[1]
|
Venkatesan, P. (2024) GOLD COPD Report: 2024 Update. The Lancet Respiratory Medicine, 12, 15-16. https://doi.org/10.1016/s2213-2600(23)00461-7
|
[2]
|
Sato, S., Miyazaki, S., Tamaki, A., Yoshimura, Y., Arai, H., Fujiwara, D., et al. (2022) Respiratory Sarcopenia: A Position Paper by Four Professional Organizations. Geriatrics & Gerontology International, 23, 5-15. https://doi.org/10.1111/ggi.14519
|
[3]
|
Sepúlveda‐Loyola, W., Osadnik, C., Phu, S., Morita, A.A., Duque, G. and Probst, V.S. (2020) Diagnosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta‐Analysis. Journal of Cachexia, Sarcopenia and Muscle, 11, 1164-1176. https://doi.org/10.1002/jcsm.12600
|
[4]
|
许洁, 吴虹, 达婧, 等. 肌少症对老年稳定期慢性阻塞性肺疾病患者失能和生活质量的影响[J]. 中国预防医学杂志, 2022, 23(2): 146-149.
|
[5]
|
Choi, Y.J., Park, H.J., Cho, J.H. and Byun, M.K. (2023) Low Skeletal Muscle Mass and Clinical Outcomes in Chronic Obstructive Pulmonary Disease. Tuberculosis and Respiratory Diseases, 86, 272-283. https://doi.org/10.4046/trd.2023.0008
|
[6]
|
Benz, E., Trajanoska, K., Lahousse, L., Schoufour, J.D., Terzikhan, N., De Roos, E., et al. (2019) Sarcopenia in COPD: A Systematic Review and Meta-Analysis. European Respiratory Review, 28, Article ID: 190049. https://doi.org/10.1183/16000617.0049-2019
|
[7]
|
He, J., Li, H., Yao, J. and Wang, Y. (2023) Prevalence of Sarcopenia in Patients with COPD through Different Musculature Measurements: An Updated Meta-Analysis and Meta-Regression. Frontiers in Nutrition, 10, Article 1137371. https://doi.org/10.3389/fnut.2023.1137371
|
[8]
|
Locquet, M., Bruyère, O., Lengelé, L., Reginster, J.Y. and Beaudart, C. (2021) Relationship between Smoking and the Incidence of Sarcopenia: The Sarcophage Cohort. Public Health, 193, 101-108. https://doi.org/10.1016/j.puhe.2021.01.017
|
[9]
|
Rom, O., Kaisari, S., Aizenbud, D. and Reznick, A.Z. (2012) Sarcopenia and Smoking: A Possible Cellular Model of Cigarette Smoke Effects on Muscle Protein Breakdown. Annals of the New York Academy of Sciences, 1259, 47-53. https://doi.org/10.1111/j.1749-6632.2012.06532.x
|
[10]
|
Prokopidis, K. and Witard, O.C. (2021) Understanding the Role of Smoking and Chronic Excess Alcohol Consumption on Reduced Caloric Intake and the Development of Sarcopenia. Nutrition Research Reviews, 35, 197-206. https://doi.org/10.1017/s0954422421000135
|
[11]
|
Pancera, S., Lopomo, N.F., Porta, R., Sanniti, A., Buraschi, R. and Bianchi, L.N.C. (2024) Effects of Combined Endurance and Resistance Eccentric Training on Muscle Function and Functional Performance in Patients with Chronic Obstructive Pulmonary Disease: Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 105, 470-479. https://doi.org/10.1016/j.apmr.2023.09.004
|
[12]
|
Calvani, R., Picca, A., Coelho-Júnior, H.J., Tosato, M., Marzetti, E. and Landi, F. (2023) Diet for the Prevention and Management of Sarcopenia. Metabolism, 146, Article ID: 155637. https://doi.org/10.1016/j.metabol.2023.155637
|
[13]
|
Robinson, S.M., Reginster, J.Y., Rizzoli, R., Shaw, S.C., Kanis, J.A., Bautmans, I., et al. (2018) Does Nutrition Play a Role in the Prevention and Management of Sarcopenia? Clinical Nutrition, 37, 1121-1132. https://doi.org/10.1016/j.clnu.2017.08.016
|
[14]
|
Byun, M.K., Cho, E.N., Chang, J., Ahn, C.M. and Kim, H.J. (2017) Sarcopenia Correlates with Systemic Inflammation in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 12, 669-675. https://doi.org/10.2147/copd.s130790
|
[15]
|
Du, D., Zhang, G., Xu, D., Liu, L., Hu, X., Chen, L., et al. (2023) Prevalence and Clinical Characteristics of Sleep Disorders in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis. Sleep Medicine, 112, 282-290. https://doi.org/10.1016/j.sleep.2023.10.034
|
[16]
|
Limpawattana, P., Inthasuwan, P., Putraveephong, S., Boonsawat, W., Theerakulpisut, D. and Sawanyawisuth, K. (2017) Sarcopenia in Chronic Obstructive Pulmonary Disease: A Study of Prevalence and Associated Factors in the Southeast Asian Population. Chronic Respiratory Disease, 15, 250-257. https://doi.org/10.1177/1479972317743759
|
[17]
|
Ji, Y., Li, M., Chang, M., Liu, R., Qiu, J., Wang, K., et al. (2022) Inflammation: Roles in Skeletal Muscle Atrophy. Antioxidants, 11, Article 1686. https://doi.org/10.3390/antiox11091686
|
[18]
|
Ma, K., Huang, F., Qiao, R. and Miao, L. (2022) Pathogenesis of Sarcopenia in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 13, Article 850964. https://doi.org/10.3389/fphys.2022.850964
|
[19]
|
Chen, M., Ma, L., Hall, J.E., Liu, X. and Ying, Z. (2015) Dual Regulation of Tumor Necrosis Factor-Α on Myosin Light Chain Phosphorylation in Vascular Smooth Muscle. American Journal of Physiology-Heart and Circulatory Physiology, 308, H398-H406. https://doi.org/10.1152/ajpheart.00691.2014
|
[20]
|
Abdul-Ghani, M.A. and DeFronzo, R.A. (2010) Pathogenesis of Insulin Resistance in Skeletal Muscle. Journal of Biomedicine and Biotechnology, 2010, Article ID: 476279. https://doi.org/10.1155/2010/476279
|
[21]
|
Gosker, H.R., van Mameren, H., van Dijk, P.J., Engelen, M.P.K.J., van der Vusse, G.J., Wouters, E.F.M., et al. (2002) Skeletal Muscle Fibre-Type Shifting and Metabolic Profile in Patients with Chronic Obstructive Pulmonary Disease. European Respiratory Journal, 19, 617-625. https://doi.org/10.1183/09031936.02.00762001
|
[22]
|
冯学威, 高欢, 李钰, 等. 长期氧疗对慢性阻塞性肺疾病患者骨骼肌代谢影响的研究[J]. 陕西医学杂志, 2012, 41(3): 302-305.
|
[23]
|
Pollack, M. and Leeuwenburgh, C. (2001) Apoptosis and Aging: Role of the Mitochondria. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56, B475-B482. https://doi.org/10.1093/gerona/56.11.b475
|
[24]
|
Morozzi, G., Beccafico, S., Bianchi, R., Riuzzi, F., Bellezza, I., Giambanco, I., et al. (2017) Oxidative Stress-Induced S100B Accumulation Converts Myoblasts into Brown Adipocytes via an NF-κB/YY1/miR-133 Axis and NF-κB/YY1/ BMP-7 Axis. Cell Death & Differentiation, 24, 2077-2088. https://doi.org/10.1038/cdd.2017.132
|
[25]
|
Rossetti, M.L., Steiner, J.L. and Gordon, B.S. (2017) Androgen-Mediated Regulation of Skeletal Muscle Protein Balance. Molecular and Cellular Endocrinology, 447, 35-44. https://doi.org/10.1016/j.mce.2017.02.031
|
[26]
|
Kovacheva, E.L., Sinha Hikim, A.P., Shen, R., Sinha, I. and Sinha-Hikim, I. (2010) Testosterone Supplementation Reverses Sarcopenia in Aging through Regulation of Myostatin, C-Jun Nh2-Terminal Kinase, Notch, and Akt Signaling Pathways. Endocrinology, 151, 628-638. https://doi.org/10.1210/en.2009-1177
|
[27]
|
Yoshida, T. and Delafontaine, P. (2020) Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 9, Article 1970. https://doi.org/10.3390/cells9091970
|
[28]
|
Fhon, J.R.S., Silva, A.R.F., Lima, E.F.C., Santos Neto, A.P.D., Henao-Castaño, Á.M., Fajardo-Ramos, E., et al. (2023) Association between Sarcopenia, Falls, and Cognitive Impairment in Older People: A Systematic Review with Meta-analysis. International Journal of Environmental Research and Public Health, 20, Article 4156. https://doi.org/10.3390/ijerph20054156
|
[29]
|
Cabanas‐Sánchez, V., Esteban‐Cornejo, I., Parra‐Soto, S., Petermann‐Rocha, F., Gray, S.R., Rodríguez‐Artalejo, F., et al. (2022) Muscle Strength and Incidence of Depression and Anxiety: Findings from the UK Biobank Prospective Cohort Study. Journal of Cachexia, Sarcopenia and Muscle, 13, 1983-1994. https://doi.org/10.1002/jcsm.12963
|