[1]
|
Banavasi, H., Nguyen, P., Osman, H. and Soubani, A.O. (2021) Management of ARDS—What Works and What Does Not. The American Journal of the Medical Sciences, 362, 13-23. https://doi.org/10.1016/j.amjms.2020.12.019
|
[2]
|
Matthay, M.A., Arabi, Y., Arroliga, A.C., Bernard, G., Bersten, A.D., Brochard, L.J., et al. (2024) A New Global Definition of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 209, 37-47. https://doi.org/10.1164/rccm.202303-0558ws
|
[3]
|
Xu, H., Sheng, S., Luo, W., Xu, X. and Zhang, Z. (2023) Acute Respiratory Distress Syndrome Heterogeneity and the Septic ARDS Subgroup. Frontiers in Immunology, 14, Article 1277161. https://doi.org/10.3389/fimmu.2023.1277161
|
[4]
|
Li, X., Jamal, M., Guo, P., Jin, Z., Zheng, F., Song, X., et al. (2019) Irisin Alleviates Pulmonary Epithelial Barrier Dysfunction in Sepsis-Induced Acute Lung Injury via Activation of AMPK/SIRT1 Pathways. Biomedicine & Pharmacotherapy, 118, Article 109363. https://doi.org/10.1016/j.biopha.2019.109363
|
[5]
|
Dickson, R.P., Erb-Downward, J.R. and Huffnagle, G.B. (2015) Homeostasis and Its Disruption in the Lung Microbiome. American Journal of Physiology-Lung Cellular and Molecular Physiology, 309, L1047-L1055. https://doi.org/10.1152/ajplung.00279.2015
|
[6]
|
Dickson, R.P., Singer, B.H., Newstead, M.W., Falkowski, N.R., Erb-Downward, J.R., Standiford, T.J., et al. (2016) Enrichment of the Lung Microbiome with Gut Bacteria in Sepsis and the Acute Respiratory Distress Syndrome. Nature Microbiology, 1, Article No. 16113. https://doi.org/10.1038/nmicrobiol.2016.113
|
[7]
|
Lodise, T.P., McKinnon, P.S., Swiderski, L. and Rybak, M.J. (2003) Outcomes Analysis of Delayed Antibiotic Treatment for Hospital-Acquired Staphylococcus Aureus Bacteremia. Clinical Infectious Diseases, 36, 1418-1423. https://doi.org/10.1086/375057
|
[8]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[9]
|
Li, C.X., Liu, H.Y., Lin, Y.X., Pan, J.B. and Su, J. (2020) The Gut Microbiota and Respiratory Diseases: New Evidence. Journal of Immunology Research, 2020, Article ID: 2340670. https://doi.org/10.1155/2020/2340670
|
[10]
|
Ren, Z., Zheng, Z. and Feng, X. (2024) Role of Gut Microbes in Acute Lung Injury/acute Respiratory Distress Syndrome. Gut Microbes, 16, Article 2440125. https://doi.org/10.1080/19490976.2024.2440125
|
[11]
|
Kelly, B.J., Imai, I., Bittinger, K., Laughlin, A., Fuchs, B.D., Bushman, F.D., et al. (2016) Composition and Dynamics of the Respiratory Tract Microbiome in Intubated Patients. Microbiome, 4, Article No. 7. https://doi.org/10.1186/s40168-016-0151-8
|
[12]
|
Zakharkina, T., Martin-Loeches, I., Matamoros, S., Povoa, P., Torres, A., Kastelijn, J.B., et al. (2017) The Dynamics of the Pulmonary Microbiome during Mechanical Ventilation in the Intensive Care Unit and the Association with Occurrence of Pneumonia. Thorax, 72, 803-810. https://doi.org/10.1136/thoraxjnl-2016-209158
|
[13]
|
Dickson, R.P., Schultz, M.J., van der Poll, T., Schouten, L.R., Falkowski, N.R., Luth, J.E., et al. (2020) Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. American Journal of Respiratory and Critical Care Medicine, 201, 555-563. https://doi.org/10.1164/rccm.201907-1487oc
|
[14]
|
Budden, K.F., Shukla, S.D., Rehman, S.F., Bowerman, K.L., Keely, S., Hugenholtz, P., et al. (2019) Functional Effects of the Microbiota in Chronic Respiratory Disease. The Lancet Respiratory Medicine, 7, 907-920. https://doi.org/10.1016/s2213-2600(18)30510-1
|
[15]
|
Kullberg, R.F.J., de Brabander, J., Boers, L.S., Biemond, J.J., Nossent, E.J., Heunks, L.M.A., et al. (2022) Lung Microbiota of Critically Ill Patients with COVID-19 Are Associated with Nonresolving Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 206, 846-856. https://doi.org/10.1164/rccm.202202-0274oc
|
[16]
|
Mac Aogáin, M., Chandrasekaran, R., Lim, A.Y.H., Low, T.B., Tan, G.L., Hassan, T., et al. (2018) Immunological Corollary of the Pulmonary Mycobiome in Bronchiectasis: The CAMEB Study. European Respiratory Journal, 52, Article 1800766. https://doi.org/10.1183/13993003.00766-2018
|
[17]
|
Larsen, J.M., Musavian, H.S., Butt, T.M., Ingvorsen, C., Thysen, A.H. and Brix, S. (2015) Chronic Obstructive Pulmonary Disease and Asthma‐Associated Proteobacteria, but Not Commensal Prevotella spp., Promote Toll‐Like Receptor 2‐Independent Lung Inflammation and Pathology. Immunology, 144, 333-342. https://doi.org/10.1111/imm.12376
|
[18]
|
Brown, R.L., Sequeira, R.P. and Clarke, T.B. (2017) The Microbiota Protects against Respiratory Infection via GM-CSF Signaling. Nature Communications, 8, Article No. 1512. https://doi.org/10.1038/s41467-017-01803-x
|
[19]
|
Robak, O.H., Heimesaat, M.M., Kruglov, A.A., Prepens, S., Ninnemann, J., Gutbier, B., et al. (2018) Antibiotic Treatment-Induced Secondary IgA Deficiency Enhances Susceptibility to Pseudomonas aeruginosa Pneumonia. Journal of Clinical Investigation, 128, 3535-3545. https://doi.org/10.1172/jci97065
|
[20]
|
Segal, L.N., Clemente, J.C., Tsay, J.J., Koralov, S.B., Keller, B.C., Wu, B.G., et al. (2016) Enrichment of the Lung Microbiome with Oral Taxa Is Associated with Lung Inflammation of a Th17 Phenotype. Nature Microbiology, 1, Article No. 16031. https://doi.org/10.1038/nmicrobiol.2016.31
|
[21]
|
Schiavi, E., Plattner, S., Rodriguez-Perez, N., Barcik, W., Frei, R., Ferstl, R., et al. (2018) Exopolysaccharide from Bifidobacterium Longum Subsp. Longum 35624™ Modulates Murine Allergic Airway Responses. Beneficial Microbes, 9, 761-774. https://doi.org/10.3920/bm2017.0180
|
[22]
|
Bok, J.W., Chung, D., Balajee, S.A., Marr, K.A., Andes, D., Nielsen, K.F., et al. (2006) Gliz, a Transcriptional Regulator of Gliotoxin Biosynthesis, Contributes to Aspergillus fumigatus Virulence. Infection and Immunity, 74, 6761-6768. https://doi.org/10.1128/iai.00780-06
|
[23]
|
Yu, W., Pan, Z., Zhu, Y., An, F. and Lu, Y. (2017) Fumigaclavine C Exhibits Anti-Inflammatory Effects by Suppressing High Mobility Group Box Protein 1 Relocation and Release. European Journal of Pharmacology, 812, 234-242. https://doi.org/10.1016/j.ejphar.2017.06.008
|