[1]
|
Vale, R., Reese, T. and Sheetz, M. (1985) Identification of a Novel Force-Generating Protein, Kinesin, Involved in Microtubule-Based Motility. Cell, 42, 39-50. https://doi.org/10.1016/s0092-8674(85)80099-4
|
[2]
|
Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., et al. (2004) A Standardized Kinesin Nomenclature. The Journal of Cell Biology, 167, 19-22. https://doi.org/10.1083/jcb.200408113
|
[3]
|
Miki, H., Setou, M., Kaneshiro, K. and Hirokawa, N. (2001) All Kinesin Superfamily Protein, KIF, Genes in Mouse and Human. Proceedings of the National Academy of Sciences, 98, 7004-7011. https://doi.org/10.1073/pnas.111145398
|
[4]
|
Yu, Y. and Feng, Y. (2010) The Role of Kinesin Family Proteins in Tumorigenesis and Progression: Potential Biomarkers and Molecular Targets for Cancer Therapy. Cancer, 116, 5150-5160. https://doi.org/10.1002/cncr.25461
|
[5]
|
Miki, H., Okada, Y. and Hirokawa, N. (2005) Analysis of the Kinesin Superfamily: Insights into Structure and Function. Trends in Cell Biology, 15, 467-476. https://doi.org/10.1016/j.tcb.2005.07.006
|
[6]
|
Hirokawa, N., Noda, Y. and Okada, Y. (1998) Kinesin and Dynein Superfamily Proteins in Organelle Transport and Cell Division. Current Opinion in Cell Biology, 10, 60-73. https://doi.org/10.1016/s0955-0674(98)80087-2
|
[7]
|
Hirokawa, N. (1998) Kinesin and Dynein Superfamily Proteins and the Mechanism of Organelle Transport. Science, 279, 519-526. https://doi.org/10.1126/science.279.5350.519
|
[8]
|
Ishii, Y., Nishiyama, M. and Yanagida, T. (2004) Mechano-Chemical Coupling of Molecular Motors Revealed by Single Molecule Measurements. Current Protein and Peptide Science, 5, 81-87. https://doi.org/10.2174/1389203043486838
|
[9]
|
Seog, D., Lee, D. and Lee, S. (2004) Molecular Motor Proteins of the Kinesin Superfamily Proteins (KIFs): Structure, Cargo and Disease. Journal of Korean Medical Science, 19, 1-7. https://doi.org/10.3346/jkms.2004.19.1.1
|
[10]
|
Vale, R.D. and Fletterick, R.J. (1997) The Design Plan of Kinesin Motors. Annual Review of Cell and Developmental Biology, 13, 745-777. https://doi.org/10.1146/annurev.cellbio.13.1.745
|
[11]
|
Sharp, D.J., Rogers, G.C. and Scholey, J.M. (2000) Microtubule Motors in Mitosis. Nature, 407, 41-47. https://doi.org/10.1038/35024000
|
[12]
|
Hirokawa, N. and Noda, Y. (2008) Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics. Physiological Reviews, 88, 1089-1118. https://doi.org/10.1152/physrev.00023.2007
|
[13]
|
Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. (2009) Kinesin Superfamily Motor Proteins and Intracellular Transport. Nature Reviews Molecular Cell Biology, 10, 682-696. https://doi.org/10.1038/nrm2774
|
[14]
|
Vale, R.D. and Milligan, R.A. (2000) The Way Things Move: Looking under the Hood of Molecular Motor Proteins. Science, 288, 88-95. https://doi.org/10.1126/science.288.5463.88
|
[15]
|
Gao, T., Yu, L., Fang, Z., Liu, J., Bai, C., Li, S., et al. (2020) KIF18B Promotes Tumor Progression in Osteosarcoma by Activating β-Catenin. Cancer Biology and Medicine, 17, 371-386. https://doi.org/10.20892/j.issn.2095-3941.2019.0452
|
[16]
|
Lee, Y.M., Kim, E., Park, M., Moon, E., Ahn, S., Kim, W., et al. (2010) Cell Cycle-Regulated Expression and Subcellular Localization of a Kinesin-8 Member Human KIF18B. Gene, 466, 16-25. https://doi.org/10.1016/j.gene.2010.06.007
|
[17]
|
Walczak, C.E., Zong, H., Jain, S. and Stout, J.R. (2016) Spatial Regulation of Astral Microtubule Dynamics by KIF18B in Ptk Cells. Molecular Biology of the Cell, 27, 3021-3030. https://doi.org/10.1091/mbc.e16-04-0254
|
[18]
|
Shin, Y., Du, Y., Collier, S.E., Ohi, M.D., Lang, M.J. and Ohi, R. (2015) Biased Brownian Motion as a Mechanism to Facilitate Nanometer-Scale Exploration of the Microtubule Plus End by a Kinesin-8. Proceedings of the National Academy of Sciences, 112, E3826-E3835. https://doi.org/10.1073/pnas.1500272112
|
[19]
|
Luessing, J., Sakhteh, M., Sarai, N., Frizzell, L., Tsanov, N., Ramberg, K.O., et al. (2021) The Nuclear Kinesin KIF18B Promotes 53BP1-Mediated DNA Double-Strand Break Repair. Cell Reports, 35, Article 109306. https://doi.org/10.1016/j.celrep.2021.109306
|
[20]
|
Tanenbaum, M.E., Macurek, L., van der Vaart, B., Galli, M., Akhmanova, A. and Medema, R.H. (2011) A Complex of KIF18B and MCAK Promotes Microtubule Depolymerization and Is Negatively Regulated by Aurora Kinases. Current Biology, 21, 1356-1365. https://doi.org/10.1016/j.cub.2011.07.017
|
[21]
|
McHugh, T. and Welburn, J.P.I. (2022) Potent Microtubule-Depolymerizing Activity of a Mitotic KIF18B-MCAK-EB Network. Journal of Cell Science, 136, jcs260144. https://doi.org/10.1242/jcs.260144
|
[22]
|
Kim, H., Fonseca, C. and Stumpff, J. (2014) A Unique Kinesin-8 Surface Loop Provides Specificity for Chromosome Alignment. Molecular Biology of the Cell, 25, 3319-3329. https://doi.org/10.1091/mbc.e14-06-1132
|
[23]
|
Eifler, K., Cuijpers, S.A.G., Willemstein, E., Raaijmakers, J.A., El Atmioui, D., Ovaa, H., et al. (2018) SUMO Targets the APC/C to Regulate Transition from Metaphase to Anaphase. Nature Communications, 9, Article No. 1119. https://doi.org/10.1038/s41467-018-03486-4
|
[24]
|
van Heesbeen, R.G.H.P., Raaijmakers, J.A., Tanenbaum, M.E., Halim, V.A., Lelieveld, D., Lieftink, C., et al. (2016) Aurora A, MCAK, and KIF18B Promote Eg5-Independent Spindle Formation. Chromosoma, 126, 473-486. https://doi.org/10.1007/s00412-016-0607-4
|
[25]
|
McHugh, T., Gluszek, A.A. and Welburn, J.P.I. (2018) Microtubule End Tethering of a Processive Kinesin-8 Motor KIF18B Is Required for Spindle Positioning. Journal of Cell Biology, 217, 2403-2416. https://doi.org/10.1083/jcb.201705209
|
[26]
|
Ari, C., Borysov, S.I., Wu, J., Padmanabhan, J. and Potter, H. (2014) Alzheimer Amyloid Beta Inhibition of Eg5/Kinesin 5 Reduces Neurotrophin and/or Transmitter Receptor Function. Neurobiology of Aging, 35, 1839-1849. https://doi.org/10.1016/j.neurobiolaging.2014.02.006
|
[27]
|
Duangtum, N., Junking, M., Sawasdee, N., Cheunsuchon, B., Limjindaporn, T. and Yenchitsomanus, P. (2011) Human Kidney Anion Exchanger 1 Interacts with Kinesin Family Member 3B (KIF3B). Biochemical and Biophysical Research Communications, 413, 69-74. https://doi.org/10.1016/j.bbrc.2011.08.050
|
[28]
|
Nicolas, A., Kenna, K.P., Renton, A.E., et al. (2018) Genome-Wide Analyses Identify KIF5A as a Novel ALSGene. Neuron, 97, 1268-1283.E6.
|
[29]
|
Wei, X., Feng, G., Zhang, H., Xu, Q., Ni, J., Zhao, M., et al. (2020) Pleiotropic Genomic Variants at 17q21.31 Associated with Bone Mineral Density and Body Fat Mass: A Bivariate Genome-Wide Association Analysis. European Journal of Human Genetics, 29, 553-563. https://doi.org/10.1038/s41431-020-00727-3
|
[30]
|
Kawashima, T., Hirose, K., Satoh, T., Kaneko, A., Ikeda, Y., Kaziro, Y., et al. (2000) Mgcracgap Is Involved in the Control of Growth and Differentiation of Hematopoietic Cells. Blood, 96, 2116-2124. https://doi.org/10.1182/blood.v96.6.2116
|
[31]
|
Kuilman, T., Michaloglou, C., Mooi, W.J. and Peeper, D.S. (2010) The Essence of Senescence: Figure 1. Genes & Development, 24, 2463-2479. https://doi.org/10.1101/gad.1971610
|
[32]
|
Demidenko, Z.N., Korotchkina, L.G., Gudkov, A.V. and Blagosklonny, M.V. (2010) Paradoxical Suppression of Cellular Senescence by P53. Proceedings of the National Academy of Sciences, 107, 9660-9664. https://doi.org/10.1073/pnas.1002298107
|
[33]
|
Xiang, X., Yang, L., Zhang, X., Ma, X., Miao, R., Gu, J., et al. (2019) Seven-Senescence-Associated Gene Signature Predicts Overall Survival for Asian Patients with Hepatocellular Carcinoma. World Journal of Gastroenterology, 25, 1715-1728. https://doi.org/10.3748/wjg.v25.i14.1715
|
[34]
|
Jung, Y., Cho, J.H., Park, S., Kang, M., Park, S., Choi, D.H., et al. (2019) Lactate Activates the E2F Pathway to Promote Cell Motility by Up-Regulating Microtubule Modulating Genes. Cancers, 11, Article 274. https://doi.org/10.3390/cancers11030274
|
[35]
|
Lucanus, A.J. and Yip, G.W. (2017) Kinesin Superfamily: Roles in Breast Cancer, Patient Prognosis and Therapeutics. Oncogene, 37, 833-838. https://doi.org/10.1038/onc.2017.406
|
[36]
|
Itzel, T., Scholz, P., Maass, T., Krupp, M., Marquardt, J.U., Strand, S., et al. (2014) Translating Bioinformatics in Oncology: Guilt-by-Profiling Analysis and Identification of KIF18B and CDCA3 as Novel Driver Genes in Carcinogenesis. Bioinformatics, 31, 216-224. https://doi.org/10.1093/bioinformatics/btu586
|
[37]
|
Jiang, J., Liu, T., He, X., Ma, W., Wang, J., Zhou, Q., et al. (2021) Silencing of KIF18B Restricts Proliferation and Invasion and Enhances the Chemosensitivity of Breast Cancer via Modulating Akt/GSK‐3β/β‐Catenin Pathway. BioFactors, 47, 754-767. https://doi.org/10.1002/biof.1757
|
[38]
|
Liu, L., Zhang, Z., Xia, X. and Lei, J. (2022) KIF18B Promotes Breast Cancer Cell Proliferation, Migration and Invasion by Targeting TRIP13 and Activating the Wnt/β-Catenin Signaling Pathway. Oncology Letters, 23, Article No. 112. https://doi.org/10.3892/ol.2022.13232
|
[39]
|
Yang, B., Wang, S., Xie, H., Wang, C., Gao, X., Rong, Y., et al. (2020) KIF18B Promotes Hepatocellular Carcinoma Progression through Activating Wnt/β‐Catenin‐Signaling Pathway. Journal of Cellular Physiology, 235, 6507-6514. https://doi.org/10.1002/jcp.29444
|
[40]
|
Wu, Y., Wang, A., Zhu, B., Huang, J., Lu, E., Xu, H., et al. (2018) KIF18B Promotes Tumor Progression through Activating the Wnt/β-Catenin Pathway in Cervical Cancer. OncoTargets and Therapy, 11, 1707-1720. https://doi.org/10.2147/ott.s157440
|
[41]
|
Li, B., Liu, B., Zhang, X., Liu, H. and He, L. (2019) KIF18B Promotes the Proliferation of Pancreatic Ductal Adenocarcinoma via Activating the Expression of CDCA8. Journal of Cellular Physiology, 235, 4227-4238. https://doi.org/10.1002/jcp.29201
|
[42]
|
Chen, S., Yu, B., DU, G.T., Huang, T.Y., Zhang, N. and Fu, N. (2024) KIF18B: An Important Role in Signaling Pathways and a Potential Resistant Target in Tumor Development. Discover Oncology, 15, Article No. 430. https://doi.org/10.1007/s12672-024-01330-4
|
[43]
|
Zhao, F., Feng, Y., Zhang, X., Liu, X. and Li, A. (2020) Kinesin Superfamily Member 18B (KIF18B) Promotes Cell Proliferation in Colon Adenocarcinoma. Cancer Management and Research, 12, 12769-12778. https://doi.org/10.2147/cmar.s261894
|
[44]
|
Qiu, M., Zhang, L., Chen, Y., Zhu, L., Zhang, B., Li, Q., et al. (2021) KIF18B as a Regulator in Tumor Microenvironment Accelerates Tumor Progression and Triggers Poor Outcome in Hepatocellular Carcinoma. The International Journal of Biochemistry & Cell Biology, 137, Article 106037. https://doi.org/10.1016/j.biocel.2021.106037
|
[45]
|
Yang, H., Wang, Y., Zhang, Z. and Li, H. (2020) Identification of KIF18B as a Hub Candidate Gene in the Metastasis of Clear Cell Renal Cell Carcinoma by Weighted Gene Co-Expression Network Analysis. Frontiers in Genetics, 11, Article 905. https://doi.org/10.3389/fgene.2020.00905
|
[46]
|
Hong, B., Lu, R., Lou, W., Bao, Y., Qiao, L., Hu, Y., et al. (2021) KIF18B-Dependent Hypomethylation of PARPBP Gene Promoter Enhances Oxaliplatin Resistance in Colorectal Cancer. Experimental Cell Research, 407, Article 112827. https://doi.org/10.1016/j.yexcr.2021.112827
|
[47]
|
Xie, J., Wang, B., Luo, W., Li, C. and Jia, X. (2022) Upregulation of KIF18B Facilitates Malignant Phenotype of Esophageal Squamous Cell Carcinoma by Activating CDCA8/mTORC1 Pathway. Journal of Clinical Laboratory Analysis, 36, e24633. https://doi.org/10.1002/jcla.24633
|
[48]
|
Ji, Z., Pan, X., Shang, Y., Ni, D. and Wu, F. (2019) KIF18B as a Regulator in Microtubule Movement Accelerates Tumor Progression and Triggers Poor Outcome in Lung Adenocarcinoma. Tissue and Cell, 61, 44-50. https://doi.org/10.1016/j.tice.2019.09.001
|
[49]
|
Zhong, Y., Jiang, L., Long, X., Zhou, Y., Deng, S., Lin, H., et al. (2019) Clinical Significance and Integrative Analysis of Kinesin Family Member 18B in Lung Adenocarcinoma. OncoTargets and Therapy, 12, 9249-9264. https://doi.org/10.2147/ott.s227438
|
[50]
|
Wu, Y., Ke, Z., Zheng, W., Chen, Y., Zhu, J., Lin, F., et al. (2021) Kinesin Family Member 18B Regulates the Proliferation and Invasion of Human Prostate Cancer Cells. Cell Death & Disease, 12, Article No. 302. https://doi.org/10.1038/s41419-021-03582-2
|
[51]
|
Li, Q., Sun, M., Meng, Y., Feng, M., Wang, M., Chang, C., et al. (2023) Kinesin Family Member 18B Activates mTORC1 Signaling via Actin Gamma 1 to Promote the Recurrence of Human Hepatocellular Carcinoma. Oncogenesis, 12, Article No. 54. https://doi.org/10.1038/s41389-023-00499-7
|
[52]
|
Ke, H., Wu, S., Zhang, Y. and Zhang, G. (2022) MiR-139-3p/Kinesin Family Member 18B Axis Suppresses Malignant Progression of Gastric Cancer. Bioengineered, 13, 4528-4536. https://doi.org/10.1080/21655979.2022.2033466
|
[53]
|
Oh, C., Kang, J.W., Lee, Y., Myung, K., Ha, M., Kang, J., et al. (2020) Role of KIF2C, a Gene Related to ALL Relapse, in Embryonic Hematopoiesis in Zebrafish. International Journal of Molecular Sciences, 21, Article 3127. https://doi.org/10.3390/ijms21093127
|
[54]
|
Yan, H., Zhu, C. and Zhang, L. (2019) Kinesin Family Member 18B: A Contributor and Facilitator in the Proliferation and Metastasis of Cutaneous Melanoma. Journal of Biochemical and Molecular Toxicology, 33, e22409. https://doi.org/10.1002/jbt.22409
|
[55]
|
Zhang, W. and Liu, Z. (2022) MiRNA-139-3p Inhibits Malignant Progression in Urothelial Carcinoma of the Bladder via Targeting KIF18B and Inactivating Wnt/Beta-Catenin Pathway. Pharmacogenetics and Genomics, 33, 1-9. https://doi.org/10.1097/fpc.0000000000000485
|
[56]
|
Davis, A.J., Tsinkevich, M., Rodencal, J., Abbas, H.A., Su, X., Gi, Y., et al. (2020) TAp63-Regulated miRNAs Suppress Cutaneous Squamous Cell Carcinoma through Inhibition of a Network of Cell-Cycle Genes. Cancer Research, 80, 2484-2497. https://doi.org/10.1158/0008-5472.can-19-1892
|