|
[1]
|
刘凤森, 平玉, 张毅. 肺腺癌中成纤维细胞亚群临床及免疫特征的生物信息学分析[J]. 中国免疫学杂志, 2022, 38(17): 2118-2122, 2128.
|
|
[2]
|
Zhang, L., Liu, Y., Zhuang, J., Guo, J., Li, Y., Dong, Y., et al. (2023) Identification of Key Genes and Biological Pathways in Lung Adenocarcinoma by Integrated Bioinformatics Analysis. World Journal of Clinical Cases, 11, 5504-5518. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sun, H., Zhang, M., Li, L. and Huang, Z. (2020) ALDH3B1 Is an Independent Prognostic Biomarker of Lung Adenocarcinoma. Technology in Cancer Research & Treatment, 19, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, G., Dong, R., Kong, D., Liu, B., Zha, Y. and Luo, M. (2022) The Effect of GLUT1 on the Survival Rate and Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis. Anti-Cancer Agents in Medicinal Chemistry, 22, 223-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhai, W., Duan, F., Wang, Y., Wang, J., Zhao, Z., Lin, Y., et al. (2022) Integrative Analysis of Bioinformatics and Machine Learning Algorithms Identifies a Novel Diagnostic Model Based on Costimulatory Molecule for Predicting Immune Microenvironment Status in Lung Adenocarcinoma. The American Journal of Pathology, 192, 1433-1447. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, J., Yu, X., Liu, Q., Ou, S., Li, K., Kong, Y., et al. (2019) Screening of Important Lncrnas Associated with the Prognosis of Lung Adenocarcinoma, Based on Integrated Bioinformatics Analysis. Molecular Medicine Reports, 19, 4067-4080. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Nacer, D.F., Liljedahl, H., Karlsson, A., Lindgren, D. and Staaf, J. (2021) Pan-Cancer Application of a Lung-Adenocarcinoma-Derived Gene-Expression-Based Prognostic Predictor. Briefings in Bioinformatics, 22, bbab154. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nguyen, T.T., Lee, H., Burt, B.M., Wu, J., Zhang, J., Amos, C.I., et al. (2022) A Lepidic Gene Signature Predicts Patient Prognosis and Sensitivity to Immunotherapy in Lung Adenocarcinoma. Genome Medicine, 14, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Qin, J., Xu, Z., Deng, K., Qin, F., Wei, J., Yuan, L., et al. (2021) Development of a Gene Signature Associated with Iron Metabolism in Lung Adenocarcinoma. Bioengineered, 12, 4556-4568. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
张文婷, 刘亚锋, 胡春晓, 等. 肺腺癌预后代谢相关基因的生物信息学分析[J]. 细胞与分子免疫学杂志, 2023, 39(1): 41-48.
|
|
[11]
|
Carmeliet, P. and Jain, R.K. (2011) Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 473, 298-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yeh, Y., Hsiao, H., Yeh, Y., Chen, T. and Li, T. (2018) Inflammatory Interferon Activates HIF-1α-Mediated Epithelial-To-Mesenchymal Transition via PI3K/AKT/mTOR Pathway. Journal of Experimental & Clinical Cancer Research, 37, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Patil, N., Allgayer, H. and Leupold, J.H. (2020) Micrornas in the Tumor Microenvironment. In: Birbrair, A., Ed., Tumor Microenvironment, Springer 1-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yi, M., Li, A., Zhou, L., Chu, Q., Luo, S. and Wu, K. (2021) Immune Signature-Based Risk Stratification and Prediction of Immune Checkpoint Inhibitor’s Efficacy for Lung Adenocarcinoma. Cancer Immunology, Immunotherapy, 70, 1705-1719. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
邓彪, 陈春源, 黄裕锋, 等. 肺腺癌患者代谢相关基因和免疫相关预后模型的建立[J]. 中国免疫学杂志, 2022, 38(15): 1851-1860.
|
|
[16]
|
Yu, H., Pang, Z., Li, G. and Gu, T. (2020) Bioinformatics Analysis of Differentially Expressed miRNAs in Non‐Small Cell Lung Cancer. Journal of Clinical Laboratory Analysis, 35, e23588. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Song, J., Sun, Y., Cao, H., Liu, Z., Xi, L., Dong, C., et al. (2021) A Novel Pyroptosis-Related LncRNA Signature for Prognostic Prediction in Patients with Lung Adenocarcinoma. Bioengineered, 12, 5932-5949. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xiao, Y., Hassani, M., Moghaddam, M.B., Fazilat, A., Ojarudi, M. and Valilo, M. (2025) Contribution of Tumor Microenvironment (TME) to Tumor Apoptosis, Angiogenesis, Metastasis, and Drug Resistance. Medical Oncology, 42, Article No. 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, M., Liu, X., Li, H., Li, R., Liu, X. and Qu, Y. (2018) Elevated mRNA Levels of AURKA, CDC20 and TPX2 Are Associated with Poor Prognosis of Smoking Related Lung Adenocarcinoma Using Bioinformatics Analysis. International Journal of Medical Sciences, 15, 1676-1685. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Deng, H., Huang, Y., Wang, L. and Chen, M. (2020) High Expression of UBB, RAC1, and ITGB1 Predicts Worse Prognosis among Nonsmoking Patients with Lung Adenocarcinoma through Bioinformatics Analysis. BioMed Research International, 2020, Article ID: 2071593. [Google Scholar] [CrossRef] [PubMed]
|