[1]
|
Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. https://doi.org/10.1016/j.ophtha.2016.01.006
|
[2]
|
Naidoo, K.S., Fricke, T.R., Frick, K.D., Jong, M., Naduvilath, T.J., Resnikoff, S., et al. (2019) Potential Lost Productivity Resulting from the Global Burden of Myopia. Ophthalmology, 126, 338-346. https://doi.org/10.1016/j.ophtha.2018.10.029
|
[3]
|
Sander, B.P., Collins, M.J. and Read, S.A. (2019) Short-Term Effect of Low-Dose Atropine and Hyperopic Defocus on Choroidal Thickness and Axial Length in Young Myopic Adults. Journal of Ophthalmology, 2019, Article ID: 4782536. https://doi.org/10.1155/2019/4782536
|
[4]
|
Wu, H., Chen, W., Zhao, F., Zhou, Q., Reinach, P.S., Deng, L., et al. (2018) Scleral Hypoxia Is a Target for Myopia Control. Proceedings of the National Academy of Sciences, 115, E7091-E7100. https://doi.org/10.1073/pnas.1721443115
|
[5]
|
Liu, Y., Wang, L., Xu, Y., Pang, Z. and Mu, G. (2021) The Influence of the Choroid on the Onset and Development of Myopia: From Perspectives of Choroidal Thickness and Blood Flow. Acta Ophthalmologica, 99, 730-738. https://doi.org/10.1111/aos.14773
|
[6]
|
Zhang, S., Zhang, G., Zhou, X., Xu, R., Wang, S., Guan, Z., et al. (2019) Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia. Investigative Opthalmology & Visual Science, 60, 3074-3083. https://doi.org/10.1167/iovs.18-26397
|
[7]
|
Wu, H., Zhang, G., Shen, M., Xu, R., Wang, P., Guan, Z., et al. (2021) Assessment of Choroidal Vascularity and Choriocapillaris Blood Perfusion in Anisomyopic Adults by SS-OCT/OCTA. Investigative Opthalmology & Visual Science, 62, Article No. 8. https://doi.org/10.1167/iovs.62.1.8
|
[8]
|
Zhou, X., Zhang, S., Zhang, G., Chen, Y., Lei, Y., Xiang, J., et al. (2020) Increased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs. Investigative Opthalmology & Visual Science, 61, Article No. 25. https://doi.org/10.1167/iovs.61.13.25
|
[9]
|
Morgan, I.G. (2018) Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology, 125, 1251-1252. https://doi.org/10.1016/j.ophtha.2018.04.016
|
[10]
|
Cao, K., Wan, Y., Yusufu, M. and Wang, N. (2019) Significance of Outdoor Time for Myopia Prevention: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. Ophthalmic Research, 63, 97-105. https://doi.org/10.1159/000501937
|
[11]
|
Pérez-Fernández, V., Milosavljevic, N., Allen, A.E., Vessey, K.A., Jobling, A.I., Fletcher, E.L., et al. (2019) Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. Current Biology, 29, 763-774.e5. https://doi.org/10.1016/j.cub.2019.01.042
|
[12]
|
Ren, X., Zhang, Q., Yang, J., Zhang, X., Zhang, X., Zhang, Y., et al. (2021) Dopamine Imaging in Living Cells and Retina by Surface-Enhanced Raman Scattering Based on Functionalized Gold Nanoparticles. Analytical Chemistry, 93, 10841-10849. https://doi.org/10.1021/acs.analchem.1c01108
|
[13]
|
Chen, S., Zhi, Z., Ruan, Q., Liu, Q., Li, F., Wan, F., et al. (2017) Bright Light Suppresses Form-Deprivation Myopia Development with Activation of Dopamine D1 Receptor Signaling in the on Pathway in Retina. Investigative Opthalmology & Visual Science, 58, 2306-2316. https://doi.org/10.1167/iovs.16-20402
|
[14]
|
Rucker, F. (2019) Monochromatic and White Light and the Regulation of Eye Growth. Experimental Eye Research, 184, 172-182. https://doi.org/10.1016/j.exer.2019.04.020
|
[15]
|
Landis, E.G., Chrenek, M.A., Chakraborty, R., Strickland, R., Bergen, M., Yang, V., et al. (2020) Increased Endogenous Dopamine Prevents Myopia in Mice. Experimental Eye Research, 193, Article ID: 107956. https://doi.org/10.1016/j.exer.2020.107956
|
[16]
|
Johnson, E.N., Westbrook, T., Shayesteh, R., Chen, E.L., Schumacher, J.W., Fitzpatrick, D., et al. (2017) Distribution and Diversity of Intrinsically Photosensitive Retinal Ganglion Cells in Tree Shrew. Journal of Comparative Neurology, 527, 328-344. https://doi.org/10.1002/cne.24377
|
[17]
|
Hung, L., Arumugam, B., She, Z., Ostrin, L. and Smith, E.L. (2018) Narrow-Band, Long-Wavelength Lighting Promotes Hyperopia and Retards Vision-Induced Myopia in Infant Rhesus Monkeys. Experimental Eye Research, 176, 147-160. https://doi.org/10.1016/j.exer.2018.07.004
|
[18]
|
Gawne, T.J., Ward, A.H. and Norton, T.T. (2017) Long-Wavelength (Red) Light Produces Hyperopia in Juvenile and Adolescent Tree Shrews. Vision Research, 140, 55-65. https://doi.org/10.1016/j.visres.2017.07.011
|
[19]
|
Thakur, S., Dhakal, R. and Verkicharla, P.K. (2021) Short-Term Exposure to Blue Light Shows an Inhibitory Effect on Axial Elongation in Human Eyes Independent of Defocus. Investigative Opthalmology & Visual Science, 62, Article No. 22. https://doi.org/10.1167/iovs.62.15.22
|
[20]
|
Schilling, T., Amorim-de-Sousa, A., A Wong, N., Bahmani, H., González-Méijome, J.M. and Fernandes, P. (2022) Increase in B-Wave Amplitude after Light Stimulation of the Blind Spot Is Positively Correlated with the Axial Length of Myopic Individuals. Scientific Reports, 12, Article No. 4785. https://doi.org/10.1038/s41598-022-08319-5
|
[21]
|
Jiang, X., Pardue, M.T., Mori, K., Ikeda, S., Torii, H., D’Souza, S., et al. (2021) Violet Light Suppresses Lens-Induced Myopia via Neuropsin (OPN5) in Mice. Proceedings of the National Academy of Sciences, 118, e2018840118. https://doi.org/10.1073/pnas.2018840118
|
[22]
|
Torii, H., Ohnuma, K., Kurihara, T., Tsubota, K. and Negishi, K. (2017) Violet Light Transmission Is Related to Myopia Progression in Adult High Myopia. Scientific Reports, 7, Article No. 14523. https://doi.org/10.1038/s41598-017-09388-7
|
[23]
|
Wang, M., Schaeffel, F., Jiang, B. and Feldkaemper, M. (2018) Effects of Light of Different Spectral Composition on Refractive Development and Retinal Dopamine in Chicks. Investigative Opthalmology & Visual Science, 59, 4413-4424. https://doi.org/10.1167/iovs.18-23880
|
[24]
|
Strickland, R., Landis, E.G. and Pardue, M.T. (2020) Short-Wavelength (violet) Light Protects Mice from Myopia through Cone Signaling. Investigative Opthalmology & Visual Science, 61, Article No. 13. https://doi.org/10.1167/iovs.61.2.13
|
[25]
|
Mori, K., Torii, H., Hara, Y., Hara, M., Yotsukura, E., Hanyuda, A., et al. (2021) Effect of Violet Light-Transmitting Eyeglasses on Axial Elongation in Myopic Children: A Randomized Controlled Trial. Journal of Clinical Medicine, 10, Article No. 5462. https://doi.org/10.3390/jcm10225462
|
[26]
|
Torii, H., Mori, K., et al. (2022) Short-Term Exposure to Violet Light Emitted from Eyeglass Frames in Myopic Children: A Randomized Pilot Clinical Trial. Journal of Clinical Medicine, 11, Article Number 6000. https://doi.org/10.3390/jcm11206000
|