二维材料制备与MoS2/WS2异质结光电探测器研究进展
Advances in Two-Dimensional Materials Synthesis and MoS2/WS2 Heterostructure Photodetectors
摘要: 由于传统电子器件性能已经接近其物理极限,因此需要一种新的材料来突破这一现状。作为TMD材料的代表,近年来,MoS2、WS2由于其优异的光学、电学特性在光电探测器领域展现出了巨大的应用潜力。如何制备高质量的二维材料以及如何提升MoS2/WS2异质结光电探测器的性能具有重要研究意义。本文综述了二维材料的制备方法与MoS2/WS2异质结光电探测器的研究现状。讨论了二维材料的制备方法,介绍了光电探测器的基本器件参数,总结了MoS2/WS2异质结光电探测器的性能现状,并对MoS2/WS2异质结光电探测器面临的问题进行了简要的总结与展望。
Abstract: As the performance of conventional electronic devices is approaching its physical limit, a new material is needed to break through the situation. As representatives of TMD materials, MoS2 and WS2 have shown great potential for application in the field of photodetectors in recent years due to their excellent optical and electrical properties. How to synthesise high-quality 2D materials and how to enhance the performance of MoS2/WS2 heterostructure photodetectors are of great research significance. This paper reviews the synthesis methods of 2D materials and the present research progress of MoS2/WS2 heterojunction photodetectors. It discusses the synthesis methods of 2D materials, introduces the basic mechanisms and device parameters of photodetectors, summarises the present progress of MoS2/WS2 heterostructure photodetectors, and provides a brief summary of the problems with MoS2/WS2 heterostructure photodetector and an outlook.
文章引用:王文昊, 曹立伟, 武鹏, 韩明智, 韩晓东. 二维材料制备与MoS2/WS2异质结光电探测器研究进展[J]. 应用物理, 2025, 15(4): 242-255. https://doi.org/10.12677/app.2025.154027

1. 引言

1965年Gordon Moore指出,集成电路上可容纳的晶体管数目约每隔18~24个月便会增加一倍,性能也将提升一倍[1]。在近半个世纪中集成电路都一直遵从摩尔定律稳步发展,然而,这个趋势显然无法无期限地持续下去。随着科技的发展,人们对设备性能的要求越来越高,微电子器件的集成度在不断上升,同时量子隧道效应与散热问题也越发显著,传统硅基半导体电子器件的性能已经逼近其物理极限,摩尔定律即将失效[2]。因此,为突破这一困境,发展一种新的材料是急需的。

由于光具有多频段并行性、近乎无损耗的动力学特性、低串扰、室温下热噪声低等特点,光电器件有希望在传统电子器件的基础上实现更大计算吞吐量、更低能耗、更小尺寸以及更高的性能[3] [4]。而红外(IR)光电探测器因在光学成像、光电存储、光通信、遥控等领域应用广泛,因此具有重要地位[5]-[7]。传统的光电探测器材料主要有硅(Si)、锗(Ge)、HgCdTe和其他III-V族材料,其中Si3应用于可见光–近红外(Vis-NIR)探测,Ge的探测范围可至中红外(MIR),HgCdTe的探测范围可到达远红外(FIR)。然而,Si和Ge为间接带隙半导体,对光的吸收效率有限,同时带隙固定难以调制,器件探测波段较为固定。作为直接带隙的HgCdTe虽然可以通过改变其元素比例对能带进行调制[8],但器件的工作温度远低于室温,并且HgCdTe本身的毒性对环境并不友好,器件的应用同样受到限制。III-V族材料的晶格常数差异较大,在集成到其他材料上时需要考虑晶格是否匹配,很难实现没有晶格缺陷的外延生长,这也限制了器件性能的多样性。

2004年K. S. Novoselov等人使用胶带从石墨中剥离出原子级厚度的碳薄膜并将其命名为石墨烯[9],此前普遍认为二维材料无法稳定存在,而这一发现推翻了人们的认知,同时也掀起了二维材料的研究热潮。与传统光电探测器材料相比,如石墨烯、黑磷、过渡金属硫属化合物(TMD)的新型二维材料能带可调,表面无悬挂键,光吸收系数高,同时其层间范德华作用力允许他们在任何衬底上合成,忽略晶格匹配的约束[10]-[13]。这让二维光电探测器拥有比传统光电探测器更宽的光谱探测范围(图1)、更低的暗电流、更高的光响应,以及完美兼容传统光电探测器的能力。

用于光电探测器,石墨烯的零带隙结构使其探测范围可从紫外(UV)到太赫兹(THz),但同时也伴随着较高的暗电流[15]。相对于石墨烯,黑磷拥有随厚度变化的可调带隙(0.3~2.0 eV,从块体到单层),拥有更低的暗电流,不过,黑磷在空气中结构不稳定,让器件在空气中长期服役变得困难[16]-[19]。而TMD,以MoS2为代表,其带隙可调(1.2~1.8 eV,从块体到单层),探测范围从可见光至近红外(NIR),暗电流低,同时在空气中稳定,是新型二维光电探测器的有力竞争者[17] [20] [21]。然而,仅仅通过更换材料来降低器件暗电流的效果是有限的,单一材料的能带结构导致器件在黑暗条件下仍然有较高的电流导通,因此需要一种更加行之有效的方法。通过构建异质结结构可有效降低器件暗电流,以MoS2/WS2异质结为例,WS2的导带底与价带顶均高于MoS2,由于材料间功函数的差异,当费米能级达到平衡后,在MoS2和WS2的界面会形成Type-II型能带结构,产生内建电场,内建电场的存在可促进光生载流子的分离(图2),有效地降低暗电流提升器件性能[22]-[24]

Figure 1. Band gaps of various 2D materials and their corresponding wavelength ranges [14]

1. 各种二维材料的带隙与其对应的波长范围[14]

Figure 2. Type-II band alignment of MoS2/WS2 heterostructure [25]

2. MoS2/WS2异质结的Type-II型能带结构[25]

从工艺兼容性方面上来看,二维材料可以与传统光电材料相结合,实现优势互补,从材料性能方面上来看,二维材料拥有更高的光吸收系数,易于调制的能带,使光电探测器的探测范围更宽,响应度更高,因此,基于二维材料的光电探测器在后摩尔时代拥有巨大应用潜力,具有重要的研究价值。

本文综述了MoS2/WS2异质结光电探测器的研究现状。首先讨论了二维材料的制备方法,然后介绍了光电探测器的基本器件参数,之后总结了MoS2/WS2异质结光电探测器的性能现状,最后对MoS2/WS2异质结光电探测器面临的问题进行了简要的总结与展望。

2. 二维材料的制备方法

2.1. 剥离法

块体的石墨或TMD材料内部是无数由范德华力结合的单层分子,通过外力将层间的范德华力破坏即可从块体材料中直接得到多层甚至单分子层的二维层状晶体。剥离法主要分为机械剥离法和液相剥离法,机械剥离法是通过透明胶带在块体材料表面反复地粘贴与剥离,将层间范德华力破坏后晶体的厚度逐渐变薄,最终将得到的二维晶体转移到目标衬底上用于后续器件制作(图3)。由于制备过程中没有只用任何的化学试剂只依赖胶带剥离的剪切力,因此制备出的晶体结构完整性好且洁净度高,同时该方法适用性广,石墨烯[26]、TMD [27]、黑磷[28]、六方氮化硼(h-BN) [29]均可通过该方法制备,并且剥离后的材料通过转移可以不受限制地制备几乎任何一种异质结。L. Wang等人通过机械剥离法制备了h-BN/石墨烯/h-BN异质结,并对其电学性能进行了研究[30]。Muhammad Hussain等人通过机械剥离法制备了GeSe/MoSe2异质结,并对其电学与光电性能进行了研究[31]

Figure 3. Schematic of the process of the mechanical exfoliation method [32]

3. 机械剥离法流程示意图[32]

然而,机械剥离法很难精准控制晶体的层数,可重复性差,制备过程缓慢,同时无法控制晶体的面积,难以制备出大面积的二维晶体,因此该方法的应用只能局限于实验室内。

液相剥离法是将材料置于液体中,通过电化学或超声等方法使块体材料内部的层状结构挣脱层间范德华力的束缚,解离成多层或单分子层晶体。液相剥离法主要包含离子插层、离子交换和超声辅助剥离三种手段[33]

图4所示,在离子插层过程中,溶液中的离子插入晶体的层间间隙中,使晶体结构膨胀同时削弱层间的作用力,在进行搅拌、超声或加热后,晶体完成剥离得到层状材料;一些层状材料的层间存在平衡表面电荷的离子,如KCa2Nb3O10 [34]、RbTaO3 [35]等钙钛矿材料,在离子交换过程中,这些离子会与溶液中的离子发生置换,此时进行搅拌或超声便可完成剥离得到层状材料;在超声辅助剥离过程中,溶剂的选择对最终剥离的成品质量有着至关重要的影响,这主要和超声剥离后溶液的稳定性有关[36]。当溶剂的表面能与待剥离材料的表面能相近,材料剥离前后的能量差则会很小,驱动力不足以使剥离后的材料重新聚集沉淀,剥离成功,反之,如果溶剂选择不当,最终材料会重新聚集[33]

Figure 4. Schematic diagram of liquid phase exfoliation [33]

4. 液相剥离法示意图[33]

液相剥离法同样也可用于制备异质结,B. J. Akeredolu等人通过液相剥离法制备了MoS2/石墨烯异质结,并对其光电性能进行了研究[37]。Mengjiao Wang等人通过液相剥离法制备了MoS2/BiOBr异质结,并对其光电催化性能进行了研究[38]。相对于机械剥离法,液相剥离法的制备速率更快,然而,过程中使用的化学试剂很容易对晶体造成污染,并且该方法仍然无法控制晶体的厚度,也难以制备出大面积的二维晶体。

2.2. 化学气相沉积法

化学气相沉积法(CVD)是通过高温、等离子体或光照等手段使气态前驱体发生化学反应,生成固态产物并沉积在衬底表面形成薄膜。在反应过程中,通过选择合适的生长衬底与控制生长时前驱体浓度、温度,可实现大面积、快速生长。Jianyi Chen等人在熔融态的钠钙玻璃衬底上生长出肉眼可见的大尺寸MoSe2单晶(图5),晶体尺寸为2.5 mm,远超其他单晶尺寸[39]。Juwon Lee等人以S和MoO3为前驱体,探究了不同MoO3用量下生长出晶体的面积大小与覆盖情况,当MoO3用量为0.01 mg时晶体面积最大,覆盖面积最广,成功生长出厘米级的单层MoS2薄膜[40]。Yang Gao等人以Au为衬底,在950 ℃下仅通过30 s便制备出430 μm的大尺寸WSe2单晶[41]

除上述的单体材料外,CVD还可以通过控制生长时的反应温度,制备垂直异质结和横向异质结。Yongji Gong等人将W、MoO3、S放入管式炉中作为前驱体,同时在W中加入少量Te加速W的熔化,在850℃时成功制备出了具有垂直堆垛结构的MoS2/WS2垂直异质结,在650℃时通过一步法成功制备出了具有横向外延结构的MoS2/WS2横向异质结(图6) [42]

Figure 5. Ultra-large size MoSe2 single crystals of size 2.5 mm grown on a molten soda-lime glass substrate [39]

5. 以熔融态的钠钙玻璃为衬底生长出尺寸为2.5 mm的超大尺寸MoSe2单晶[39]

Figure 6. Synthesis of MoS2/WS2 vertical and lateral heterostructure by changing the growth temperature [42]

6. 通过改变生长温度制备MoS2/WS2垂直异质结和横向异质结[42]

不过在通过一步法制备横向异质结时,两种材料的界面会出现合金化现象,即在生长完成后两种材料之间存在一个成分由MX2−xXx或M1−xMxX2组成的过渡带[43],因此如果对制备的横向异质结界面由较高的要求,两步法更为合适。以MoS2/WS2横向异质结为例,两步法首先在管式炉中放入WO3和S两种前驱体,成功制备出WS2后再将WO3换为MoO3再次进行生长,最后得到MoS2/WS2横向异质结(图7)。Ming-Yang Li等人首先在925℃下完成WSe2的制备,再将得到的WSe2放入另一个装有MoO3与S的炉中完成第二步生长,最终在高分辨扫描透射显微镜下观察到原子级清晰的WSe2/MoS2界面,完全避免了界面合金化现象[44]

相对于剥离法,CVD制备速度更快,生长晶体面积更大,厚度更均匀,同时可重复性高,更适合大规模的材料制备,因此CVD的应用范围不仅仅局限于实验室材料制备,在工业生产中也有相当大的应用潜力。

Figure 7. Schematic diagram of the two-step method for growing lateral heterostructure [45]

7. 两步法生长横向异质结示意图[45]

2.3. 其他制备方法

除了剥离法和CVD以外,制备二维材料的手段还有很多,如分子束外延法(MBE)、脉冲激光沉积法(PLD)、磁控溅射法等。

MBE可在超高真空环境中通过高温将高纯度的元素蒸发形成原子束流,在目标衬底表面实现原子级精度的逐层外延生长。Yi Zhang等人通过MBE在石墨烯衬底上制备了不同层数的WSe2薄膜,探究了晶体层数对WSe2电学和光学性能的影响[46]。Joseph M. Wofford等人通过MBE在覆盖Ni的MgO衬底上先后通入C、B、N束流,成功制备出h-BN/石墨烯垂直异质结,并对其成分与结构进行了研究[47]

PLD利用高能脉冲激光轰击靶材,使材料以等离子体溅射至衬底表面完成薄膜沉积。M. Mahjouri-Samani等人以Si/SiO2为衬底,通过控制PLD的激光脉冲频率制备出不同厚度的GaSe晶体,并对其光电性能进行了测试[48]。J. D. Yao等人通过PLD在Si/SiO2衬底上制备了多层WS2薄膜,并同样对其光电性能进行了测试[49]

磁控溅射法通过电场与磁场共同作用,高能离子轰击靶材,使靶材原子发生溅射并沉积在衬底表面形成薄膜。Zhenfa Wu等人通过磁控溅射在单晶SrTiO3衬底上制备了α-MoO3薄膜,并探究了在智能设备中的实际应用[50]。Junguang Tao等人在蓝宝石衬底上通过磁控溅射制备了晶圆级尺寸的MoS2,并对其电学性能进行了测试[51]

相对于CVD,MBE在薄膜厚度上控制得更加精确,达到原子级别,同时晶体洁净度高,然而,MBE的缺点也较为明显,制备速度缓慢,可生长的晶体受到束源限制,设备极其昂贵。PLD相比于CVD效率更高,但制备出的晶体均匀性差,厚度难以控制。在制备大面积薄膜晶体方面,磁控溅射法比CVD更加合适,但磁控溅射法很难做到厚度精准控制,同时得到的晶体均匀性和洁净度也较差。因此,CVD由于制备效率高、成本低、晶体洁净度高、均匀性好以及厚度可控,是实验室制备二维材料的最佳选择,同时在工业生产方面也有相当大的应用潜力。表1对常见的几种二维材料制备方法进行了总结。

Table 1. Several general methods of synthesising two-dimensional materials

1. 几种常见的二维材料制备方法

制备方法

制备速率

晶体面积

晶体均匀性

可重复性

CVD

剥离法

MBE

PLD

磁控溅射法

3. 光电探测器基本参数

为了能更加定量地对光电探测器性能进行研究,研究者们引入了一些参数,即光响应度(R)、光探测率(D*)、探测波长(λ)、响应时间(ton/toff),通过以下公式计算可得:

R= IlightIdark PS (1)

其中,Ilight为光照下器件的电流,Idark为暗电流,P为光照强度,S为器件有效面积。

D * = R S 2eIdark (2)

其中,R为响应度,S为器件有效面积,e为单位电荷,Idark为暗电流。

λ= hc E (3)

其中,h为普朗克常量,c为光速,E为禁带宽度。

响应时间(ton/toff),ton为光照时器件产生的电流从最大值的10%增长至90%所用的时间,toff为光照结束后器件的电流从最大值的90%降低至10%所用的时间。

4. MoS2/WS2异质结光电探测器研究现状

4.1. 高响应(R)、高探测率(D*)光电探测器

近年来,关于MoS2/WS2异质结光电探测器的研究有很多。2013年,Qianwen Wang等人利用第一性原理计算对MoS2/WS2异质结的结构与电子特性进行了研究,并指出其在微电子器件领域的应用潜力[53]。2014年,Nengjie Huo等人通过干法转移制备了MoS2/WS2异质结,并以Au为电极将其制作成光电探测器,在633 nm光照下测得器件R为1.42 A/W [22]。在往后的研究中,研究者们通过各种手段提高MoS2/WS2异质结光电探测器的性能,将器件的R和D*一次又一次提高。Caihong Li等人通过一步法制备了单层MoS2/WS2横向异质结,以Ti/Au为电极制成器件,在405 nm光照下器件的R和D*分别为567.6 A/W和7.17 × 1011 Jones [54]。Dongyang Zhao等人在器件上设置栅极,通过改变栅极电压对器件的光电性能进行调控,当Vg = 50 V时器件的R和D*达到最大,分别为1.06 × 104 A/W和1.14 × 1013 Jones [55]。Van Tu Vu等人在生长过程中进行了Nb掺杂,通过改变Nb的掺入量对器件的性能进行提升,当Nb掺入量为8.1%时,器件在638 nm光照下的D*最大,达到1.1 × 1014 Jones [56]。Sneha Sinha等人以ITO作为透明电极,促进了电子注入MoS2/WS2异质结,使器件性能得到提升,405 nm光照下R和D*达到了2.51 × 105 A/W和4.20 × 1014 Jones [52] (图8)。表2对高响应(R)、高探测率(D*) MoS2/WS2异质结光电探测器进行了总结。

Figure 8. (a) Schematic of MoS2/WS2 heterostructure photodetector with ITO as transparent electrode and carrier separation between layers; (b) Photocurrent of the device at different wavelengths; (c) R and D* of the device at different wavelengths [52]

8. (a) 以ITO为透明电极的MoS2/WS2异质结光电探测器示意图以及载流子在层间的运动;(b) 不同波长下器件的光电流;(c) 不同波长下器件的R和D* [52]

Table 2. High responsivity (R), high detectivity (D*) MoS2/WS2 heterostructure photodetectors

2. 高响应(R)、高探测率(D*) MoS2/WS2异质结光电探测器

R (A/W)

D* (Jones)

λ (nm)

参考文献

1.42

-

633

[22]

567.6

7.17 × 1011

405

[54]

1.06 × 104

1.14 × 1013

638

[55]

-

1.1 × 1014

638

[56]

2.51 × 105

4.20 × 1014

405

[52]

4.2. 宽探测范围光电探测器

除了R和D*,研究者们对MoS2/WS2异质结光电探测器的波长探测范围也进行了研究。Shuqi Yang等人通过干法转移制作MoS2/WS2异质结光电探测器,其响应波长达到785 nm,并在器件表面滴涂0.5 mmol/L的F4-TCNQ溶液进行掺杂,使器件的R提升了492%,达到mA/W级别[58]。Shaona Bose等人通过液相剥离法制备MoS2/WS2异质结并转移到p型Si衬底上进行器件制作,其响应波长达到1020 nm,R为0.97 A/W [59]。Guichao Wang等人通过机械剥离法制备MoS2/WS2异质结,器件的响应波长达到了1030 nm,并通过在器件表面分散Au纳米颗粒将器件的R提升了25倍,达到0.2 A/W (图9) [57]。Kun Ye等人通过CVD两步法生长MoS2/WS2异质结,器件的响应波长达到了1064 nm,R为mA/W级别[45]表3对宽探测范围MoS2/WS2异质结光电探测器进行了总结。

Figure 9. (a) I-V curves of MoS2/WS2 heterostructure photodetectors covered by Au nanoparticles at different wavelengths; (b) comparison of photocurrents at different wavelengths before and after surface modification of the device; (c) comparison of photoresponses at 1030 nm illumination before and after surface modification of the device; and (d) enhancement factor of R at different wavelengths after surface modification of the device [57]

9. (a) Au纳米颗粒覆盖的MoS2/WS2异质结光电探测器在不同波长下的I-V曲线图;(b) 器件表面改性前后在不同波长下的光电流对比;(c) 器件表面改性前后在1030 nm光照下的光响应对比;(d) 器件表面改性后在不同波长下的R提升值[57]

Table 3. Broadband MoS2/WS2 heterostructure photodetectors

3. 宽探测范围MoS2/WS2异质结光电探测器

R (A/W)

D* (Jones)

λ (nm)

参考文献

~103

~109

523~785

[58]

0.97

5.0 × 1011

400~1020

[59]

0.2

1.1 × 109

532~1030

[57]

~103

~107

457~1064

[45]

5. 结论与展望

本文介绍了几种二维材料的制备方法,包括剥离法、化学气相沉积法(CVD)和几种其他的制备方法,分析出各自的优势,并总结了MoS2/WS2异质结光电探测器近年来在高响应(R)、高探测率(D*)和宽探测范围方面的研究现状。

在材料制备方面,与其他几种制备方法相比,CVD由于制备效率高、成本低、晶体洁净度高、均匀性好以及厚度可控,是目前实验室制备二维材料的最佳选择,同时在工业生产方面也有相当大的应用潜力。而在器件性能方面,尽管近年来研究者们在MoS2/WS2异质结光电探测器的性能上不断取得突破,但仍然还存在一些问题有待解决。在可见光波段,通过栅极调控或掺杂等方法,MoS2/WS2异质结光电探测器的R和D*能达到103 A/W和1013 Jones以上,在红外(IR)波段,器件的探测范围可达到1000 nm左右。然而,器件的高性能只能维持在可见光范围,器件性能在红外(IR)波段出现了大幅下降,在1000 nm处响应度只能达到mA/W级别,同时器件的最大探测范围只能到达近红外(NIR),这严重限制了它在宽光谱探测领域的应用。

解决以上问题,未来可以从两方面进行入手,一是在材料中引入缺陷,二是制备单层的MoS2/WS2异质结。缺陷在材料的禁带中会产生缺陷能级,降低材料的带隙,拓宽器件的探测范围,而单层MoS2、WS2具有直接带隙结构,光吸收效率更高,为器件提供了更高的光电响应。总之,MoS2/WS2异质结光电探测器在未来拥有巨大的应用潜力。

参考文献

[1] Moore, G.E. (1998) Cramming More Components onto Integrated Circuits. Proceedings of the IEEE, 86, 82-85.
https://doi.org/10.1109/jproc.1998.658762
[2] Keyes, R.W. (1975) Physical Limits in Digital Electronics. Proceedings of the IEEE, 63, 740-767.
https://doi.org/10.1109/proc.1975.9825
[3] McMahon, P.L. (2023) The Physics of Optical Computing. Nature Reviews Physics, 5, 717-734.
https://doi.org/10.1038/s42254-023-00645-5
[4] Ossiander, M., Golyari, K., Scharl, K., Lehnert, L., Siegrist, F., Bürger, J.P., et al. (2022) The Speed Limit of Optoelectronics. Nature Communications, 13, Article No. 1620.
https://doi.org/10.1038/s41467-022-29252-1
[5] Yao, J. and Yang, G. (2020) 2D Material Broadband Photodetectors. Nanoscale, 12, 454-476.
https://doi.org/10.1039/c9nr09070c
[6] Kim, S., Lee, D., Moon, S., Choi, J., Kim, D., Kim, J., et al. (2023) Sulfurized Colloidal Quantum Dot/Tungsten Disulfide Multi-Dimensional Heterojunction for an Efficient Self-Powered Visible-to-SWIR Photodetector. Advanced Functional Materials, 33, Article 2303778.
https://doi.org/10.1002/adfm.202303778
[7] Jo, C., Kim, J., Kwak, J.Y., Kwon, S.M., Park, J.B., Kim, J., et al. (2022) Retina-Inspired Color-Cognitive Learning via Chromatically Controllable Mixed Quantum Dot Synaptic Transistor Arrays. Advanced Materials, 34, Article 2108979.
https://doi.org/10.1002/adma.202108979
[8] Kopytko, M., Wróbel, J., Jóźwikowski, K., Rogalski, A., Antoszewski, J., Akhavan, N.D., et al. (2015) Engineering the Bandgap of Unipolar HgCdTe-Based nBn Infrared Photodetectors. Journal of Electronic Materials, 44, 158-166.
https://doi.org/10.1007/s11664-014-3511-9
[9] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[10] Xia, F., Wang, H., Xiao, D., Dubey, M. and Ramasubramaniam, A. (2014) Two-Dimensional Material Nanophotonics. Nature Photonics, 8, 899-907.
https://doi.org/10.1038/nphoton.2014.271
[11] Cheng, J., Wang, C., Zou, X. and Liao, L. (2018) Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Advanced Optical Materials, 7, Article 1800441.
https://doi.org/10.1002/adom.201800441
[12] Huo, N. and Konstantatos, G. (2018) Recent Progress and Future Prospects of 2D-Based Photodetectors. Advanced Materials, 30, Article 1801164.
https://doi.org/10.1002/adma.201801164
[13] Lukman, S., Ding, L., Xu, L., Tao, Y., Riis-Jensen, A.C., Zhang, G., et al. (2020) High Oscillator Strength Interlayer Excitons in Two-Dimensional Heterostructures for Mid-Infrared Photodetection. Nature Nanotechnology, 15, 675-682.
https://doi.org/10.1038/s41565-020-0717-2
[14] Zha, J., Luo, M., Ye, M., Ahmed, T., Yu, X., Lien, D., et al. (2021) Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials, 32, Article 2111970.
https://doi.org/10.1002/adfm.202111970
[15] Tsai, D., Liu, K., Lien, D., Tsai, M., Kang, C., Lin, C., et al. (2013) Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 7, 3905-3911.
https://doi.org/10.1021/nn305301b
[16] Li, P., Lu, J., Cui, H., Ruan, S. and Zeng, Y. (2021) The Development, Application, and Performance of Black Phosphorus in Energy Storage and Conversion. Materials Advances, 2, 2483-2509.
https://doi.org/10.1039/d0ma01016b
[17] Malik, M., Iqbal, M.A., Choi, J.R. and Pham, P.V. (2022) 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Frontiers in Chemistry, 10, Article 905404.
https://doi.org/10.3389/fchem.2022.905404
[18] Long, M., Wang, P., Fang, H. and Hu, W. (2018) Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 29, Article 1803807.
https://doi.org/10.1002/adfm.201803807
[19] Island, J.O., Steele, G.A., van der Zant, H.S.J. and Castellanos-Gomez, A. (2015) Environmental Instability of Few-Layer Black Phosphorus. 2D Materials, 2, Article 011002.
https://doi.org/10.1088/2053-1583/2/1/011002
[20] Gupta, A., Sakthivel, T. and Seal, S. (2015) Recent Development in 2D Materials Beyond Graphene. Progress in Materials Science, 73, 44-126.
https://doi.org/10.1016/j.pmatsci.2015.02.002
[21] Femi-Oyetoro, J., Yao, K., Hathaway, E., Jiang, Y., Ojo, I., Squires, B., et al. (2021) Structural Stability of Bilayer MoS2 in Ambient Air. Advanced Materials Interfaces, 8, Article 2101188.
https://doi.org/10.1002/admi.202101188
[22] Huo, N., Kang, J., Wei, Z., Li, S., Li, J. and Wei, S. (2014) Novel and Enhanced Optoelectronic Performances of Multilayer MoS2-WS2 Heterostructure Transistors. Advanced Functional Materials, 24, 7025-7031.
https://doi.org/10.1002/adfm.201401504
[23] Chen, Y. and Sun, M. (2021) Two-Dimensional WS2/MoS2 Heterostructures: Properties and Applications. Nanoscale, 13, 5594-5619.
https://doi.org/10.1039/d1nr00455g
[24] Che, M., Wang, B., Zhao, X., Li, Y., Chang, C., Liu, M., et al. (2024) PdSe2/2H-MoTe2 Heterojunction Self-Powered Photodetector: Broadband Photodetection and Linear/Circular Polarization Capability. ACS Nano, 18, 30884-30895.
https://doi.org/10.1021/acsnano.4c12298
[25] Tan, H., Xu, W., Sheng, Y., Lau, C.S., Fan, Y., Chen, Q., et al. (2017) Lateral Graphene-Contacted Vertically Stacked WS2/MoS2 Hybrid Photodetectors with Large Gain. Advanced Materials, 29, Article 1702917.
https://doi.org/10.1002/adma.201702917
[26] Yi, M. and Shen, Z. (2015) A Review on Mechanical Exfoliation for the Scalable Production of Graphene. Journal of Materials Chemistry A, 3, 11700-11715.
https://doi.org/10.1039/c5ta00252d
[27] Li, Y., Kuang, G., Jiao, Z., Yao, L. and Duan, R. (2022) Recent Progress on the Mechanical Exfoliation of 2D Transition Metal Dichalcogenides. Materials Research Express, 9, Article 122001.
https://doi.org/10.1088/2053-1591/aca6c6
[28] Sultana, N., Degg, A., Upadhyaya, S., Nilges, T. and Sen Sarma, N. (2022) Synthesis, Modification, and Application of Black Phosphorus, Few-Layer Black Phosphorus (FLBP), and Phosphorene: A Detailed Review. Materials Advances, 3, 5557-5574.
https://doi.org/10.1039/d1ma01101d
[29] Gautam, C. and Chelliah, S. (2021) Methods of Hexagonal Boron Nitride Exfoliation and Its Functionalization: Covalent and Non-Covalent Approaches. RSC Advances, 11, 31284-31327.
https://doi.org/10.1039/d1ra05727h
[30] Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., et al. (2013) One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 342, 614-617.
https://doi.org/10.1126/science.1244358
[31] Hussain, M., Jaffery, S.H.A., Ali, A., Nguyen, C.D., Aftab, S., Riaz, M., et al. (2021) NIR Self-Powered Photodetection and Gate Tunable Rectification Behavior in 2D GeSe/MoSe2 Heterojunction Diode. Scientific Reports, 11, Article No. 3688.
https://doi.org/10.1038/s41598-021-83187-z
[32] Novoselov, K.S. (2011) Nobel Lecture: Graphene: Materials in the Flatland. Reviews of Modern Physics, 83, 837-849.
https://doi.org/10.1103/revmodphys.83.837
[33] Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al. (2011) Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 331, 568-571.
https://doi.org/10.1126/science.1194975
[34] Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., et al. (2010) Robust High-Κ Response in Molecularly Thin Perovskite Nanosheets. ACS Nano, 4, 5225-5232.
https://doi.org/10.1021/nn101453v
[35] Fukuda, K., Nakai, I., Ebina, Y., Ma, R. and Sasaki, T. (2007) Colloidal Unilamellar Layers of Tantalum Oxide with Open Channels. Inorganic Chemistry, 46, 4787-4789.
https://doi.org/10.1021/ic7004002
[36] Huo, C., Yan, Z., Song, X. and Zeng, H. (2015) 2D Materials via Liquid Exfoliation: A Review on Fabrication and Applications. Science Bulletin, 60, 1994-2008.
https://doi.org/10.1007/s11434-015-0936-3
[37] Akeredolu, B.J., Ahemen, I., Amah, A.N., Onojah, A.D., Shakya, J., Gayathri, H.N., et al. (2024) Improved Liquid Phase Exfoliation Technique for the Fabrication of MoS2/graphene Heterostructure-Based Photodetector. Heliyon, 10, e24964.
https://doi.org/10.1016/j.heliyon.2024.e24964
[38] Wang, M., Osella, S., Brescia, R., Liu, Z., Gallego, J., Cattelan, M., et al. (2023) 2D MoS2/BioBr Van Der Waals Heterojunctions by Liquid-Phase Exfoliation as Photoelectrocatalysts for Hydrogen Evolution. Nanoscale, 15, 522-531.
https://doi.org/10.1039/d2nr04970h
[39] Chen, J., Zhao, X., Tan, S.J.R., Xu, H., Wu, B., Liu, B., et al. (2017) Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. Journal of the American Chemical Society, 139, 1073-1076.
https://doi.org/10.1021/jacs.6b12156
[40] Lee, J., Pak, S., Giraud, P., Lee, Y., Cho, Y., Hong, J., et al. (2017) Monolayers: Thermodynamically Stable Synthesis of Large‐scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and Their Unipolar N-N Heterojunction Devices (adv. Mater. 33/2017). Advanced Materials, 29, Article 1702206.
https://doi.org/10.1002/adma.201770236
[41] Gao, Y., Hong, Y., Yin, L., Wu, Z., Yang, Z., Chen, M., et al. (2017) Ultrafast Growth of High-Quality Monolayer WSe2 on Au. Advanced Materials, 29, Article 1700990.
https://doi.org/10.1002/adma.201700990
[42] Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., et al. (2014) Vertical and In-Plane Heterostructures from WS2/MoS2 Monolayers. Nature Materials, 13, 1135-1142.
https://doi.org/10.1038/nmat4091
[43] Duan, X., Wang, C., Shaw, J.C., Cheng, R., Chen, Y., Li, H., et al. (2014) Lateral Epitaxial Growth of Two-Dimensional Layered Semiconductor Heterojunctions. Nature Nanotechnology, 9, 1024-1030.
https://doi.org/10.1038/nnano.2014.222
[44] Li, M., Shi, Y., Cheng, C., Lu, L., Lin, Y., Tang, H., et al. (2015) Epitaxial Growth of a Monolayer WSe2-MoS2 Lateral P-N Junction with an Atomically Sharp Interface. Science, 349, 524-528.
https://doi.org/10.1126/science.aab4097
[45] Ye, K., Liu, L., Liu, Y., Nie, A., Zhai, K., Xiang, J., et al. (2019) Lateral Bilayer MoS2-WS2 Heterostructure Photodetectors with High Responsivity and Detectivity. Advanced Optical Materials, 7, Article 1900815.
https://doi.org/10.1002/adom.201900815
[46] Zhang, Y., Ugeda, M.M., Jin, C., Shi, S., Bradley, A.J., Martín-Recio, A., et al. (2016) Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films. Nano Letters, 16, 2485-2491.
https://doi.org/10.1021/acs.nanolett.6b00059
[47] Wofford, J.M., Nakhaie, S., Krause, T., Liu, X., Ramsteiner, M., Hanke, M., et al. (2017) A Hybrid MBE-Based Growth Method for Large-Area Synthesis of Stacked Hexagonal Boron Nitride/Graphene Heterostructures. Scientific Reports, 7, Article No. 43644.
https://doi.org/10.1038/srep43644
[48] Mahjouri-Samani, M., Gresback, R., Tian, M., Wang, K., Puretzky, A.A., Rouleau, C.M., et al. (2014) Pulsed Laser Deposition of Photoresponsive Two-Dimensional Gase Nanosheet Networks. Advanced Functional Materials, 24, 6365-6371.
https://doi.org/10.1002/adfm.201401440
[49] Yao, J.D., Zheng, Z.Q., Shao, J.M. and Yang, G.W. (2015) Stable, Highly-Responsive and Broadband Photodetection Based on Large-Area Multilayered WS2 Films Grown by Pulsed-Laser Deposition. Nanoscale, 7, 14974-14981.
https://doi.org/10.1039/c5nr03361f
[50] Wu, Z., Shi, P., Xing, R., Xing, Y., Ge, Y., Wei, L., et al. (2022) Quasi-Two-Dimensional α-Molybdenum Oxide Thin Film Prepared by Magnetron Sputtering for Neuromorphic Computing. RSC Advances, 12, 17706-17714.
https://doi.org/10.1039/d2ra02652j
[51] Tao, J., Chai, J., Lu, X., Wong, L.M., Wong, T.I., Pan, J., et al. (2015) Growth of Wafer-Scale MoS2 Monolayer by Magnetron Sputtering. Nanoscale, 7, 2497-2503.
https://doi.org/10.1039/c4nr06411a
[52] Sinha, S., Kumar, S., Arora, S.K., Sharma, A., Tomar, M., Wu, H., et al. (2021) Enhanced Interlayer Coupling and Efficient Photodetection Response of in-Situ Grown MoS2-WS2 Van Der Waals Heterostructures. Journal of Applied Physics, 129, Article 155304.
https://doi.org/10.1063/5.0040922
[53] Wang, Q., Wu, P., Cao, G. and Huang, M. (2013) First-Principles Study of the Structural and Electronic Properties of MoS2-WS2 and MoS2-MoTe2 Monolayer Heterostructures. Journal of Physics D: Applied Physics, 46, Article 505308.
https://doi.org/10.1088/0022-3727/46/50/505308
[54] Li, C., Zhu, J., Du, W., Huang, Y., Xu, H., Zhai, Z., et al. (2021) The Photodetectors Based on Lateral Monolayer MoS2/WS2 Heterojunctions. Nanoscale Research Letters, 16, Article No. 123.
https://doi.org/10.1186/s11671-021-03581-4
[55] Zhao, D., Jiao, H., Chen, C., Chen, Y., Wang, S., Cao, H., et al. (2023) Controllable Photocurrent Generation in Lateral Bilayer MoS2-WS2 Heterostructure. Advanced Optical Materials, 11, Article 2300709.
https://doi.org/10.1002/adom.202300709
[56] Vu, V.T., Phan, T.L., Vu, T.T.H., Park, M.H., Do, V.D., Bui, V.Q., et al. (2022) Synthesis of a Selectively Nb-Doped WS2-MoS2 Lateral Heterostructure for a High-Detectivity PN Photodiode. ACS Nano, 16, 12073-12082.
https://doi.org/10.1021/acsnano.2c02242
[57] Wang, G., Li, L., Fan, W., Wang, R., Zhou, S., Lü, J., et al. (2018) Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance. Advanced Functional Materials, 28, Article 1800339.
https://doi.org/10.1002/adfm.201800339
[58] Yang, S., Wu, Z., Wang, S., Zheng, P. and Zhang, Y. (2024) Significantly Enhanced Photoresponse of Self-Powered 2D MoS2/WS2 Heterojunction Photodiode via F4-TCNQ Doping. ACS Applied Electronic Materials, 6, 3374-3384.
https://doi.org/10.1021/acsaelm.4c00192
[59] Bose, S., Mukherjee, S., Jana, S., Srivastava, S.K. and Ray, S.K. (2023) One-Pot Liquid-Phase Synthesis of MoS2-WS2 Van Der Waals Heterostructures for Broadband Photodetection. Nanotechnology, 34, Article 125704.
https://doi.org/10.1088/1361-6528/acab6e