KIF18B目前在癌症中的研究进展
Research Progress of KIF18B in Cancer at Present
DOI: 10.12677/acm.2025.1541112, PDF, HTML, XML,   
作者: 涂鸿泰*, 刘圣银*, 殷 峰, 陈宏明:赣南医科大学第一临床医学院,江西 赣州;肖日海#:赣南医科大学第一附属医院泌尿外科,江西 赣州
关键词: 驱动蛋白驱动蛋白-8 KIF18B癌症Kinesin Kinesin-8 KIF18B Cancer
摘要: 近年来,探究KIFs家族成员在肿瘤发生和发展过程中的功能及作用机制已成为研究热点之一。驱动蛋白超家族包含一类保守的微管依赖性分子运动蛋白,具有腺苷三磷酸酶活性和运动特性。驱动蛋白的主动运动支持多种细胞功能,包括有丝分裂、减数分裂和大分子的转运。有丝分裂是真核细胞分裂的过程,涉及将细胞核、细胞质、细胞器和细胞膜分裂成2个子细胞,这些子细胞成分的部分大致相同。这个过程中的任何错误都可能导致细胞死亡、异常(如基因缺失、染色体易位或重复)和癌症。由于有丝分裂复杂且高度调节,驱动蛋白表达或功能的改变可能导致癌变。此外,由于人类癌症是一种涉及异常细胞生长的基因相关疾病,因此靶向驱动蛋白可能会为控制人类癌症创造一种新的策略。KIF18B属于驱动蛋白家族-8,近年来已经发现部分功能并证明其与多种恶性肿瘤有关。
Abstract: In recent years, investigating the functions and underlying mechanisms of KIFs family members in tumorigenesis and tumor development has emerged as a prominent research area. The kinesin superfamily consists of a group of conserved microtubule-dependent molecular motor proteins, which possess adenosine triphosphatase activity and motility properties. The active motility of kinesins is crucial for supporting diverse cellular functions, such as mitosis, meiosis, and macromolecular transport. Mitosis, the process of eukaryotic cell division, involves the partitioning of the nucleus, cytoplasm, organelles, and cell membrane into two daughter cells with approximately identical components. Any aberration during this process can give rise to cell death, genetic anomalies (e.g., gene deletions, chromosomal translocations, or duplications), and cancer. Given the complexity and highly regulated nature of mitosis, changes in kinesin expression or function may trigger carcinogenesis. Moreover, as human cancer is a gene-related disorder characterized by abnormal cell growth, targeting kinesins could potentially offer a novel strategy for cancer control. KIF18B belongs to the kinesin family-8. In recent years, certain functions of KIF18B have been identified, and it has been demonstrated to be associated with various malignant tumors.
文章引用:涂鸿泰, 肖日海, 刘圣银, 殷峰, 陈宏明. KIF18B目前在癌症中的研究进展[J]. 临床医学进展, 2025, 15(4): 1711-1719. https://doi.org/10.12677/acm.2025.1541112

1. 驱动蛋白家族的介绍

KIFs家族又名驱动蛋白家族,在1985年由乌贼神经组织中分离出驱动蛋白[1],随后的时间里,越来越多的家族成员被发现和被研究,直到2004年,学术界统一了命名法,称为“kinesins”,至此已经发现了45个家族成员,14个家族(KIF1~14) [2] [3]

驱动蛋白超家族包含一类保守的微管依赖性分子运动蛋白,具有腺苷三磷酸酶活性和运动特性。驱动蛋白的主动运动支持多种细胞功能,包括有丝分裂、减数分裂和大分子的转运。有丝分裂是真核细胞分裂的过程,涉及将细胞核、细胞质、细胞器和细胞膜分裂成2个子细胞,这些子细胞成分的部分大致相同。

这个过程中的任何错误都可能导致细胞死亡、异常(如基因缺失、染色体易位或重复)和癌症。由于有丝分裂复杂且高度调节,驱动蛋白表达或功能的改变可能导致癌变。此外,由于人类癌症是一种涉及异常细胞生长的基因相关疾病,因此靶向驱动蛋白可能会为控制人类癌症创造一种新的策略[4]

2. 驱动蛋白家族的功能

驱动蛋白超家族蛋白(KIFs)是细胞内运输系统中的关键参与者或“枢纽”蛋白,这对于细胞功能和形态至关重要。KIF超家族也是哺乳动物中第一个大蛋白质家族,其成分已在计算机和体内中完全鉴定和确认[5]。驱动蛋白和动力蛋白超家族的微管相关运动蛋白在细胞器运输和有丝分裂等细胞机制中起重要作用[6],驱动蛋白是一类具有水解ATPase活性的马达蛋白,在微管的动态变化和胞内物质运输中有着重要的作用,参与细胞的许多生物学功能,如纺锤体形成、染色体分离、细胞分裂、微管的聚合与解聚等[5]

细胞在合成后,运动蛋白在膜细胞器和蛋白质复合物中以适当的速度将蛋白质和脂质运输和分选到各个目的地。因此,细胞内运输是细胞形态发生和功能的基础。微管充当运动蛋白(如驱动蛋白和动力蛋白超家族蛋白)输送货物的轨道[7]

在驱动蛋白的情况下,前进和后退步骤在同一化学状态下随机发生。定向运动是由驱动蛋白和微管之间的相互作用产生的不对称电位来解释的。类似地,在单个ATP分子水解过程中肌球蛋白的热布朗运动通过不对称电位偏置,导致定向运动[8]

细胞内细胞器转运对于细胞的形态发生和功能至关重要。驱动蛋白和驱动蛋白相关蛋白构成了分子马达的大超家族,它们在神经元细胞和非神经元细胞中以微管-ATP依赖性的方式运输囊泡、细胞器(例如线粒体、过氧化物酶体、溶酶体)、蛋白质复合物(例如细胞骨架元素、病毒颗粒和mRNA等货物) [9]。此外,KIF还参与染色体和有丝分裂纺锤体运动的组织[10] [11]

KIF不仅运输各种膜细胞器,蛋白质复合物和mRNA以维持基本细胞活性,而且还对生命基本的各种机制(例如脑布线,记忆和学习等高级脑功能以及大脑发育过程中的活动依赖性神经元存活)以及确定重要的发育过程(例如左右不对称形成和抑制肿瘤发生)起着重要作用。越来越多的数据揭示了涉及支架或衔接蛋白复合物的货物识别的分子机制。分子内折叠和磷酸化也调节运动蛋白的结合活性[12]

3. 驱动蛋白的结构

驱动蛋白是由两条轻链和两条重链组成的四聚体。颈部区域通过结合和水解发生构象变化,两个头部交替结合并沿着微管“行走”。由“货物”组成的运输气泡或细胞器结合驱动蛋白尾巴并被运送到其他位置[5]

通过对驱动蛋白-1的蛋白质结构进行类比分析,相信驱动蛋白形成具有4个功能域的异二聚体,称为:1) 马达,2) 颈部,3) 茎和4) 尾巴。运动域通过短而灵活的颈接头结构域连接到茎结构域。茎域是一个长而中央的线圈,以尾部域结束。“头部”或运动结构域由多达360个氨基酸组成,具有ATP结合位点和相邻的微管结合位点。运动域的功能是水解ATP,以产生蛋白质沿微管纤维运动所需的能量。颈部结构域通常具有亚型特异性。在不同的驱动蛋白中,这种亚型特异性颈部结构域对于蛋白质的运动方向至关重要。茎结构域对于与全酶的其他亚基相互作用很重要,并且交织在一起形成驱动蛋白二聚体。尾部结构域位于蛋白质的另一端,其功能是与货物分子(包括蛋白质、脂质或核酸)的运输相互作用[4]

根据电机域的位置,已经确定了三种主要类型的KIF:NH2-终端电机域型,中间电机域型和COOH终端电机域型(以下分别称为N-驱动蛋白,M-驱动蛋白和C-驱动蛋白)。这项研究出人意料地揭示了丰富的N-驱动蛋白和少量的M-和C-驱动蛋白。在45个KIF中,只有3个M-驱动蛋白和C-驱动蛋白,剩下39个N-驱动蛋白。在39种N-驱动蛋白中,两种是单体的,37种似乎是多聚体的。共有14个分级。C-驱动蛋白分为两类,C-1驱动蛋白和C-2驱动蛋白。M-驱动蛋白组成一类。N-驱动蛋白分为11类,包括16个家族成员[3]

N-驱动蛋白驱动微管加末端导向转运,C-驱动蛋白驱动负末端导向转运,M-驱动蛋白解聚微管[13]。基于微管的驱动蛋白马达和基于肌动蛋白的肌球蛋白马达产生与细胞内运输、细胞分裂和肌肉收缩相关的运动。早期的研究表明,这些分子马达通过非常不同的机制工作。然而,最近很明显,驱动蛋白和肌球蛋白具有共同的核心结构,并使用类似的构象变化策略将三磷酸腺苷的能量转化为蛋白质运动。许多不同类型的机械放大器已经发展起来,它们与守恒内核一起工作。这种模块化设计产生了驱动蛋白和肌球蛋白马达的显着多样性,其运动特性经过优化以执行不同的生物学功能[14]

4. KIF18B的介绍

KIF18B是驱动蛋白家族的成员,以细胞周期依赖的方式在细胞分裂中起重要作用[15]。KIF18和Kid/KIF22家族构成N-8驱动蛋白[3]。KIF18B位于染色体17q21.31上,由17个外显子组成[16]。YoungMiLee等人构建了一个含有KIF18B的ORF的质粒,并揭示了大约3kb的KIF18B信息以组织和细胞类型特异性的方式表达[16]

该蛋白质是一种新型的动态调节蛋白,可调节星体微管长度和空间构象寿命[17]。驱动蛋白-8是正端导向的电机,可负调节微管(MT)长度。在细胞中,Kif18B集中在MT子集的最顶端,取代EB1。Shin等人的研究表明,驱动蛋白-8电机使用不同的设计原理来靶向MT加端,这可能将它们靶向有丝分裂纺锤体中不同MT亚群的正端[18]

KIF18B是一种核驱动蛋白,是DSB(DNA双链断链)有效末端连接所必需的[19]。KIF18B已被描述为促进微管解聚,并可能因此调节染色体排列和分离[20]。Toni等证明了Kif18b,MCAK和高端跟踪蛋白EB3 (也称为MAPRE3)以集成方式作用,以非常低的浓度有效促进微管解聚。我们发现Kif18b可以转运EB3和MCAK,并通过多价弱相互作用促进它们积累到微管加末端.微管加末端合作Kif18b-MCAK-EB网络的机制基础,该网络有效地缩短和调节有丝分裂中的微管,这对于正确的染色体分离至关重要[21]。同时独特的驱动蛋白-8表面环为染色体比对提供了特异性[22]。小泛素样修饰物(SUMO)的信号转导调节多种核过程。晚期促进复合物/环小体(APC/C),它是中期到后期转变的主要调控因子。APC4亚单位是复合物中的主要SUMO靶点,在772和798位置含有SUMO受体赖氨酸。SUMO化对细胞通过有丝分裂的精确进展至关重要,并增加APC/C泛素化活性,使其向其靶点子集(包括新确定的靶点KIF18B)的泛素化活性增加[23]。Marvin等发现Aurora激酶在通过Kif18b-MCAK调节纺锤体MT动力学中的新作用,并表明Kif18b-MCAK复合物构成了有丝分裂细胞中主要的MT加端解聚活性[20]。RoyGHPvanHeesbeen等人证明AuroraA、MCAK和Kif18b促进Eg5独立纺锤体的形成:AuroraA通过磷酸化Kif15促进双极纺锤体组装,从而促进Kif15定位到纺锤体。反过来,MCAK和Kif18b通过破坏星体MT的稳定性来促进双极纺锤体组装[24]。ToniMcHugh等人证明了Kif18b通过增加动态微管的灾难率来缩短微管。他们的工作表明,Kif18b利用其运动特性到达微管末端,在那里它调节星体微管长度以确保纺锤体居中[25]。YoungMiLee等人分析发现KIF18B的蛋白质水平在G(2)晚期至中期升高,与细胞周期蛋白B1非常相似。免疫细胞化学染色显示,KIF18B蛋白主要存在于细胞核中,在较小程度上存在于间期细胞的细胞质中。在有丝分裂期间,发现大多数KIF18B与前中期和中期从纺锤体极发出的星体微管密切相关。同时,在后期和端期未检测到KIF18B,与蛋白质印迹数据一致。通过使用KIF18B的几个EGFP标记的缺失突变体粗略地确定了核定位信号。总之,KIF18B的表达以细胞周期依赖性方式受到调节,因此可能在细胞分裂中发挥重要作用[16]

5. KIF18B参与的疾病

关于驱动蛋白的生物学功能已经了解了很多,研究表明KIFs与神经变性,糖尿病,肾脏疾病等的发展密切相关[26]-[28]。目前,KIF18B在一些疾病中已经有了部分相关研究。KIF18B被证明在骨骼或脂肪发育中起调节作用[29],此外,RACGAP1 (RacGTPase激活蛋白1)基因是KIF18B的预测功能伴侣,KIF18B可能通过参与脂肪细胞和成肌细胞生长相关过程的调节而导致肥胖[30]。由此发散思维可以考虑KIF18B可能促进组织类型中脂质较多的癌症如肾癌、乳腺癌等的恶性进展。

细胞衰老被认为是增殖的体细胞对外源和内源性来源的压力和损伤的反应,持续的DNA损伤是最常见的原因[31]。它的特征是永久性细胞周期停滞[32]。KIF18B高表达可缓解甚至阻止细胞衰老,以促进癌症转化或增生[33]。由于有氧糖酵解增强而导致乳酸分泌过多是恶性癌症的特征,这也与癌症预后不良密切相关。Yi-deun Jung等人通过实验验证,乳酸确实通过转录后机制促进E2F1蛋白积累来激活E2F介导的转录。一组驱动蛋白家族成员,以乳酸和E2F1依赖性的方式显着上调。E2F1或驱动蛋白(KIF2C, KIF18B, KIF20A)的消耗导致微管结构变形,损害细胞运动和乳酸产生不足。这些结果表明,肿瘤相关乳酸的E2F通路激活和随后微管功能的转录激活在肿瘤转移中起着至关重要的作用,为细胞运动导向的抗癌策略提供了机制线索[34]

6. KIF18B参与的癌症

驱动蛋白超家族(KIFs)该蛋白质有助于有丝分裂期间染色体沿微管的细胞内运输。在细胞分裂过程中,驱动蛋白通过时间合成受到严格调节,因此它们仅在需要时存在。然而,由于过早的姐妹染色单体分离,它们的失调可能导致细胞生长不受控制,突出了它们在癌症中的重要性[35]。TimoItzel等人通过GBA生物信息学分析鉴定的CDCA3和KIF18B是通过干扰细胞周期调节来改变癌变的关键调节因子;CDCA3和KIF18B的过表达导致增殖能力受损,这是细胞周期调节的紊乱,这是癌症的主要失调[36]。目前,KIF18B已被证明在几种癌症中高表达。KIF18B通过调节Akt/GSK-3β轴增强Wnt/β-连环蛋白通路,在乳腺癌中发挥潜在的促癌功能[37]。KIF18B的沉默通过调节Akt/GSK-3β/β-连环蛋白途径限制乳腺癌的增殖和侵袭并增强其化学敏感性[37]。LanLiu等人的研究表明KIF18B促进BC恶性事件,包括TNBC细胞的增殖,迁移和侵袭。这些结果表明,KIF18B可能通过上调TRIP13表达在BC中起致癌作用,从而激活Wnt/β-连环蛋白信号通路[38]。KIF18B通过激活Wnt/β-连环蛋白信号通路促进肝细胞癌进展[39]。KIF18B通过激活宫颈癌中的Wnt/β-连环蛋白途径促进肿瘤进展[40]。KIF18B通过激活CDCA8的表达促进胰腺导管腺癌的增殖[41]。KIF18B通过PI3K-AKT通路激活AKT,AKT直接磷酸化GSK-3β (Ser9),抑制其激酶活性。GSK-3β失活后,无法磷酸化β-catenin,导致β-catenin逃逸泛素化降解,在胞质中积累。KIF18B作为“分子运输车”,通过微管网络直接运输β-catenin至核周区域。核内β-catenin与TCF/LEF转录因子结合,激活Cyclin D1、c-Myc等靶基因,促进细胞增殖与EMT (上皮-间质转化)。KIF18B与APC (腺瘤性息肉病蛋白)竞争性结合微管,APC缺失时(如结直肠癌),KIF18B主导β-catenin运输,加剧Wnt信号异常[42]

KIF18B在结肠腺癌组织中高表达,与结肠腺癌的预后和肿瘤分级呈负相关。干扰KIF18B在体外和体内抑制细胞增殖[43]。FeiZhao等人的研究也证明KIF18B的敲低在体外和体内抑制细胞增殖和肿瘤生长。KIF18B可能是结肠腺癌的新型生物标志物和治疗靶点[43]。KIF18B可能是确定肝细胞癌背景下免疫检查点阻滞剂治疗结果的有用标志物。KIF18B作为肿瘤微环境中的调节因子加速肿瘤进展并引发肝细胞癌的不良结果[44]。KIF18B通过减少ATF2的核聚集或与APC的相互作用在转录后调节β-连环蛋白的表达,从而在骨肉瘤中起致癌作用。Tian Gao等人的集体发现支持KIF18B作为骨肉瘤的新型预后生物标志物的潜在效用[15]。Huiying Yang等人通过加权基因共表达网络分析鉴定KIF18B作为透明细胞肾细胞癌转移中的枢纽候选基因[45]。Bing Hong等人的研究表明,结直肠癌组织中KIF18b与PARPBP呈正相关关系,并表明KIF18b或PARPBP水平高的结直肠癌患者预后不良。KIF18b诱导的PARPBP有助于OR-CRC的耐药表型。PARPBP基因启动子的KIF18b依赖性低甲基化增强结直肠癌中的奥沙利铂耐药性[46]。KIF18B过表达通过CDCA8介导的mTORC1信号通路在体外促进ESCC (食管鳞状细胞癌)细胞的增殖、迁移和侵袭[47]。ZeJi等人的研究提出KIF18B可能通过激活Rac1和介导AKT/mTOR信号通路来促进肺腺癌细胞增殖、迁移和侵袭的观点。表明KIF18B作为微管运动的调节剂加速肿瘤进展并引发肺腺癌的不良预后[48]。Yonglong Zhong等人的研究也支持KIF18B是LUAD的预后生物标志物。DNA扩增、低甲基化以及miR-125a-5p下调可能参与LUAD中KIF18B失调的机制。其研究结果表明KIF18B可能通过LUAD中的细胞周期调节途径作为一种新的癌基因发挥作用[49]。Yu-Peng Wu等人发现KIF18B过表达在体外和体内激活PCa细胞中的PI3K-AKT-mTOR信号通路。总的来说,其研究结果表明,KIF18B通过激活PI3K-AKT-mTOR信号通路在PCa中起着至关重要的作用,并提出了KIF18B作为PCa新型生物标志物的可能性[50]。KIF18B通过解聚过剩的微管,维持细胞膜附近微管的正端动态平衡,促进生长因子受体(EGFR、IGF-1R)在膜上的聚集。受体激活后,PI3K催化生成PIP3,招募AKT至细胞膜。KIF18B通过稳定微管轨道,加速AKT向膜的运输,增强其磷酸化(Thr308/Ser473)及激活效率。激活的AKT通过磷酸化TSC2,解除其对Rheb的抑制,进而激活mTORC1。KIF18B缺失导致微管紊乱,破坏溶酶体与mTORC1的共定位,抑制mTORC1对营养信号的响应[51]

近来一项研究表明miR-139-3p/驱动蛋白家族成员18B轴抑制胃癌恶性进展[52]。一项研究证实了KIF2C (一种与ALL复发相关的基因)和KIF18B之间的强相关性,可以预测两者之间的相关性将在复发中发挥重要作用[53]。Hongmei Yan等人的研究结果表明,KIF18B耗竭引起的皮肤黑色素瘤细胞迁移和增殖的抑制表明KIF18B在皮肤黑色素瘤中具有致癌作用,其通过调节上皮–间充质转化和ERK/PI3K途径起作用[54]。Wenbin Zhang等人的研究证明了MiRNA-139-3p通过靶向KIF18B和灭活Wnt/β-连环蛋白途径抑制膀胱尿路上皮癌的恶性进展,并提出其靶向机制可为BUC患者提供有效的治疗靶点[55]。一项研究表明TAp63调控的miRNA通过抑制细胞周期基因网络(包括AURKA,KIF18B,PKMYT1和ORC1)抑制皮肤鳞状细胞癌。为使用miR-30c-2*/miR-497递送和AURKA抑制治疗cuSCC提供了临床前证据[56]

7. 总结和展望

KIF18B高表达,可以通过激活PI3K/AKT/mTOR和Wnt/β-catenin通路促进肿瘤细胞的增殖和转移,KIF18B可能是一种新型生物标志物和治疗靶点。然而目前尚无特异性KIF18B抑制剂进入临床研究,靶向策略仍处于概念阶段。未来可以继续深化KIF18B的分子机制研究,如DNA甲基化、非编码RNA (如lncRNA)对KIF18B表达的调控,在KIF18B高表达肿瘤中,探索其抑制剂与紫杉醇(微管稳定剂)的序贯给药方案等。

NOTES

*共同第一作者。

#通讯作者。

参考文献

[1] Vale, R., Reese, T. and Sheetz, M. (1985) Identification of a Novel Force-Generating Protein, Kinesin, Involved in Microtubule-Based Motility. Cell, 42, 39-50.
https://doi.org/10.1016/s0092-8674(85)80099-4
[2] Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., et al. (2004) A Standardized Kinesin Nomenclature. The Journal of Cell Biology, 167, 19-22.
https://doi.org/10.1083/jcb.200408113
[3] Miki, H., Setou, M., Kaneshiro, K. and Hirokawa, N. (2001) All Kinesin Superfamily Protein, KIF, Genes in Mouse and Human. Proceedings of the National Academy of Sciences, 98, 7004-7011.
https://doi.org/10.1073/pnas.111145398
[4] Yu, Y. and Feng, Y. (2010) The Role of Kinesin Family Proteins in Tumorigenesis and Progression: Potential Biomarkers and Molecular Targets for Cancer Therapy. Cancer, 116, 5150-5160.
https://doi.org/10.1002/cncr.25461
[5] Miki, H., Okada, Y. and Hirokawa, N. (2005) Analysis of the Kinesin Superfamily: Insights into Structure and Function. Trends in Cell Biology, 15, 467-476.
https://doi.org/10.1016/j.tcb.2005.07.006
[6] Hirokawa, N., Noda, Y. and Okada, Y. (1998) Kinesin and Dynein Superfamily Proteins in Organelle Transport and Cell Division. Current Opinion in Cell Biology, 10, 60-73.
https://doi.org/10.1016/s0955-0674(98)80087-2
[7] Hirokawa, N. (1998) Kinesin and Dynein Superfamily Proteins and the Mechanism of Organelle Transport. Science, 279, 519-526.
https://doi.org/10.1126/science.279.5350.519
[8] Ishii, Y., Nishiyama, M. and Yanagida, T. (2004) Mechano-Chemical Coupling of Molecular Motors Revealed by Single Molecule Measurements. Current Protein and Peptide Science, 5, 81-87.
https://doi.org/10.2174/1389203043486838
[9] Seog, D., Lee, D. and Lee, S. (2004) Molecular Motor Proteins of the Kinesin Superfamily Proteins (KIFs): Structure, Cargo and Disease. Journal of Korean Medical Science, 19, 1-7.
https://doi.org/10.3346/jkms.2004.19.1.1
[10] Vale, R.D. and Fletterick, R.J. (1997) The Design Plan of Kinesin Motors. Annual Review of Cell and Developmental Biology, 13, 745-777.
https://doi.org/10.1146/annurev.cellbio.13.1.745
[11] Sharp, D.J., Rogers, G.C. and Scholey, J.M. (2000) Microtubule Motors in Mitosis. Nature, 407, 41-47.
https://doi.org/10.1038/35024000
[12] Hirokawa, N. and Noda, Y. (2008) Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics. Physiological Reviews, 88, 1089-1118.
https://doi.org/10.1152/physrev.00023.2007
[13] Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. (2009) Kinesin Superfamily Motor Proteins and Intracellular Transport. Nature Reviews Molecular Cell Biology, 10, 682-696.
https://doi.org/10.1038/nrm2774
[14] Vale, R.D. and Milligan, R.A. (2000) The Way Things Move: Looking under the Hood of Molecular Motor Proteins. Science, 288, 88-95.
https://doi.org/10.1126/science.288.5463.88
[15] Gao, T., Yu, L., Fang, Z., Liu, J., Bai, C., Li, S., et al. (2020) KIF18B Promotes Tumor Progression in Osteosarcoma by Activating β-Catenin. Cancer Biology and Medicine, 17, 371-386.
https://doi.org/10.20892/j.issn.2095-3941.2019.0452
[16] Lee, Y.M., Kim, E., Park, M., Moon, E., Ahn, S., Kim, W., et al. (2010) Cell Cycle-Regulated Expression and Subcellular Localization of a Kinesin-8 Member Human KIF18B. Gene, 466, 16-25.
https://doi.org/10.1016/j.gene.2010.06.007
[17] Walczak, C.E., Zong, H., Jain, S. and Stout, J.R. (2016) Spatial Regulation of Astral Microtubule Dynamics by KIF18B in Ptk Cells. Molecular Biology of the Cell, 27, 3021-3030.
https://doi.org/10.1091/mbc.e16-04-0254
[18] Shin, Y., Du, Y., Collier, S.E., Ohi, M.D., Lang, M.J. and Ohi, R. (2015) Biased Brownian Motion as a Mechanism to Facilitate Nanometer-Scale Exploration of the Microtubule Plus End by a Kinesin-8. Proceedings of the National Academy of Sciences, 112, E3826-E3835.
https://doi.org/10.1073/pnas.1500272112
[19] Luessing, J., Sakhteh, M., Sarai, N., Frizzell, L., Tsanov, N., Ramberg, K.O., et al. (2021) The Nuclear Kinesin KIF18B Promotes 53BP1-Mediated DNA Double-Strand Break Repair. Cell Reports, 35, Article 109306.
https://doi.org/10.1016/j.celrep.2021.109306
[20] Tanenbaum, M.E., Macurek, L., van der Vaart, B., Galli, M., Akhmanova, A. and Medema, R.H. (2011) A Complex of KIF18B and MCAK Promotes Microtubule Depolymerization and Is Negatively Regulated by Aurora Kinases. Current Biology, 21, 1356-1365.
https://doi.org/10.1016/j.cub.2011.07.017
[21] McHugh, T. and Welburn, J.P.I. (2022) Potent Microtubule-Depolymerizing Activity of a Mitotic KIF18B-MCAK-EB Network. Journal of Cell Science, 136, jcs260144.
https://doi.org/10.1242/jcs.260144
[22] Kim, H., Fonseca, C. and Stumpff, J. (2014) A Unique Kinesin-8 Surface Loop Provides Specificity for Chromosome Alignment. Molecular Biology of the Cell, 25, 3319-3329.
https://doi.org/10.1091/mbc.e14-06-1132
[23] Eifler, K., Cuijpers, S.A.G., Willemstein, E., Raaijmakers, J.A., El Atmioui, D., Ovaa, H., et al. (2018) SUMO Targets the APC/C to Regulate Transition from Metaphase to Anaphase. Nature Communications, 9, Article No. 1119.
https://doi.org/10.1038/s41467-018-03486-4
[24] van Heesbeen, R.G.H.P., Raaijmakers, J.A., Tanenbaum, M.E., Halim, V.A., Lelieveld, D., Lieftink, C., et al. (2016) Aurora A, MCAK, and KIF18B Promote Eg5-Independent Spindle Formation. Chromosoma, 126, 473-486.
https://doi.org/10.1007/s00412-016-0607-4
[25] McHugh, T., Gluszek, A.A. and Welburn, J.P.I. (2018) Microtubule End Tethering of a Processive Kinesin-8 Motor KIF18B Is Required for Spindle Positioning. Journal of Cell Biology, 217, 2403-2416.
https://doi.org/10.1083/jcb.201705209
[26] Ari, C., Borysov, S.I., Wu, J., Padmanabhan, J. and Potter, H. (2014) Alzheimer Amyloid Beta Inhibition of Eg5/Kinesin 5 Reduces Neurotrophin and/or Transmitter Receptor Function. Neurobiology of Aging, 35, 1839-1849.
https://doi.org/10.1016/j.neurobiolaging.2014.02.006
[27] Duangtum, N., Junking, M., Sawasdee, N., Cheunsuchon, B., Limjindaporn, T. and Yenchitsomanus, P. (2011) Human Kidney Anion Exchanger 1 Interacts with Kinesin Family Member 3B (KIF3B). Biochemical and Biophysical Research Communications, 413, 69-74.
https://doi.org/10.1016/j.bbrc.2011.08.050
[28] Nicolas, A., Kenna, K.P., Renton, A.E., et al. (2018) Genome-Wide Analyses Identify KIF5A as a Novel ALSGene. Neuron, 97, 1268-1283.E6.
[29] Wei, X., Feng, G., Zhang, H., Xu, Q., Ni, J., Zhao, M., et al. (2020) Pleiotropic Genomic Variants at 17q21.31 Associated with Bone Mineral Density and Body Fat Mass: A Bivariate Genome-Wide Association Analysis. European Journal of Human Genetics, 29, 553-563.
https://doi.org/10.1038/s41431-020-00727-3
[30] Kawashima, T., Hirose, K., Satoh, T., Kaneko, A., Ikeda, Y., Kaziro, Y., et al. (2000) Mgcracgap Is Involved in the Control of Growth and Differentiation of Hematopoietic Cells. Blood, 96, 2116-2124.
https://doi.org/10.1182/blood.v96.6.2116
[31] Kuilman, T., Michaloglou, C., Mooi, W.J. and Peeper, D.S. (2010) The Essence of Senescence: Figure 1. Genes & Development, 24, 2463-2479.
https://doi.org/10.1101/gad.1971610
[32] Demidenko, Z.N., Korotchkina, L.G., Gudkov, A.V. and Blagosklonny, M.V. (2010) Paradoxical Suppression of Cellular Senescence by P53. Proceedings of the National Academy of Sciences, 107, 9660-9664.
https://doi.org/10.1073/pnas.1002298107
[33] Xiang, X., Yang, L., Zhang, X., Ma, X., Miao, R., Gu, J., et al. (2019) Seven-Senescence-Associated Gene Signature Predicts Overall Survival for Asian Patients with Hepatocellular Carcinoma. World Journal of Gastroenterology, 25, 1715-1728.
https://doi.org/10.3748/wjg.v25.i14.1715
[34] Jung, Y., Cho, J.H., Park, S., Kang, M., Park, S., Choi, D.H., et al. (2019) Lactate Activates the E2F Pathway to Promote Cell Motility by Up-Regulating Microtubule Modulating Genes. Cancers, 11, Article 274.
https://doi.org/10.3390/cancers11030274
[35] Lucanus, A.J. and Yip, G.W. (2017) Kinesin Superfamily: Roles in Breast Cancer, Patient Prognosis and Therapeutics. Oncogene, 37, 833-838.
https://doi.org/10.1038/onc.2017.406
[36] Itzel, T., Scholz, P., Maass, T., Krupp, M., Marquardt, J.U., Strand, S., et al. (2014) Translating Bioinformatics in Oncology: Guilt-by-Profiling Analysis and Identification of KIF18B and CDCA3 as Novel Driver Genes in Carcinogenesis. Bioinformatics, 31, 216-224.
https://doi.org/10.1093/bioinformatics/btu586
[37] Jiang, J., Liu, T., He, X., Ma, W., Wang, J., Zhou, Q., et al. (2021) Silencing of KIF18B Restricts Proliferation and Invasion and Enhances the Chemosensitivity of Breast Cancer via Modulating Akt/GSK‐3β/β‐Catenin Pathway. BioFactors, 47, 754-767.
https://doi.org/10.1002/biof.1757
[38] Liu, L., Zhang, Z., Xia, X. and Lei, J. (2022) KIF18B Promotes Breast Cancer Cell Proliferation, Migration and Invasion by Targeting TRIP13 and Activating the Wnt/β-Catenin Signaling Pathway. Oncology Letters, 23, Article No. 112.
https://doi.org/10.3892/ol.2022.13232
[39] Yang, B., Wang, S., Xie, H., Wang, C., Gao, X., Rong, Y., et al. (2020) KIF18B Promotes Hepatocellular Carcinoma Progression through Activating Wnt/β‐Catenin‐Signaling Pathway. Journal of Cellular Physiology, 235, 6507-6514.
https://doi.org/10.1002/jcp.29444
[40] Wu, Y., Wang, A., Zhu, B., Huang, J., Lu, E., Xu, H., et al. (2018) KIF18B Promotes Tumor Progression through Activating the Wnt/β-Catenin Pathway in Cervical Cancer. OncoTargets and Therapy, 11, 1707-1720.
https://doi.org/10.2147/ott.s157440
[41] Li, B., Liu, B., Zhang, X., Liu, H. and He, L. (2019) KIF18B Promotes the Proliferation of Pancreatic Ductal Adenocarcinoma via Activating the Expression of CDCA8. Journal of Cellular Physiology, 235, 4227-4238.
https://doi.org/10.1002/jcp.29201
[42] Chen, S., Yu, B., DU, G.T., Huang, T.Y., Zhang, N. and Fu, N. (2024) KIF18B: An Important Role in Signaling Pathways and a Potential Resistant Target in Tumor Development. Discover Oncology, 15, Article No. 430.
https://doi.org/10.1007/s12672-024-01330-4
[43] Zhao, F., Feng, Y., Zhang, X., Liu, X. and Li, A. (2020) Kinesin Superfamily Member 18B (KIF18B) Promotes Cell Proliferation in Colon Adenocarcinoma. Cancer Management and Research, 12, 12769-12778.
https://doi.org/10.2147/cmar.s261894
[44] Qiu, M., Zhang, L., Chen, Y., Zhu, L., Zhang, B., Li, Q., et al. (2021) KIF18B as a Regulator in Tumor Microenvironment Accelerates Tumor Progression and Triggers Poor Outcome in Hepatocellular Carcinoma. The International Journal of Biochemistry & Cell Biology, 137, Article 106037.
https://doi.org/10.1016/j.biocel.2021.106037
[45] Yang, H., Wang, Y., Zhang, Z. and Li, H. (2020) Identification of KIF18B as a Hub Candidate Gene in the Metastasis of Clear Cell Renal Cell Carcinoma by Weighted Gene Co-Expression Network Analysis. Frontiers in Genetics, 11, Article 905.
https://doi.org/10.3389/fgene.2020.00905
[46] Hong, B., Lu, R., Lou, W., Bao, Y., Qiao, L., Hu, Y., et al. (2021) KIF18B-Dependent Hypomethylation of PARPBP Gene Promoter Enhances Oxaliplatin Resistance in Colorectal Cancer. Experimental Cell Research, 407, Article 112827.
https://doi.org/10.1016/j.yexcr.2021.112827
[47] Xie, J., Wang, B., Luo, W., Li, C. and Jia, X. (2022) Upregulation of KIF18B Facilitates Malignant Phenotype of Esophageal Squamous Cell Carcinoma by Activating CDCA8/mTORC1 Pathway. Journal of Clinical Laboratory Analysis, 36, e24633.
https://doi.org/10.1002/jcla.24633
[48] Ji, Z., Pan, X., Shang, Y., Ni, D. and Wu, F. (2019) KIF18B as a Regulator in Microtubule Movement Accelerates Tumor Progression and Triggers Poor Outcome in Lung Adenocarcinoma. Tissue and Cell, 61, 44-50.
https://doi.org/10.1016/j.tice.2019.09.001
[49] Zhong, Y., Jiang, L., Long, X., Zhou, Y., Deng, S., Lin, H., et al. (2019) Clinical Significance and Integrative Analysis of Kinesin Family Member 18B in Lung Adenocarcinoma. OncoTargets and Therapy, 12, 9249-9264.
https://doi.org/10.2147/ott.s227438
[50] Wu, Y., Ke, Z., Zheng, W., Chen, Y., Zhu, J., Lin, F., et al. (2021) Kinesin Family Member 18B Regulates the Proliferation and Invasion of Human Prostate Cancer Cells. Cell Death & Disease, 12, Article No. 302.
https://doi.org/10.1038/s41419-021-03582-2
[51] Li, Q., Sun, M., Meng, Y., Feng, M., Wang, M., Chang, C., et al. (2023) Kinesin Family Member 18B Activates mTORC1 Signaling via Actin Gamma 1 to Promote the Recurrence of Human Hepatocellular Carcinoma. Oncogenesis, 12, Article No. 54.
https://doi.org/10.1038/s41389-023-00499-7
[52] Ke, H., Wu, S., Zhang, Y. and Zhang, G. (2022) MiR-139-3p/Kinesin Family Member 18B Axis Suppresses Malignant Progression of Gastric Cancer. Bioengineered, 13, 4528-4536.
https://doi.org/10.1080/21655979.2022.2033466
[53] Oh, C., Kang, J.W., Lee, Y., Myung, K., Ha, M., Kang, J., et al. (2020) Role of KIF2C, a Gene Related to ALL Relapse, in Embryonic Hematopoiesis in Zebrafish. International Journal of Molecular Sciences, 21, Article 3127.
https://doi.org/10.3390/ijms21093127
[54] Yan, H., Zhu, C. and Zhang, L. (2019) Kinesin Family Member 18B: A Contributor and Facilitator in the Proliferation and Metastasis of Cutaneous Melanoma. Journal of Biochemical and Molecular Toxicology, 33, e22409.
https://doi.org/10.1002/jbt.22409
[55] Zhang, W. and Liu, Z. (2022) MiRNA-139-3p Inhibits Malignant Progression in Urothelial Carcinoma of the Bladder via Targeting KIF18B and Inactivating Wnt/Beta-Catenin Pathway. Pharmacogenetics and Genomics, 33, 1-9.
https://doi.org/10.1097/fpc.0000000000000485
[56] Davis, A.J., Tsinkevich, M., Rodencal, J., Abbas, H.A., Su, X., Gi, Y., et al. (2020) TAp63-Regulated miRNAs Suppress Cutaneous Squamous Cell Carcinoma through Inhibition of a Network of Cell-Cycle Genes. Cancer Research, 80, 2484-2497.
https://doi.org/10.1158/0008-5472.can-19-1892