[1]
|
Foresta, C., Bettella, A., Vinanzi, C., Dabrilli, P., Meriggiola, M.C., Garolla, A., et al. (2004) A Novel Circulating Hormone of Testis Origin in Humans. The Journal of Clinical Endocrinology & Metabolism, 89, 5952-5958. https://doi.org/10.1210/jc.2004-0575
|
[2]
|
Ivell, R., Heng, K., Severn, K., Antonio, L., Bartfai, G., Casanueva, F.F., et al. (2022) The Leydig Cell Biomarker INSL3 as a Predictor of Age-Related Morbidity: Findings from the EMAS Cohort. Frontiers in Endocrinology, 13, Article 1016107. https://doi.org/10.3389/fendo.2022.1016107
|
[3]
|
Bogatcheva, N. and Agoulnik, A. (2005) INSL3/LGR8 Role in Testicular Descent and Cryptorchidism. Reproductive BioMedicine Online, 10, 49-54. https://doi.org/10.1016/s1472-6483(10)60803-6
|
[4]
|
Bogatcheva, N.V., Truong, A., Feng, S., Engel, W., Adham, I.M. and Agoulnik, A.I. (2003) GREAT/LGR8 Is the Only Receptor for Insulin-Like 3 Peptide. Molecular Endocrinology, 17, 2639-2646. https://doi.org/10.1210/me.2003-0096
|
[5]
|
Kawamura, K., Fukuda, J., Kumagai, J., Shimizu, Y., Kodama, H., Nakamura, A., et al. (2005) Gonadotropin-Releasing Hormone I Analog Acts as an Antiapoptotic Factor in Mouse Blastocysts. Endocrinology, 146, 4105-4116. https://doi.org/10.1210/en.2004-1646
|
[6]
|
Sagata, D., Minagawa, I., Kohriki, H., Pitia, A.M., Uera, N., Katakura, Y., et al. (2015) The Insulin-Like Factor 3 (INSL3)-Receptor (RXFP2) Network Functions as a Germ Cell Survival/Anti-Apoptotic Factor in Boar Testes. Endocrinology, 156, 1523-1539. https://doi.org/10.1210/en.2014-1473
|
[7]
|
Overbeek, P.A., Gorlov, I.P., Sutherland, R.W., Houston, J.B., Harrison, W.R., Boettger‐Tong, H.L., et al. (2001) A Transgenic Insertion Causing Cryptorchidism in Mice. Genesis, 30, 26-35. https://doi.org/10.1002/gene.1029
|
[8]
|
Kose, H., Sivrikaya, A. and Menevse, E. (2024) Maternal Fed Zinc-Deficient Diet: Effects on Relax in Family Peptides and Oxidant System in the Testis and Liver Tissue of Male Offspring. Biological Trace Element Research, 202, 5612-5623.
|
[9]
|
Cetin, C., Okten, S.B., Tok, O.E., Ozcan, P., Karasu, A.F.G., Tanoglu, F.B., et al. (2024) Treatment of Ovarian Damage Induced by Chemotherapeutic Drugs in Female Rats with G-CSF and Platelet-Rich Plasma(PRP): An Immunohistochemical Study Correlation with Novel Marker INSL-3. Gynecological Endocrinology, 40, Article ID: 2301551. https://doi.org/10.1080/09513590.2023.2301551
|
[10]
|
Zhu, C., Luo, W., Li, Z., Zhang, X., Hu, J., Zhao, S., et al. (2021) New Theca-Cell Marker Insulin-Like Factor 3 Is Associated with Premature Ovarian Insufficiency. Fertility and Sterility, 115, 455-462. https://doi.org/10.1016/j.fertnstert.2020.08.005
|
[11]
|
Anand-Ivell, R., Ivell, R., Driscoll, D. and Manson, J. (2008) Insulin-Like Factor 3 Levels in Amniotic Fluid of Human Male Fetuses. Human Reproduction, 23, 1180-1186. https://doi.org/10.1093/humrep/den038
|
[12]
|
Ivell, R. and Anand-Ivell, R. (2018) Insulin-like Peptide 3 (INSL3) Is a Major Regulator of Female Reproductive Physiology. Human Reproduction Update, 24, 639-651. https://doi.org/10.1093/humupd/dmy029
|
[13]
|
Venditti, M., Romano, M.Z., Boccella, S., Haddadi, A., Biasi, A., Maione, S., et al. (2024) Type 1 Diabetes Impairs the Activity of Rat Testicular Somatic and Germ Cells through NRF2/NLRP3 Pathway-Mediated Oxidative Stress. Frontiers in Endocrinology, 15, Article 1399256. https://doi.org/10.3389/fendo.2024.1399256
|
[14]
|
Zhang, S., Larrabee, L., Chang, A.H., Desai, S., Sloan, L., Wang, X., et al. (2024) Discovery of RXFP2 Genetic Association in Resistant Hypertensive Men and RXFP2 Antagonists for the Treatment of Resistant Hypertension. Scientific Reports, 14, Article No. 13209. https://doi.org/10.1038/s41598-024-62804-7
|
[15]
|
Papadakis, G.E., de Kalbermatten, B., Dormoy, A., Salenave, S., Trabado, S., Vieira-Pinto, O., et al. (2023) Impact of Cushing’s Syndrome on the Gonadotrope Axis and Testicular Functions in Men. Human Reproduction, 38, 2350-2361. https://doi.org/10.1093/humrep/dead187
|
[16]
|
Coskun, G., Saker, D., Kara, S., Sapmaz, T., Celenk, A., Sencar, L., et al. (2024) Anti-Inflammatory Effect of INSL-3 on Experimental Arthritis Model and LPS-Induced Macrophage Cell Line. International Immunopharmacology, 143, Article ID: 113439. https://doi.org/10.1016/j.intimp.2024.113439
|
[17]
|
Facondo, P., Delbarba, A., Maffezzoni, F., Cappelli, C. and Ferlin, A. (2020) INSL3: A Marker of Leydig Cell Function and Testis-Bone-Skeletal Muscle Network. Protein & Peptide Letters, 27, 1246-1252. https://doi.org/10.2174/0929866527666200925105739
|
[18]
|
Laurent, A., Rouillac, C., Delezoide, A., Giovangrandi, Y., Vekemans, M., Bellet, D., et al. (1998) Insulin‐like 4 (INSL4) Gene Expression in Human Embryonic and Trophoblastic Tissues. Molecular Reproduction and Development, 51, 123-129. https://doi.org/10.1002/(sici)1098-2795(199810)51:2<123::aid-mrd1>3.3.co;2-u
|
[19]
|
Millar, L., Streiner, N., Webster, L., Yamamoto, S., Okabe, R., Kawamata, T., et al. (2005) Early Placental Insulin-Like Protein (INSL4 or EPIL) in Placental and Fetal Membrane Growth1. Biology of Reproduction, 73, 695-702. https://doi.org/10.1095/biolreprod.105.039859
|
[20]
|
Mock, P. (1999) Pro-EPIL Forms Are Present in Amniotic Fluid and Maternal Serum during Normal Pregnancy. Journal of Clinical Endocrinology & Metabolism, 84, 2253-2253. https://doi.org/10.1210/jc.84.6.2253
|
[21]
|
Bellet, D. (1997) Identification of Pro-EPIL and EPIL Peptides Translated from Insulin-Like 4 (INSL4) mRNA in Human Placenta. Journal of Clinical Endocrinology & Metabolism, 82, 3169-3172. https://doi.org/10.1210/jc.82.9.3169
|
[22]
|
Brandt, B., Roetger, A., Bidart, J.M., et al. (2002) Early Placenta Insulin-Like Growth Factor (Pro-EPIL) Is Overexpressed and Secreted by c-ERBB-2-Positive Cells with High Invasion Potential. Cancer Research, 62, 1020-1024.
|
[23]
|
Brandt, B., Kemming, D., Packeisen, J., Simon, R., Helms, M., Feldmann, U., et al. (2005) Expression of Early Placenta Insulin-Like Growth Factor in Breast Cancer Cells Provides an Autocrine Loop That Predominantly Enhances Invasiveness and Motility. Endocrine-Related Cancer, 12, 823-837. https://doi.org/10.1677/erc.1.00975
|
[24]
|
Yang, R., Li, S.W., Chen, Z., Zhou, X., Ni, W., Fu, D.A., et al. (2018) Role of INSL4 Signaling in Sustaining the Growth and Viability of Lkb1-Inactivated Lung Cancer. JNCI: Journal of the National Cancer Institute, 111, 664-674. https://doi.org/10.1093/jnci/djy166
|
[25]
|
Rodríguez-Rodero, S., Fernández, A.F., Fernández-Morera, J.L., Castro-Santos, P., Bayon, G.F., Ferrero, C., et al. (2013) DNA Methylation Signatures Identify Biologically Distinct Thyroid Cancer Subtypes. The Journal of Clinical Endocrinology & Metabolism, 98, 2811-2821. https://doi.org/10.1210/jc.2012-3566
|
[26]
|
Hsu, S.Y. (1999) Cloning of Two Novel Mammalian Paralogs of Relaxin/Insulin Family Proteins and Their Expression in Testis and Kidney. Molecular Endocrinology, 13, 2163-2174. https://doi.org/10.1210/me.13.12.2163
|
[27]
|
Koo, A., Pustovit, R.V., Woodward, O.R.M., Lewis, J.E., Gribble, F.M., Hossain, M.A., et al. (2022) Expression of the Relaxin Family Peptide 4 Receptor by Enterochromaffin Cells of the Mouse Large Intestine. Cell and Tissue Research, 389, 1-9. https://doi.org/10.1007/s00441-022-03635-8
|
[28]
|
Grosse, J., Heffron, H., Burling, K., Akhter Hossain, M., Habib, A.M., Rogers, G.J., et al. (2014) Insulin-like Peptide 5 Is an Orexigenic Gastrointestinal Hormone. Proceedings of the National Academy of Sciences of the United States of America, 111, 11133-11138. https://doi.org/10.1073/pnas.1411413111
|
[29]
|
Liu, C., Kuei, C., Sutton, S., Chen, J., Bonaventure, P., Wu, J., et al. (2005) INSL5 Is a High Affinity Specific Agonist for GPCR142 (GPR100). Journal of Biological Chemistry, 280, 292-300. https://doi.org/10.1074/jbc.m409916200
|
[30]
|
Pustovit, R.V., Zhang, X., Liew, J.J., Praveen, P., Liu, M., Koo, A., et al. (2021) A Novel Antagonist Peptide Reveals a Physiological Role of Insulin-Like Peptide 5 in Control of Colorectal Function. ACS Pharmacology & Translational Science, 4, 1665-1674. https://doi.org/10.1021/acsptsci.1c00171
|
[31]
|
Boels, K. and Schaller, H.C. (2003) Identification and Characterisation of GPR100 as a Novel Human G‐Protein-Coupled Bradykinin Receptor. British Journal of Pharmacology, 140, 932-938. https://doi.org/10.1038/sj.bjp.0705521
|
[32]
|
Mashima, H., Ohno, H., Yamada, Y., Sakai, T. and Ohnishi, H. (2013) INSL5 May Be a Unique Marker of Colorectal Endocrine Cells and Neuroendocrine Tumors. Biochemical and Biophysical Research Communications, 432, 586-592. https://doi.org/10.1016/j.bbrc.2013.02.042
|
[33]
|
Luo, X., Li, T., Zhu, Y., Dai, Y., Zhao, J., Guo, Z., et al. (2015) The Insulinotrophic Effect of Insulin-Like Peptide 5 in Vitro and in Vivo. Biochemical Journal, 466, 467-473. https://doi.org/10.1042/bj20141113
|
[34]
|
Burnicka-Turek, O., Mohamed, B.A., Shirneshan, K., Thanasupawat, T., Hombach-Klonisch, S., Klonisch, T., et al. (2012) INSL5-Deficient Mice Display an Alteration in Glucose Homeostasis and an Impaired Fertility. Endocrinology, 153, 4655-4665. https://doi.org/10.1210/en.2012-1161
|
[35]
|
Vincenzo, A.D., Crescenzi, M., Granzotto, M., Zancaner, S., Fabris, R., Foletto, M., et al. (2023) Body Weight Reduction by Bariatric Surgery Reduces the Plasma Levels of the Novel Orexigenic Gut Hormone Insulin-Like Peptide 5 in Patients with Severe Obesity. Journal of Clinical Medicine, 12, Article 3752. https://doi.org/10.3390/jcm12113752
|
[36]
|
Yeganeh, I.S., Taromchi, A.H., Fathabadi, F.F., Nejatbakhsh, R., Novin, M.G. and Shokri, S. (2017) Expression and Localization of Relaxin Family Peptide Receptor 4 in Human Spermatozoa and Impact of Insulin-Like Peptide 5 on Sperm Functions. Reproductive Biology, 17, 327-332. https://doi.org/10.1016/j.repbio.2017.09.004
|
[37]
|
Bicer, M., Alan, M., Alarslan, P., Guler, A., Kocabas, G.U., Imamoglu, C., et al. (2018) Circulating Insulin-Like Peptide 5 Levels and Its Association with Metabolic and Hormonal Parameters in Women with Polycystic Ovary Syndrome. Journal of Endocrinological Investigation, 42, 303-312. https://doi.org/10.1007/s40618-018-0917-x
|
[38]
|
Li, S., Liu, Y., Yuan, L., Ji, M., Zhang, A., Li, H., et al. (2020) Autocrine INSL 5 Promotes Tumor Progression and Glycolysis via Activation of stat 5 Signaling. EMBO Molecular Medicine, 12, e12050. https://doi.org/10.15252/emmm.202012050
|
[39]
|
Yang, X., Wei, W., Tan, S., Guo, L., Qiao, S., Yao, B., et al. (2021) Identification and Verification of HCAR3 and INSL5 as New Potential Therapeutic Targets of Colorectal Cancer. World Journal of Surgical Oncology, 19, Article No. 248. https://doi.org/10.1186/s12957-021-02335-x
|
[40]
|
Lok, S., Johnston, D.S., Conklin, D., Lofton-Day, C.E., Adams, R.L., Jelmberg, A.C., et al. (2000) Identification of INSL6, a New Member of the Insulin Family That Is Expressed in the Testis of the Human and Rat1. Biology of Reproduction, 62, 1593-1599. https://doi.org/10.1095/biolreprod62.6.1593
|
[41]
|
Zeng, L., Akasaki, Y., Sato, K., Ouchi, N., Izumiya, Y. and Walsh, K. (2010) Insulin-Like 6 Is Induced by Muscle Injury and Functions as a Regenerative Factor. Journal of Biological Chemistry, 285, 36060-36069. https://doi.org/10.1074/jbc.m110.160879
|
[42]
|
Maruyama, S., Wu, C., Yoshida, S., Zhang, D., Li, P., Wu, F., et al. (2018) Relaxin Family Member Insulin‐Like Peptide 6 Ameliorates Cardiac Fibrosis and Prevents Cardiac Remodeling in Murine Heart Failure Models. Journal of the American Heart Association, 7, e008441. https://doi.org/10.1161/jaha.117.008441
|
[43]
|
Verma‐Kurvari, S., Nef, S. and Parada, L.F. (2005) Hormonal Regulation of Male Reproductive Tract Development. Annals of the New York Academy of Sciences, 1061, 1-8. https://doi.org/10.1196/annals.1336.002
|
[44]
|
Lampert, F., Stafa, D., Goga, A., Soste, M.V., Gilberto, S., Olieric, N., et al. (2018) The Multi-Subunit GID/CTLH E3 Ubiquitin Ligase Promotes Cell Proliferation and Targets the Transcription Factor Hbp1 for Degradation. eLife, 7, e35528. https://doi.org/10.7554/elife.35528
|