[1]
|
Zolfi, E., Khaleghi Mehr, F., Emtiazi, N. and Moradi, Y. (2025) A Review of the Carcinogenic Potential of Human Papillomavirus (HPV) in Urological Cancers. Virology Journal, 22, Article No. 53. https://doi.org/10.1186/s12985-025-02682-1
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[3]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[4]
|
Zi, H., Liu, M., Luo, L., Huang, Q., Luo, P., Luan, H., et al. (2024) Global Burden of Benign Prostatic Hyperplasia, Urinary Tract Infections, Urolithiasis, Bladder Cancer, Kidney Cancer, and Prostate Cancer from 1990 to 2021. Military Medical Research, 11, Article No. 64. https://doi.org/10.1186/s40779-024-00569-w
|
[5]
|
Li, W., Zheng, L., Luo, P., Chen, T., Zou, J., Chen, Q., et al. (2024) Critical Role of Non-Coding RNA-Mediated Ferroptosis in Urologic Malignancies. Frontiers in Immunology, 15, Article ID: 1486229. https://doi.org/10.3389/fimmu.2024.1486229
|
[6]
|
Zou, J., Xu, B., Gao, H., Luo, P., Chen, T. and Duan, H. (2024) Microbiome in Urologic Neoplasms: Focusing on Tumor Immunity. Frontiers in Immunology, 15, Article ID: 1507355. https://doi.org/10.3389/fimmu.2024.1507355
|
[7]
|
Fu, J., Zhang, J., Chen, X., Liu, Z., Yang, X., He, Z., et al. (2023) ATPase Family AAA Domain-Containing Protein 2 (ATAD2): From an Epigenetic Modulator to Cancer Therapeutic Target. Theranostics, 13, 787-809. https://doi.org/10.7150/thno.78840
|
[8]
|
Nayak, A., Dutta, M. and Roychowdhury, A. (2021) Emerging Oncogene ATAD2: Signaling Cascades and Therapeutic Initiatives. Life Sciences, 276, Article ID: 119322. https://doi.org/10.1016/j.lfs.2021.119322
|
[9]
|
Liu, H., Wen, Q., Yan, S., Zeng, W., Zou, Y., Liu, Q., et al. (2022) Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules, 12, Article No. 1040. https://doi.org/10.3390/biom12081040
|
[10]
|
Zhang, G., Li, S., Cheng, K. and Chou, T. (2021) AAA ATPases as Therapeutic Targets: Structure, Functions, and Small-Molecule Inhibitors. European Journal of Medicinal Chemistry, 219, Article ID: 113446. https://doi.org/10.1016/j.ejmech.2021.113446
|
[11]
|
Jessop, M., Felix, J. and Gutsche, I. (2021) AAA+ ATPases: Structural Insertions under the Magnifying Glass. Current Opinion in Structural Biology, 66, 119-128. https://doi.org/10.1016/j.sbi.2020.10.027
|
[12]
|
Clapier, C.R., Iwasa, J., Cairns, B.R. and Peterson, C.L. (2017) Mechanisms of Action and Regulation of ATP-Dependent Chromatin-Remodelling Complexes. Nature Reviews Molecular Cell Biology, 18, 407-422. https://doi.org/10.1038/nrm.2017.26
|
[13]
|
Cattaneo, M., Morozumi, Y., Perazza, D., Boussouar, F., Jamshidikia, M., Rousseaux, S., et al. (2014) Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization. Molecules and Cells, 37, 851-856. https://doi.org/10.14348/molcells.2014.0258
|
[14]
|
Evans, C.M., Phillips, M., Malone, K.L., Tonelli, M., Cornilescu, G., Cornilescu, C., et al. (2021) Coordination of Di-Acetylated Histone Ligands by the ATAD2 Bromodomain. International Journal of Molecular Sciences, 22, Article No. 9128. https://doi.org/10.3390/ijms22179128
|
[15]
|
Boussouar, F., Jamshidikia, M., Morozumi, Y., Rousseaux, S. and Khochbin, S. (2013) Malignant Genome Reprogramming by ATAD2. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1829, 1010-1014. https://doi.org/10.1016/j.bbagrm.2013.06.003
|
[16]
|
Han, H., Huang, Q., Huang, L., Chang, F. and Diao, Q. (2019) Prognostic Value of ATPase Family, AAA+ Domain Containing 2 Expression in Human Cancers: A Systematic Review and Meta-Analysis. Medicine, 98, e17180. https://doi.org/10.1097/md.0000000000017180
|
[17]
|
Revenko, A.S., Kalashnikova, E.V., Gemo, A.T., Zou, J.X. and Chen, H. (2010) Chromatin Loading of E2F-MLL Complex by Cancer-Associated Coregulator ANCCA via Reading a Specific Histone Mark. Molecular and Cellular Biology, 30, 5260-5272. https://doi.org/10.1128/mcb.00484-10
|
[18]
|
Fouret, R., Laffaire, J., Hofman, P., Beau-Faller, M., Mazieres, J., Validire, P., et al. (2012) A Comparative and Integrative Approach Identifies ATPase Family, AAA Domain Containing 2 as a Likely Driver of Cell Proliferation in Lung Adenocarcinoma. Clinical Cancer Research, 18, 5606-5616. https://doi.org/10.1158/1078-0432.ccr-12-0505
|
[19]
|
Ciró, M., Prosperini, E., Quarto, M., Grazini, U., Walfridsson, J., McBlane, F., et al. (2009) ATAD2 Is a Novel Cofactor for MYC, Overexpressed and Amplified in Aggressive Tumors. Cancer Research, 69, 8491-8498. https://doi.org/10.1158/0008-5472.can-09-2131
|
[20]
|
Wang, Y., Hu, Y., Wu, G., Yang, Y., Tang, Y., Zhang, W., et al. (2017) Long Noncoding RNA PCAT-14 Induces Proliferation and Invasion by Hepatocellular Carcinoma Cells by Inducing Methylation of miR-372. Oncotarget, 8, 34429-34441. https://doi.org/10.18632/oncotarget.16260
|
[21]
|
Wu, G., Liu, H., He, H., Wang, Y., Lu, X., Yu, Y., et al. (2014) miR-372 Down-Regulates the Oncogene ATAD2 to Influence Hepatocellular Carcinoma Proliferation and Metastasis. BMC Cancer, 14, Article No. 107. https://doi.org/10.1186/1471-2407-14-107
|
[22]
|
Guan, X., Zong, Z., Chen, S., Sang, X., Wu, D., Wang, L., et al. (2017) The Role of miR-372 in Ovarian Carcinoma Cell Proliferation. Gene, 624, 14-20. https://doi.org/10.1016/j.gene.2017.04.043
|
[23]
|
Ge, T., Liu, T., Guo, L., Chen, Z. and Lou, G. (2020) MicroRNA-302 Represses Epithelial-Mesenchymal Transition and Cisplatin Resistance by Regulating ATAD2 in Ovarian Carcinoma. Experimental Cell Research, 396, Article ID: 112241. https://doi.org/10.1016/j.yexcr.2020.112241
|
[24]
|
Wang, A.Q., Lv, M., Xu, Y.H., et al. (2020) MiR-200b-5p Inhibits Proliferation of Ovarian Cancer Cells by Targeting ATAD2 and Regulating PI3K/AKT Signaling Pathway. European Review for Medical and Pharmacological Sciences, 24, 9860-9868.
|
[25]
|
Sun, W., Lan, X., Zhang, H., Wang, Z., Dong, W., He, L., et al. (2018) NEAT1_2 Functions as a Competing Endogenous RNA to Regulate ATAD2 Expression by Sponging MicroRNA-106b-5p in Papillary Thyroid Cancer. Cell Death & Disease, 9, Article No. 380. https://doi.org/10.1038/s41419-018-0418-z
|
[26]
|
Hong, S., Bi, M., Chen, S., Zhao, P., Li, B., Sun, D., et al. (2016) MicroRNA-520f Suppresses Growth of Gastric Carcinoma Cells by Target ATPase Family AAA Domain-Containing Protein 2 (ATAD2). Neoplasma, 63, 873-879. https://doi.org/10.4149/neo_2016_606
|
[27]
|
Hong, S., Chen, S., Wang, X., Sun, D., Yan, Z., Tai, J., et al. (2018) ATAD2 Silencing Decreases VEGFA Secretion through Targeting has-miR-520a to Inhibit Angiogenesis in Colorectal Cancer. Biochemistry and Cell Biology, 96, 761-768. https://doi.org/10.1139/bcb-2018-0081
|
[28]
|
Wu, S., Han, M. and Zhang, C. (2019) Overexpression of Microrna‐186 Inhibits Angiogenesis in Retinoblastoma via the Hedgehog Signaling Pathway by Targeting ATAD2. Journal of Cellular Physiology, 234, 19059-19072. https://doi.org/10.1002/jcp.28545
|
[29]
|
Dutta, M., Das, B., Mohapatra, D., Behera, P., Senapati, S. and Roychowdhury, A. (2022) MicroRNA-217 Modulates Pancreatic Cancer Progression via Targeting ATAD2. Life Sciences, 301, Article ID: 120592. https://doi.org/10.1016/j.lfs.2022.120592
|
[30]
|
Hwang, Y.S., Park, E.S., Oh, B.M., Uhm, T.G., Yoon, S.R., Park, J., et al. (2022) miR-302 Suppresses the Proliferation, Migration, and Invasion of Breast Cancer Cells by Downregulating ATAD2. Cancers, 14, Article No. 4345. https://doi.org/10.3390/cancers14184345
|
[31]
|
Sun, T. and Liu, Z. (2023) MicroRNA-139-5p Suppresses Non-Small Cell Lung Cancer Progression by Targeting ATAD2. Pathology—Research and Practice, 249, Article ID: 154719. https://doi.org/10.1016/j.prp.2023.154719
|
[32]
|
Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J., Barsyte-Lovejoy, D., et al. (2012) Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell, 149, 214-231. https://doi.org/10.1016/j.cell.2012.02.013
|
[33]
|
Wang, X., Yang, Y., Ren, D., Xia, Y., He, W., Wu, Q., et al. (2020) JQ1, a Bromodomain Inhibitor, Suppresses Th17 Effectors by Blocking P300‐mediated Acetylation of RORγt. British Journal of Pharmacology, 177, 2959-2973. https://doi.org/10.1111/bph.15023
|
[34]
|
Winter-Holt, J.J., Bardelle, C., Chiarparin, E., Dale, I.L., Davey, P.R.J., Davies, N.L., et al. (2022) Discovery of a Potent and Selective ATAD2 Bromodomain Inhibitor with Antiproliferative Activity in Breast Cancer Models. Journal of Medicinal Chemistry, 65, 3306-3331. https://doi.org/10.1021/acs.jmedchem.1c01871
|
[35]
|
Yao, D., Li, C., Jiang, J., Huang, J., Wang, J., He, Z., et al. (2020) Design, Synthesis and Biological Evaluation of Novel HDAC Inhibitors with Improved Pharmacokinetic Profile in Breast Cancer. European Journal of Medicinal Chemistry, 205, Article ID: 112648. https://doi.org/10.1016/j.ejmech.2020.112648
|
[36]
|
Li, C., Cheng, D. and Li, P. (2025) Androgen Receptor Dynamics in Prostate Cancer: From Disease Progression to Treatment Resistance. Frontiers in Oncology, 15, Article ID: 1542811. https://doi.org/10.3389/fonc.2025.1542811
|
[37]
|
Duan, Z., Zou, J.X., Yang, P., Wang, Y., Borowsky, A.D., Gao, A.C., et al. (2012) Developmental and Androgenic Regulation of Chromatin Regulators EZH2 and ANCCA/ATAD2 in the Prostate via MLL Histone Methylase Complex. The Prostate, 73, 455-466. https://doi.org/10.1002/pros.22587
|
[38]
|
Altintas, D.M., Shukla, M.S., Goutte-Gattat, D., Angelov, D., Rouault, J.P., Dimitrov, S., et al. (2012) Direct Cooperation between Androgen Receptor and E2F1 Reveals a Common Regulation Mechanism for Androgen-Responsive Genes in Prostate Cells. Molecular Endocrinology, 26, 1531-1541. https://doi.org/10.1210/me.2012-1016
|
[39]
|
Urbanucci, A., Barfeld, S.J., Kytölä, V., Itkonen, H.M., Coleman, I.M., Vodák, D., et al. (2017) Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 19, 2045-2059. https://doi.org/10.1016/j.celrep.2017.05.049
|
[40]
|
Yang, P., Guo, L., Duan, Z.J., Tepper, C.G., Xue, L., Chen, X., et al. (2012) Histone Methyltransferase NSD2/MMSET Mediates Constitutive NF-κB Signaling for Cancer Cell Proliferation, Survival, and Tumor Growth via a Feed-Forward Loop. Molecular and Cellular Biology, 32, 3121-3131. https://doi.org/10.1128/mcb.00204-12
|
[41]
|
Zou, J.X., Guo, L., Revenko, A.S., Tepper, C.G., Gemo, A.T., Kung, H., et al. (2009) Androgen-Induced Coactivator ANCCA Mediates Specific Androgen Receptor Signaling in Prostate Cancer. Cancer Research, 69, 3339-3346. https://doi.org/10.1158/0008-5472.can-08-3440
|
[42]
|
Dutta, A., Rodriguez-Calero, A., Ronaldson-Bouchard, K., Offermann, A., Rahman, D., Vhatkar, T.B., et al. (2025) ATAD2 Drives Prostate Cancer Progression to Metastasis. Molecular Cancer Research, OF1-OF12. https://doi.org/10.1158/1541-7786.mcr-24-0544
|
[43]
|
Kaufman, D.S., Shipley, W.U. and Feldman, A.S. (2009) Bladder Cancer. The Lancet, 374, 239-249. https://doi.org/10.1016/s0140-6736(09)60491-8
|
[44]
|
Hushmandi, K., Saadat, S.H., Raei, M., Daneshi, S., Aref, A.R., Nabavi, N., et al. (2024) Implications of C-Myc in the Pathogenesis and Treatment Efficacy of Urological Cancers. Pathology—Research and Practice, 259, Article ID: 155381. https://doi.org/10.1016/j.prp.2024.155381
|
[45]
|
Chen, J., Huang, C., Quan, C., Zu, X., Ou, Z., Tsai, Y., et al. (2023) The Androgen Receptor in Bladder Cancer. Nature Reviews Urology, 20, 560-574. https://doi.org/10.1038/s41585-023-00761-y
|
[46]
|
Cesana, B., Cochet, C. and Filhol, O. (2024) New Players in the Landscape of Renal Cell Carcinoma Bone Metastasis and Therapeutic Opportunities. International Journal of Cancer, 156, 475-487. https://doi.org/10.1002/ijc.35181
|
[47]
|
Chen, D., Maruschke, M., Hakenberg, O., Zimmermann, W., Stief, C.G. and Buchner, A. (2017) TOP2A, HELLS, ATAD2, and TET3 Are Novel Prognostic Markers in Renal Cell Carcinoma. Urology, 102, 265.e1-265.e7. https://doi.org/10.1016/j.urology.2016.12.050
|
[48]
|
Ji, S., Su, X., Zhang, H., Han, Z., Zhao, Y. and Liu, Q. (2018) MicroRNA-372 Functions as a Tumor Suppressor in Cell Invasion, Migration and Epithelial-Mesenchymal Transition by Targeting ATAD2 in Renal Cell Carcinoma. Oncology Letters, 17, 2400-2408. https://doi.org/10.3892/ol.2018.9871
|
[49]
|
Raeder, M.B., Birkeland, E., Trovik, J., Krakstad, C., Shehata, S., Schumacher, S., et al. (2013) Integrated Genomic Analysis of the 8q24 Amplification in Endometrial Cancers Identifies ATAD2 as Essential to Myc-Dependent Cancers. PLOS ONE, 8, e54873. https://doi.org/10.1371/journal.pone.0054873
|
[50]
|
Roy, A. and Sudhamalla, B. (2024) ATAD2 and TWIST1 Interaction Promotes MYC Activation in Colorectal Carcinoma. Biochemistry, 64, 114-126. https://doi.org/10.1021/acs.biochem.4c00360
|
[51]
|
Wu, Z., Ge, L., Song, Y., Deng, S., Duan, P., Du, T., et al. (2023) ATAD2 Promotes Glycolysis and Tumor Progression in Clear Cell Renal Cell Carcinoma by Regulating the Transcriptional Activity of c-Myc. Discover Oncology, 14, Article No. 79. https://doi.org/10.1007/s12672-023-00696-1
|
[52]
|
Zhang, C., Du, Z., Gao, Y., Lim, K.S., Zhou, W., Huang, H., et al. (2024) Methionine Secreted by Tumor-Associated Pericytes Supports Cancer Stem Cells in Clear Cell Renal Carcinoma. Cell Metabolism, 36, 778-792.e10. https://doi.org/10.1016/j.cmet.2024.01.018
|