|
[1]
|
Yang, C., Lv, J., Li, X., Yang, X. and Yin, M. (2024) Global Burden of Asthma in Young Adults in 204 Countries and Territories, 1990-2019: Systematic Analysis of the Global Burden of Disease Study 2019. Preventive Medicine Reports, 37, Article ID: 102531. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
GBD 2019 Chronic Respiratory Diseases Collaborators (2023) Global Burden of Chronic Respiratory Diseases and Risk Factors, 1990-2019: An Update from the Global Burden of Disease Study 2019. EClinicalMedicine, 59, Article ID: 101936.
|
|
[3]
|
Kool, M., Willart, M.A.M., van Nimwegen, M., Bergen, I., Pouliot, P., Virchow, J.C., et al. (2011) An Unexpected Role for Uric Acid as an Inducer of T Helper 2 Cell Immunity to Inhaled Antigens and Inflammatory Mediator of Allergic Asthma. Immunity, 34, 527-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Schmieder, H., Leischner, C., Piotrowsky, A., Marongiu, L., Venturelli, S. and Burkard, M. (2025) Exploring the Link between Fat-Soluble Vitamins and Aging-Associated Immune System Status: A Literature Review. Immunity & Ageing, 22, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lotfi, R. (2024) Retinoic Acid (RA): A Critical Immunoregulatory Molecule in Asthma and Allergies. Immunity, Inflammation and Disease, 12, e70051. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bi, G., Liang, J., Bian, Y., Shan, G., Besskaya, V., Wang, Q., et al. (2022) The Immunomodulatory Role of All-Trans Retinoic Acid in Tumor Microenvironment. Clinical and Experimental Medicine, 23, 591-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Trinh, T., Hoang, T.X. and Kim, J.Y. (2020) All-Trans Retinoic Acid Increases NF-κB Activity in PMA-Stimulated THP-1 Cells Upon Unmethylated CPG Challenge by Enhancing Cell Surface TLR9 Expression. Molecular and Cellular Biochemistry, 473, 167-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wu, J., Zhang, Y., Liu, Q., Zhong, W. and Xia, Z. (2013) All-Trans Retinoic Acid Attenuates Airway Inflammation by Inhibiting Th2 and Th17 Response in Experimental Allergic Asthma. BMC Immunology, 14, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sun, C., Hall, J.A., Blank, R.B., Bouladoux, N., Oukka, M., Mora, J.R., et al. (2007) Small Intestine Lamina Propria Dendritic Cells Promote De Novo Generation of Foxp3 T Reg Cells via Retinoic Acid. The Journal of Experimental Medicine, 204, 1775-1785. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Surman, S.L., Jones, B.G., Sealy, R.E., Rudraraju, R. and Hurwitz, J.L. (2014) Oral Retinyl Palmitate or Retinoic Acid Corrects Mucosal IgA Responses toward an Intranasal Influenza Virus Vaccine in Vitamin A Deficient Mice. Vaccine, 32, 2521-2524. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kim, M.H., Taparowsky, E.J. and Kim, C.H. (2015) Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity, 43, 107-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, Y., Luo, Y., Shi, J., Xie, Y., Shao, H. and Li, Y. (2024) All-Trans Retinoic Acid Alleviates Collagen-Induced Arthritis and Promotes Intestinal Homeostasis. Scientific Reports, 14, Article No. 1811. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ramanarayanan, P., Heine, G. and Worm, M. (2023) Vitamin A and Vitamin D Induced Nuclear Hormone Receptor Activation and Its Impact on B Cell Differentiation and Immunoglobulin Production. Immunology Letters, 263, 80-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nagy, N.A., Hafkamp, F.M.J., Sparrius, R., Bas, R., Lozano Vigario, F., van Capel, T.M.M., et al. (2024) Retinoic Acid‐loaded Liposomes Induce Human Mucosal CD103+ Dendritic Cells That Inhibit Th17 Cells and Drive Regulatory T‐Cell Development in Vitro. European Journal of Immunology, 54, e2350839. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hu, J., Sang, J., Hao, F. and Liu, L. (2023) Association between Vitamin A and Asthma: A Meta-Analysis with Trial Sequential Analysis. Frontiers in Pharmacology, 14, Article ID: 1100002. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Son, H., Park, H., Park, Y. and Kim, S. (2015) Effect of Retinoic Acid in a Mouse Model of Allergic Rhinitis. Allergy, Asthma & Immunology Research, 7, 590-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Luo, Z., Liu, E., Luo, J., Li, F., Li, S., Zeng, F., et al. (2010) Vitamin a Deficiency and Wheezing. World Journal of Pediatrics, 6, 81-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Feng, L., Sun, F., Chen, Y., Athari, S.S. and Chen, X. (2021) Studying the Effects of Vitamin A on the Severity of Allergic Rhinitis and Asthma. Iranian Journal of Allergy, Asthma and Immunology, 20, 648-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rezaeianpour, R., Lotfi, R., Mortazavi, S.H., Karaji, A.G., Rezaiemanesh, A. and Salari, F. (2024) Evaluating the Serum Levels of CCL17, CCL22, and CCL28 Chemokines and the Gene Expression of Α4β1 and Α4β7 Integrins in Patients with Allergic Rhinitis. Acta Medica Iranica, 61, 459-467. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhang, W., Dai, W., Xie, Y., Chen, X., Zhang, P. and Cui, W. (2025) Retinoic Acid Regulates Allergic Inflammation via Limiting Mast Cell Activation. Food Science & Nutrition, 13, e4727. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Davoodi, A., Lotfi, R., Mortazavi, S.H., et al. (2021) Retinoic Acid Correlates with Reduced Serum IL-10 and TGF-β in Allergic Rhinitis. Reports of Biochemistry and Molecular Biology, 9, 399-407.
|
|
[22]
|
Golebski, K., Layhadi, J.A., Sahiner, U., Steveling-Klein, E.H., Lenormand, M.M., Li, R.C.Y., et al. (2021) Induction of IL-10-Producing Type 2 Innate Lymphoid Cells by Allergen Immunotherapy Is Associated with Clinical Response. Immunity, 54, 291-307.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Defnet, A.E., Shah, S.D., Huang, W., Shapiro, P., Deshpande, D.A. and Kane, M.A. (2021) Dysregulated Retinoic Acid Signaling in Airway Smooth Muscle Cells in Asthma. The FASEB Journal, 35, e22016. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Maeta, A., Matsushima, M., Katahira, R. and Takahashi, K. (2020) Retinoic Acid Ameliorates the Severity of Food Allergy under Allergen Exposure in a Mouse Model with Food Allergy. Journal of Nutritional Science and Vitaminology, 66, 375-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, F., Shao, F., Hinds, A., Yao, S., Ram-Mohan, S., Norman, T.A., et al. (2018) Retinoic Acid Signaling Is Essential for Airway Smooth Muscle Homeostasis. JCI Insight, 3, e120398. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sakamoto, H., Koya, T., Tsukioka, K., Shima, K., Watanabe, S., Kagamu, H., et al. (2015) The Effects of All-Trans Retinoic Acid on the Induction of Oral Tolerance in a Murine Model of Bronchial Asthma. International Archives of Allergy and Immunology, 167, 167-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Schuster, G.U., Kenyon, N.J. and Stephensen, C.B. (2008) Vitamin A Deficiency Decreases and High Dietary Vitamin A Increases Disease Severity in the Mouse Model of Asthma. The Journal of Immunology, 180, 1834-1842. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Checkley, W., West, K.P., Wise, R.A., Wu, L., LeClerq, S.C., Khatry, S., et al. (2011) Supplementation with Vitamin A Early in Life and Subsequent Risk of Asthma. European Respiratory Journal, 38, 1310-1319. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Timoneda, J., Rodríguez-Fernández, L., Zaragozá, R., Marín, M., Cabezuelo, M., Torres, L., et al. (2018) Vitamin A Deficiency and the Lung. Nutrients, 10, Article No. 1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
McCullough, F.S.W., Northrop-Clewes, C.A. and Thurnham, D.I. (1999) The Effect of Vitamin A on Epithelial Integrity. Proceedings of the Nutrition Society, 58, 289-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Benson, M.J., Pino-Lagos, K., Rosemblatt, M. and Noelle, R.J. (2007) All-Trans Retinoic Acid Mediates Enhanced T Reg Cell Growth, Differentiation, and Gut Homing in the Face of High Levels of Co-Stimulation. The Journal of Experimental Medicine, 204, 1765-1774. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Marquez, H.A. and Cardoso, W.V. (2016) Vitamin A-Retinoid Signaling in Pulmonary Development and Disease. Molecular and Cellular Pediatrics, 3, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Mucida, D., Park, Y., Kim, G., Turovskaya, O., Scott, I., Kronenberg, M., et al. (2007) Reciprocal Th17 and Regulatory T Cell Differentiation Mediated by Retinoic Acid. Science, 317, 256-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Huang, Z., Liu, Y., Qi, G., Brand, D. and Zheng, S. (2018) Role of Vitamin A in the Immune System. Journal of Clinical Medicine, 7, Article No. 258. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Cox, S.E., Arthur, P., Kirkwood, B.R., Yeboah-Antwi, K. and Riley, E.M. (2006) Vitamin A Supplementation Increases Ratios of Proinflammatory to Anti-Inflammatory Cytokine Responses in Pregnancy and Lactation. Clinical and Experimental Immunology, 144, 392-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tian, Y., Tian, Q., Wu, Y., Peng, X., Chen, Y., Li, Q., et al. (2020) Vitamin A Supplement after Neonatal Streptococcus pneumoniae Pneumonia Inhibits the Progression of Experimental Asthma by Altering CD4+T Cell Subsets. Scientific Reports, 10, Article No. 4214. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Carazo, A., Macáková, K., Matoušová, K., Krčmová, L.K., Protti, M. and Mladěnka, P. (2021) Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients, 13, Article No. 1703. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Matsumura, Y. (2012) Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells. Journal of Allergy, 2012, Article ID: 903659. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sugita, K., Steer, C.A., Martinez-Gonzalez, I., Altunbulakli, C., Morita, H., Castro-Giner, F., et al. (2018) Type 2 Innate Lymphoid Cells Disrupt Bronchial Epithelial Barrier Integrity by Targeting Tight Junctions through IL-13 in Asthmatic Patients. Journal of Allergy and Clinical Immunology, 141, 300-310.e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Frey, A., Lunding, L.P., Ehlers, J.C., Weckmann, M., Zissler, U.M. and Wegmann, M. (2020) More than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Frontiers in Immunology, 11, Article No. 761. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Russell, R.J., Boulet, L., Brightling, C.E., Pavord, I.D., Porsbjerg, C., Dorscheid, D., et al. (2024) The Airway Epithelium: An Orchestrator of Inflammation, a Key Structural Barrier and a Therapeutic Target in Severe Asthma. European Respiratory Journal, 63, Article ID: 2301397. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Aggarwal, S., Kim, S., Cheon, K., Tabassam, F.H., Yoon, J. and Koo, J.S. (2006) Nonclassical Action of Retinoic Acid on the Activation of the Camp Response Element-Binding Protein in Normal Human Bronchial Epithelial Cells. Molecular Biology of the Cell, 17, 566-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
McGowan, S.E., Holmes, A.J. and Smith, J. (2004) Retinoic Acid Reverses the Airway Hyperresponsiveness but Not the Parenchymal Defect That Is Associated with Vitamin A Deficiency. American Journal of Physiology-Lung Cellular and Molecular Physiology, 286, L437-L444. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
McGowan, S.E., Smith, J., Holmes, A.J., Smith, L.A., Businga, T.R., Madsen, M.T., et al. (2002) Vitamin A Deficiency Promotes Bronchial Hyperreactivity in Rats by Altering Muscarinic M2 Receptor Function. American Journal of Physiology-Lung Cellular and Molecular Physiology, 282, L1031-L1039. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Fujii, U., Miyahara, N., Taniguchi, A., Oda, N., Morichika, D., Murakami, E., et al. (2017) Effect of a Retinoid X Receptor Partial Agonist on Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma. Respiratory Research, 18, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Milani, A., Basirnejad, M., Shahbazi, S. and Bolhassani, A. (2016) Carotenoids: Biochemistry, Pharmacology and Treatment. British Journal of Pharmacology, 174, 1290-1324. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Vural, H., Aksoy, N., Ceylan, E., Gencer, M. and Ozguner, F. (2005) Leukocyte Oxidant and Antioxidant Status in Asthmatic Patients. Archives of Medical Research, 36, 502-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Park, C., Kim, T., Lee, K., Moon, K., Bae, Y., Jang, M.K., et al. (2009) Increased Oxidative Stress in the Airway and Development of Allergic Inflammation in a Mouse Model of Asthma. Annals of Allergy, Asthma & Immunology, 103, 238-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wagner, J.G., Jiang, Q., Harkema, J.R., Ames, B.N., Illek, B., Roubey, R.A., et al. (2007) γ‐Tocopherol Prevents Airway Eosinophilia and Mucous Cell Hyperplasia in Experimentally Induced Allergic Rhinitis and Asthma. Clinical & Experimental Allergy, 38, 501-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Marmsje, K., Rosenlund, H., Kull, I., Haykansson, N., Wickman, M., Pershagen, G., et al. (2009) Use of Multivitamin Supplements in Relation to Allergic Disease in 8-Y-Old Children. The American Journal of Clinical Nutrition, 90, 1693-1698. [Google Scholar] [CrossRef] [PubMed]
|