[1]
|
Moore, G.E. (1998) Cramming More Components onto Integrated Circuits. Proceedings of the IEEE, 86, 82-85. https://doi.org/10.1109/jproc.1998.658762
|
[2]
|
Keyes, R.W. (1975) Physical Limits in Digital Electronics. Proceedings of the IEEE, 63, 740-767. https://doi.org/10.1109/proc.1975.9825
|
[3]
|
McMahon, P.L. (2023) The Physics of Optical Computing. Nature Reviews Physics, 5, 717-734. https://doi.org/10.1038/s42254-023-00645-5
|
[4]
|
Ossiander, M., Golyari, K., Scharl, K., Lehnert, L., Siegrist, F., Bürger, J.P., et al. (2022) The Speed Limit of Optoelectronics. Nature Communications, 13, Article No. 1620. https://doi.org/10.1038/s41467-022-29252-1
|
[5]
|
Yao, J. and Yang, G. (2020) 2D Material Broadband Photodetectors. Nanoscale, 12, 454-476. https://doi.org/10.1039/c9nr09070c
|
[6]
|
Kim, S., Lee, D., Moon, S., Choi, J., Kim, D., Kim, J., et al. (2023) Sulfurized Colloidal Quantum Dot/Tungsten Disulfide Multi-Dimensional Heterojunction for an Efficient Self-Powered Visible-to-SWIR Photodetector. Advanced Functional Materials, 33, Article 2303778. https://doi.org/10.1002/adfm.202303778
|
[7]
|
Jo, C., Kim, J., Kwak, J.Y., Kwon, S.M., Park, J.B., Kim, J., et al. (2022) Retina-Inspired Color-Cognitive Learning via Chromatically Controllable Mixed Quantum Dot Synaptic Transistor Arrays. Advanced Materials, 34, Article 2108979. https://doi.org/10.1002/adma.202108979
|
[8]
|
Kopytko, M., Wróbel, J., Jóźwikowski, K., Rogalski, A., Antoszewski, J., Akhavan, N.D., et al. (2015) Engineering the Bandgap of Unipolar HgCdTe-Based nBn Infrared Photodetectors. Journal of Electronic Materials, 44, 158-166. https://doi.org/10.1007/s11664-014-3511-9
|
[9]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
|
[10]
|
Xia, F., Wang, H., Xiao, D., Dubey, M. and Ramasubramaniam, A. (2014) Two-Dimensional Material Nanophotonics. Nature Photonics, 8, 899-907. https://doi.org/10.1038/nphoton.2014.271
|
[11]
|
Cheng, J., Wang, C., Zou, X. and Liao, L. (2018) Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Advanced Optical Materials, 7, Article 1800441. https://doi.org/10.1002/adom.201800441
|
[12]
|
Huo, N. and Konstantatos, G. (2018) Recent Progress and Future Prospects of 2D-Based Photodetectors. Advanced Materials, 30, Article 1801164. https://doi.org/10.1002/adma.201801164
|
[13]
|
Lukman, S., Ding, L., Xu, L., Tao, Y., Riis-Jensen, A.C., Zhang, G., et al. (2020) High Oscillator Strength Interlayer Excitons in Two-Dimensional Heterostructures for Mid-Infrared Photodetection. Nature Nanotechnology, 15, 675-682. https://doi.org/10.1038/s41565-020-0717-2
|
[14]
|
Zha, J., Luo, M., Ye, M., Ahmed, T., Yu, X., Lien, D., et al. (2021) Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials, 32, Article 2111970. https://doi.org/10.1002/adfm.202111970
|
[15]
|
Tsai, D., Liu, K., Lien, D., Tsai, M., Kang, C., Lin, C., et al. (2013) Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 7, 3905-3911. https://doi.org/10.1021/nn305301b
|
[16]
|
Li, P., Lu, J., Cui, H., Ruan, S. and Zeng, Y. (2021) The Development, Application, and Performance of Black Phosphorus in Energy Storage and Conversion. Materials Advances, 2, 2483-2509. https://doi.org/10.1039/d0ma01016b
|
[17]
|
Malik, M., Iqbal, M.A., Choi, J.R. and Pham, P.V. (2022) 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Frontiers in Chemistry, 10, Article 905404. https://doi.org/10.3389/fchem.2022.905404
|
[18]
|
Long, M., Wang, P., Fang, H. and Hu, W. (2018) Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 29, Article 1803807. https://doi.org/10.1002/adfm.201803807
|
[19]
|
Island, J.O., Steele, G.A., van der Zant, H.S.J. and Castellanos-Gomez, A. (2015) Environmental Instability of Few-Layer Black Phosphorus. 2D Materials, 2, Article 011002. https://doi.org/10.1088/2053-1583/2/1/011002
|
[20]
|
Gupta, A., Sakthivel, T. and Seal, S. (2015) Recent Development in 2D Materials Beyond Graphene. Progress in Materials Science, 73, 44-126. https://doi.org/10.1016/j.pmatsci.2015.02.002
|
[21]
|
Femi-Oyetoro, J., Yao, K., Hathaway, E., Jiang, Y., Ojo, I., Squires, B., et al. (2021) Structural Stability of Bilayer MoS2 in Ambient Air. Advanced Materials Interfaces, 8, Article 2101188. https://doi.org/10.1002/admi.202101188
|
[22]
|
Huo, N., Kang, J., Wei, Z., Li, S., Li, J. and Wei, S. (2014) Novel and Enhanced Optoelectronic Performances of Multilayer MoS2-WS2 Heterostructure Transistors. Advanced Functional Materials, 24, 7025-7031. https://doi.org/10.1002/adfm.201401504
|
[23]
|
Chen, Y. and Sun, M. (2021) Two-Dimensional WS2/MoS2 Heterostructures: Properties and Applications. Nanoscale, 13, 5594-5619. https://doi.org/10.1039/d1nr00455g
|
[24]
|
Che, M., Wang, B., Zhao, X., Li, Y., Chang, C., Liu, M., et al. (2024) PdSe2/2H-MoTe2 Heterojunction Self-Powered Photodetector: Broadband Photodetection and Linear/Circular Polarization Capability. ACS Nano, 18, 30884-30895. https://doi.org/10.1021/acsnano.4c12298
|
[25]
|
Tan, H., Xu, W., Sheng, Y., Lau, C.S., Fan, Y., Chen, Q., et al. (2017) Lateral Graphene-Contacted Vertically Stacked WS2/MoS2 Hybrid Photodetectors with Large Gain. Advanced Materials, 29, Article 1702917. https://doi.org/10.1002/adma.201702917
|
[26]
|
Yi, M. and Shen, Z. (2015) A Review on Mechanical Exfoliation for the Scalable Production of Graphene. Journal of Materials Chemistry A, 3, 11700-11715. https://doi.org/10.1039/c5ta00252d
|
[27]
|
Li, Y., Kuang, G., Jiao, Z., Yao, L. and Duan, R. (2022) Recent Progress on the Mechanical Exfoliation of 2D Transition Metal Dichalcogenides. Materials Research Express, 9, Article 122001. https://doi.org/10.1088/2053-1591/aca6c6
|
[28]
|
Sultana, N., Degg, A., Upadhyaya, S., Nilges, T. and Sen Sarma, N. (2022) Synthesis, Modification, and Application of Black Phosphorus, Few-Layer Black Phosphorus (FLBP), and Phosphorene: A Detailed Review. Materials Advances, 3, 5557-5574. https://doi.org/10.1039/d1ma01101d
|
[29]
|
Gautam, C. and Chelliah, S. (2021) Methods of Hexagonal Boron Nitride Exfoliation and Its Functionalization: Covalent and Non-Covalent Approaches. RSC Advances, 11, 31284-31327. https://doi.org/10.1039/d1ra05727h
|
[30]
|
Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., et al. (2013) One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 342, 614-617. https://doi.org/10.1126/science.1244358
|
[31]
|
Hussain, M., Jaffery, S.H.A., Ali, A., Nguyen, C.D., Aftab, S., Riaz, M., et al. (2021) NIR Self-Powered Photodetection and Gate Tunable Rectification Behavior in 2D GeSe/MoSe2 Heterojunction Diode. Scientific Reports, 11, Article No. 3688. https://doi.org/10.1038/s41598-021-83187-z
|
[32]
|
Novoselov, K.S. (2011) Nobel Lecture: Graphene: Materials in the Flatland. Reviews of Modern Physics, 83, 837-849. https://doi.org/10.1103/revmodphys.83.837
|
[33]
|
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al. (2011) Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 331, 568-571. https://doi.org/10.1126/science.1194975
|
[34]
|
Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., et al. (2010) Robust High-Κ Response in Molecularly Thin Perovskite Nanosheets. ACS Nano, 4, 5225-5232. https://doi.org/10.1021/nn101453v
|
[35]
|
Fukuda, K., Nakai, I., Ebina, Y., Ma, R. and Sasaki, T. (2007) Colloidal Unilamellar Layers of Tantalum Oxide with Open Channels. Inorganic Chemistry, 46, 4787-4789. https://doi.org/10.1021/ic7004002
|
[36]
|
Huo, C., Yan, Z., Song, X. and Zeng, H. (2015) 2D Materials via Liquid Exfoliation: A Review on Fabrication and Applications. Science Bulletin, 60, 1994-2008. https://doi.org/10.1007/s11434-015-0936-3
|
[37]
|
Akeredolu, B.J., Ahemen, I., Amah, A.N., Onojah, A.D., Shakya, J., Gayathri, H.N., et al. (2024) Improved Liquid Phase Exfoliation Technique for the Fabrication of MoS2/graphene Heterostructure-Based Photodetector. Heliyon, 10, e24964. https://doi.org/10.1016/j.heliyon.2024.e24964
|
[38]
|
Wang, M., Osella, S., Brescia, R., Liu, Z., Gallego, J., Cattelan, M., et al. (2023) 2D MoS2/BioBr Van Der Waals Heterojunctions by Liquid-Phase Exfoliation as Photoelectrocatalysts for Hydrogen Evolution. Nanoscale, 15, 522-531. https://doi.org/10.1039/d2nr04970h
|
[39]
|
Chen, J., Zhao, X., Tan, S.J.R., Xu, H., Wu, B., Liu, B., et al. (2017) Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. Journal of the American Chemical Society, 139, 1073-1076. https://doi.org/10.1021/jacs.6b12156
|
[40]
|
Lee, J., Pak, S., Giraud, P., Lee, Y., Cho, Y., Hong, J., et al. (2017) Monolayers: Thermodynamically Stable Synthesis of Large‐scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and Their Unipolar N-N Heterojunction Devices (adv. Mater. 33/2017). Advanced Materials, 29, Article 1702206. https://doi.org/10.1002/adma.201770236
|
[41]
|
Gao, Y., Hong, Y., Yin, L., Wu, Z., Yang, Z., Chen, M., et al. (2017) Ultrafast Growth of High-Quality Monolayer WSe2 on Au. Advanced Materials, 29, Article 1700990. https://doi.org/10.1002/adma.201700990
|
[42]
|
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., et al. (2014) Vertical and In-Plane Heterostructures from WS2/MoS2 Monolayers. Nature Materials, 13, 1135-1142. https://doi.org/10.1038/nmat4091
|
[43]
|
Duan, X., Wang, C., Shaw, J.C., Cheng, R., Chen, Y., Li, H., et al. (2014) Lateral Epitaxial Growth of Two-Dimensional Layered Semiconductor Heterojunctions. Nature Nanotechnology, 9, 1024-1030. https://doi.org/10.1038/nnano.2014.222
|
[44]
|
Li, M., Shi, Y., Cheng, C., Lu, L., Lin, Y., Tang, H., et al. (2015) Epitaxial Growth of a Monolayer WSe2-MoS2 Lateral P-N Junction with an Atomically Sharp Interface. Science, 349, 524-528. https://doi.org/10.1126/science.aab4097
|
[45]
|
Ye, K., Liu, L., Liu, Y., Nie, A., Zhai, K., Xiang, J., et al. (2019) Lateral Bilayer MoS2-WS2 Heterostructure Photodetectors with High Responsivity and Detectivity. Advanced Optical Materials, 7, Article 1900815. https://doi.org/10.1002/adom.201900815
|
[46]
|
Zhang, Y., Ugeda, M.M., Jin, C., Shi, S., Bradley, A.J., Martín-Recio, A., et al. (2016) Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films. Nano Letters, 16, 2485-2491. https://doi.org/10.1021/acs.nanolett.6b00059
|
[47]
|
Wofford, J.M., Nakhaie, S., Krause, T., Liu, X., Ramsteiner, M., Hanke, M., et al. (2017) A Hybrid MBE-Based Growth Method for Large-Area Synthesis of Stacked Hexagonal Boron Nitride/Graphene Heterostructures. Scientific Reports, 7, Article No. 43644. https://doi.org/10.1038/srep43644
|
[48]
|
Mahjouri-Samani, M., Gresback, R., Tian, M., Wang, K., Puretzky, A.A., Rouleau, C.M., et al. (2014) Pulsed Laser Deposition of Photoresponsive Two-Dimensional Gase Nanosheet Networks. Advanced Functional Materials, 24, 6365-6371. https://doi.org/10.1002/adfm.201401440
|
[49]
|
Yao, J.D., Zheng, Z.Q., Shao, J.M. and Yang, G.W. (2015) Stable, Highly-Responsive and Broadband Photodetection Based on Large-Area Multilayered WS2 Films Grown by Pulsed-Laser Deposition. Nanoscale, 7, 14974-14981. https://doi.org/10.1039/c5nr03361f
|
[50]
|
Wu, Z., Shi, P., Xing, R., Xing, Y., Ge, Y., Wei, L., et al. (2022) Quasi-Two-Dimensional α-Molybdenum Oxide Thin Film Prepared by Magnetron Sputtering for Neuromorphic Computing. RSC Advances, 12, 17706-17714. https://doi.org/10.1039/d2ra02652j
|
[51]
|
Tao, J., Chai, J., Lu, X., Wong, L.M., Wong, T.I., Pan, J., et al. (2015) Growth of Wafer-Scale MoS2 Monolayer by Magnetron Sputtering. Nanoscale, 7, 2497-2503. https://doi.org/10.1039/c4nr06411a
|
[52]
|
Sinha, S., Kumar, S., Arora, S.K., Sharma, A., Tomar, M., Wu, H., et al. (2021) Enhanced Interlayer Coupling and Efficient Photodetection Response of in-Situ Grown MoS2-WS2 Van Der Waals Heterostructures. Journal of Applied Physics, 129, Article 155304. https://doi.org/10.1063/5.0040922
|
[53]
|
Wang, Q., Wu, P., Cao, G. and Huang, M. (2013) First-Principles Study of the Structural and Electronic Properties of MoS2-WS2 and MoS2-MoTe2 Monolayer Heterostructures. Journal of Physics D: Applied Physics, 46, Article 505308. https://doi.org/10.1088/0022-3727/46/50/505308
|
[54]
|
Li, C., Zhu, J., Du, W., Huang, Y., Xu, H., Zhai, Z., et al. (2021) The Photodetectors Based on Lateral Monolayer MoS2/WS2 Heterojunctions. Nanoscale Research Letters, 16, Article No. 123. https://doi.org/10.1186/s11671-021-03581-4
|
[55]
|
Zhao, D., Jiao, H., Chen, C., Chen, Y., Wang, S., Cao, H., et al. (2023) Controllable Photocurrent Generation in Lateral Bilayer MoS2-WS2 Heterostructure. Advanced Optical Materials, 11, Article 2300709. https://doi.org/10.1002/adom.202300709
|
[56]
|
Vu, V.T., Phan, T.L., Vu, T.T.H., Park, M.H., Do, V.D., Bui, V.Q., et al. (2022) Synthesis of a Selectively Nb-Doped WS2-MoS2 Lateral Heterostructure for a High-Detectivity PN Photodiode. ACS Nano, 16, 12073-12082. https://doi.org/10.1021/acsnano.2c02242
|
[57]
|
Wang, G., Li, L., Fan, W., Wang, R., Zhou, S., Lü, J., et al. (2018) Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance. Advanced Functional Materials, 28, Article 1800339. https://doi.org/10.1002/adfm.201800339
|
[58]
|
Yang, S., Wu, Z., Wang, S., Zheng, P. and Zhang, Y. (2024) Significantly Enhanced Photoresponse of Self-Powered 2D MoS2/WS2 Heterojunction Photodiode via F4-TCNQ Doping. ACS Applied Electronic Materials, 6, 3374-3384. https://doi.org/10.1021/acsaelm.4c00192
|
[59]
|
Bose, S., Mukherjee, S., Jana, S., Srivastava, S.K. and Ray, S.K. (2023) One-Pot Liquid-Phase Synthesis of MoS2-WS2 Van Der Waals Heterostructures for Broadband Photodetection. Nanotechnology, 34, Article 125704. https://doi.org/10.1088/1361-6528/acab6e
|