Article ID: 113446.
https://doi.org/10.1016/j.ejmech.2021.113446
[11] Jessop, M., Felix, J. and Gutsche, I. (2021) AAA+ ATPases: Structural Insertions under the Magnifying Glass. Current Opinion in Structural Biology, 66, 119-128.
https://doi.org/10.1016/j.sbi.2020.10.027
[12] Clapier, C.R., Iwasa, J., Cairns, B.R. and Peterson, C.L. (2017) Mechanisms of Action and Regulation of ATP-Dependent Chromatin-Remodelling Complexes. Nature Reviews Molecular Cell Biology, 18, 407-422.
https://doi.org/10.1038/nrm.2017.26
[13] Cattaneo, M., Morozumi, Y., Perazza, D., Boussouar, F., Jamshidikia, M., Rousseaux, S., et al. (2014) Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization. Molecules and Cells, 37, 851-856.
https://doi.org/10.14348/molcells.2014.0258
[14] Evans, C.M., Phillips, M., Malone, K.L., Tonelli, M., Cornilescu, G., Cornilescu, C., et al. (2021) Coordination of Di-Acetylated Histone Ligands by the ATAD2 Bromodomain. International Journal of Molecular Sciences, 22, Article No. 9128.
https://doi.org/10.3390/ijms22179128
[15] Boussouar, F., Jamshidikia, M., Morozumi, Y., Rousseaux, S. and Khochbin, S. (2013) Malignant Genome Reprogramming by ATAD2. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1829, 1010-1014.
https://doi.org/10.1016/j.bbagrm.2013.06.003
[16] Han, H., Huang, Q., Huang, L., Chang, F. and Diao, Q. (2019) Prognostic Value of ATPase Family, AAA+ Domain Containing 2 Expression in Human Cancers: A Systematic Review and Meta-Analysis. Medicine, 98, e17180.
https://doi.org/10.1097/md.0000000000017180
[17] Revenko, A.S., Kalashnikova, E.V., Gemo, A.T., Zou, J.X. and Chen, H. (2010) Chromatin Loading of E2F-MLL Complex by Cancer-Associated Coregulator ANCCA via Reading a Specific Histone Mark. Molecular and Cellular Biology, 30, 5260-5272.
https://doi.org/10.1128/mcb.00484-10
[18] Fouret, R., Laffaire, J., Hofman, P., Beau-Faller, M., Mazieres, J., Validire, P., et al. (2012) A Comparative and Integrative Approach Identifies ATPase Family, AAA Domain Containing 2 as a Likely Driver of Cell Proliferation in Lung Adenocarcinoma. Clinical Cancer Research, 18, 5606-5616.
https://doi.org/10.1158/1078-0432.ccr-12-0505
[19] Ciró, M., Prosperini, E., Quarto, M., Grazini, U., Walfridsson, J., McBlane, F., et al. (2009) ATAD2 Is a Novel Cofactor for MYC, Overexpressed and Amplified in Aggressive Tumors. Cancer Research, 69, 8491-8498.
https://doi.org/10.1158/0008-5472.can-09-2131
[20] Wang, Y., Hu, Y., Wu, G., Yang, Y., Tang, Y., Zhang, W., et al. (2017) Long Noncoding RNA PCAT-14 Induces Proliferation and Invasion by Hepatocellular Carcinoma Cells by Inducing Methylation of miR-372. Oncotarget, 8, 34429-34441.
https://doi.org/10.18632/oncotarget.16260
[21] Wu, G., Liu, H., He, H., Wang, Y., Lu, X., Yu, Y., et al. (2014) miR-372 Down-Regulates the Oncogene ATAD2 to Influence Hepatocellular Carcinoma Proliferation and Metastasis. BMC Cancer, 14, Article No. 107.
https://doi.org/10.1186/1471-2407-14-107
[22] Guan, X., Zong, Z., Chen, S., Sang, X., Wu, D., Wang, L., et al. (2017) The Role of miR-372 in Ovarian Carcinoma Cell Proliferation. Gene, 624, 14-20.
https://doi.org/10.1016/j.gene.2017.04.043
[23] Ge, T., Liu, T., Guo, L., Chen, Z. and Lou, G. (2020) MicroRNA-302 Represses Epithelial-Mesenchymal Transition and Cisplatin Resistance by Regulating ATAD2 in Ovarian Carcinoma. Experimental Cell Research, 396, Article ID: 112241.
https://doi.org/10.1016/j.yexcr.2020.112241
[24] Wang, A.Q., Lv, M., Xu, Y.H., et al. (2020) MiR-200b-5p Inhibits Proliferation of Ovarian Cancer Cells by Targeting ATAD2 and Regulating PI3K/AKT Signaling Pathway. European Review for Medical and Pharmacological Sciences, 24, 9860-9868.
[25] Sun, W., Lan, X., Zhang, H., Wang, Z., Dong, W., He, L., et al. (2018) NEAT1_2 Functions as a Competing Endogenous RNA to Regulate ATAD2 Expression by Sponging MicroRNA-106b-5p in Papillary Thyroid Cancer. Cell Death & Disease, 9, Article No. 380.
https://doi.org/10.1038/s41419-018-0418-z
[26] Hong, S., Bi, M., Chen, S., Zhao, P., Li, B., Sun, D., et al. (2016) MicroRNA-520f Suppresses Growth of Gastric Carcinoma Cells by Target ATPase Family AAA Domain-Containing Protein 2 (ATAD2). Neoplasma, 63, 873-879.
https://doi.org/10.4149/neo_2016_606
[27] Hong, S., Chen, S., Wang, X., Sun, D., Yan, Z., Tai, J., et al. (2018) ATAD2 Silencing Decreases VEGFA Secretion through Targeting has-miR-520a to Inhibit Angiogenesis in Colorectal Cancer. Biochemistry and Cell Biology, 96, 761-768.
https://doi.org/10.1139/bcb-2018-0081
[28] Wu, S., Han, M. and Zhang, C. (2019) Overexpression of Microrna‐186 Inhibits Angiogenesis in Retinoblastoma via the Hedgehog Signaling Pathway by Targeting ATAD2. Journal of Cellular Physiology, 234, 19059-19072.
https://doi.org/10.1002/jcp.28545
[29] Dutta, M., Das, B., Mohapatra, D., Behera, P., Senapati, S. and Roychowdhury, A. (2022) MicroRNA-217 Modulates Pancreatic Cancer Progression via Targeting ATAD2. Life Sciences, 301, Article ID: 120592.
https://doi.org/10.1016/j.lfs.2022.120592
[30] Hwang, Y.S., Park, E.S., Oh, B.M., Uhm, T.G., Yoon, S.R., Park, J., et al. (2022) miR-302 Suppresses the Proliferation, Migration, and Invasion of Breast Cancer Cells by Downregulating ATAD2. Cancers, 14, Article No. 4345.
https://doi.org/10.3390/cancers14184345
[31] Sun, T. and Liu, Z. (2023) MicroRNA-139-5p Suppresses Non-Small Cell Lung Cancer Progression by Targeting ATAD2. PathologyResearch and Practice, 249, Article ID: 154719.
https://doi.org/10.1016/j.prp.2023.154719
[32] Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J., Barsyte-Lovejoy, D., et al. (2012) Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell, 149, 214-231.
https://doi.org/10.1016/j.cell.2012.02.013
[33] Wang, X., Yang, Y., Ren, D., Xia, Y., He, W., Wu, Q., et al. (2020) JQ1, a Bromodomain Inhibitor, Suppresses Th17 Effectors by Blocking P300‐mediated Acetylation of RORγt. British Journal of Pharmacology, 177, 2959-2973.
https://doi.org/10.1111/bph.15023
[34] Winter-Holt, J.J., Bardelle, C., Chiarparin, E., Dale, I.L., Davey, P.R.J., Davies, N.L., et al. (2022) Discovery of a Potent and Selective ATAD2 Bromodomain Inhibitor with Antiproliferative Activity in Breast Cancer Models. Journal of Medicinal Chemistry, 65, 3306-3331.
https://doi.org/10.1021/acs.jmedchem.1c01871
[35] Yao, D., Li, C., Jiang, J., Huang, J., Wang, J., He, Z., et al. (2020) Design, Synthesis and Biological Evaluation of Novel HDAC Inhibitors with Improved Pharmacokinetic Profile in Breast Cancer. European Journal of Medicinal Chemistry, 205, Article ID: 112648.
https://doi.org/10.1016/j.ejmech.2020.112648
[36] Li, C., Cheng, D. and Li, P. (2025) Androgen Receptor Dynamics in Prostate Cancer: From Disease Progression to Treatment Resistance. Frontiers in Oncology, 15, Article ID: 1542811.
https://doi.org/10.3389/fonc.2025.1542811
[37] Duan, Z., Zou, J.X., Yang, P., Wang, Y., Borowsky, A.D., Gao, A.C., et al. (2012) Developmental and Androgenic Regulation of Chromatin Regulators EZH2 and ANCCA/ATAD2 in the Prostate via MLL Histone Methylase Complex. The Prostate, 73, 455-466.
https://doi.org/10.1002/pros.22587
[38] Altintas, D.M., Shukla, M.S., Goutte-Gattat, D., Angelov, D., Rouault, J.P., Dimitrov, S., et al. (2012) Direct Cooperation between Androgen Receptor and E2F1 Reveals a Common Regulation Mechanism for Androgen-Responsive Genes in Prostate Cells. Molecular Endocrinology, 26, 1531-1541.
https://doi.org/10.1210/me.2012-1016
[39] Urbanucci, A., Barfeld, S.J., Kytölä, V., Itkonen, H.M., Coleman, I.M., Vodák, D., et al. (2017) Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 19, 2045-2059.
https://doi.org/10.1016/j.celrep.2017.05.049
[40] Yang, P., Guo, L., Duan, Z.J., Tepper, C.G., Xue, L., Chen, X., et al. (2012) Histone Methyltransferase NSD2/MMSET Mediates Constitutive NF-κB Signaling for Cancer Cell Proliferation, Survival, and Tumor Growth via a Feed-Forward Loop. Molecular and Cellular Biology, 32, 3121-3131.
https://doi.org/10.1128/mcb.00204-12
[41] Zou, J.X., Guo, L., Revenko, A.S., Tepper, C.G., Gemo, A.T., Kung, H., et al. (2009) Androgen-Induced Coactivator ANCCA Mediates Specific Androgen Receptor Signaling in Prostate Cancer. Cancer Research, 69, 3339-3346.
https://doi.org/10.1158/0008-5472.can-08-3440
[42] Dutta, A., Rodriguez-Calero, A., Ronaldson-Bouchard, K., Offermann, A., Rahman, D., Vhatkar, T.B., et al. (2025) ATAD2 Drives Prostate Cancer Progression to Metastasis. Molecular Cancer Research, OF1-OF12.
https://doi.org/10.1158/1541-7786.mcr-24-0544
[43] Kaufman, D.S., Shipley, W.U. and Feldman, A.S. (2009) Bladder Cancer. The Lancet, 374, 239-249.
https://doi.org/10.1016/s0140-6736(09)60491-8
[44] Hushmandi, K., Saadat, S.H., Raei, M., Daneshi, S., Aref, A.R., Nabavi, N., et al. (2024) Implications of C-Myc in the Pathogenesis and Treatment Efficacy of Urological Cancers. PathologyResearch and Practice, 259, Article ID: 155381.
https://doi.org/10.1016/j.prp.2024.155381
[45] Chen, J., Huang, C., Quan, C., Zu, X., Ou, Z., Tsai, Y., et al. (2023) The Androgen Receptor in Bladder Cancer. Nature Reviews Urology, 20, 560-574.
https://doi.org/10.1038/s41585-023-00761-y
[46] Cesana, B., Cochet, C. and Filhol, O. (2024) New Players in the Landscape of Renal Cell Carcinoma Bone Metastasis and Therapeutic Opportunities. International Journal of Cancer, 156, 475-487.
https://doi.org/10.1002/ijc.35181
[47] Chen, D., Maruschke, M., Hakenberg, O., Zimmermann, W., Stief, C.G. and Buchner, A. (2017) TOP2A, HELLS, ATAD2, and TET3 Are Novel Prognostic Markers in Renal Cell Carcinoma. Urology, 102, 265.e1-265.e7.
https://doi.org/10.1016/j.urology.2016.12.050
[48] Ji, S., Su, X., Zhang, H., Han, Z., Zhao, Y. and Liu, Q. (2018) MicroRNA-372 Functions as a Tumor Suppressor in Cell Invasion, Migration and Epithelial-Mesenchymal Transition by Targeting ATAD2 in Renal Cell Carcinoma. Oncology Letters, 17, 2400-2408.
https://doi.org/10.3892/ol.2018.9871
[49] Raeder, M.B., Birkeland, E., Trovik, J., Krakstad, C., Shehata, S., Schumacher, S., et al. (2013) Integrated Genomic Analysis of the 8q24 Amplification in Endometrial Cancers Identifies ATAD2 as Essential to Myc-Dependent Cancers. PLOS ONE, 8, e54873.
https://doi.org/10.1371/journal.pone.0054873
[50] Roy, A. and Sudhamalla, B. (2024) ATAD2 and TWIST1 Interaction Promotes MYC Activation in Colorectal Carcinoma. Biochemistry, 64, 114-126.
https://doi.org/10.1021/acs.biochem.4c00360
[51] Wu, Z., Ge, L., Song, Y., Deng, S., Duan, P., Du, T., et al. (2023) ATAD2 Promotes Glycolysis and Tumor Progression in Clear Cell Renal Cell Carcinoma by Regulating the Transcriptional Activity of c-Myc. Discover Oncology, 14, Article No. 79.
https://doi.org/10.1007/s12672-023-00696-1
[52] Zhang, C., Du, Z., Gao, Y., Lim, K.S., Zhou, W., Huang, H., et al. (2024) Methionine Secreted by Tumor-Associated Pericytes Supports Cancer Stem Cells in Clear Cell Renal Carcinoma. Cell Metabolism, 36, 778-792.e10.
https://doi.org/10.1016/j.cmet.2024.01.018