[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Abnet, C.C., Arnold, M. and Wei, W. (2018) Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology, 154, 360-373. https://doi.org/10.1053/j.gastro.2017.08.023
|
[3]
|
Yang, H., Wang, F., Hallemeier, C.L., Lerut, T. and Fu, J. (2024) Oesophageal Cancer. The Lancet, 404, 1991-2005. https://doi.org/10.1016/s0140-6736(24)02226-8
|
[4]
|
Zhang, Y., Chen, H., Mo, H., Zhao, N., Sun, X., Liu, B., et al. (2025) Distinct Cellular Mechanisms Underlie Chemotherapies and PD-L1 Blockade Combinations in Triple-Negative Breast Cancer. Cancer Cell, 43, 446-463.e7. https://doi.org/10.1016/j.ccell.2025.01.007
|
[5]
|
Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., et al. (2022) The Role of PD-1/PD-L1 and Application of Immune-Checkpoint Inhibitors in Human Cancers. Frontiers in Immunology, 13, Article 964442. https://doi.org/10.3389/fimmu.2022.964442
|
[6]
|
Kojima, T., Shah, M.A., Muro, K., Francois, E., Adenis, A., Hsu, C., et al. (2020) Randomized Phase III KEYNOTE-181 Study of Pembrolizumab versus Chemotherapy in Advanced Esophageal Cancer. Journal of Clinical Oncology, 38, 4138-4148. https://doi.org/10.1200/jco.20.01888
|
[7]
|
中华人民共和国国家卫生健康委员会医政医管局. 食管癌诊疗指南(2022年版) [J]. 中华消化外科杂志, 2022, 21(10): 1247-1268.
|
[8]
|
Kim, T.K., Vandsemb, E.N., Herbst, R.S. and Chen, L. (2022) Adaptive Immune Resistance at the Tumour Site: Mechanisms and Therapeutic Opportunities. Nature Reviews Drug Discovery, 21, 529-540. https://doi.org/10.1038/s41573-022-00493-5
|
[9]
|
Sun, J., Shen, L., Shah, M.A., Enzinger, P., Adenis, A., Doi, T., et al. (2021) Pembrolizumab Plus Chemotherapy versus Chemotherapy Alone for First-Line Treatment of Advanced Oesophageal Cancer (KEYNOTE-590): A Randomised, Placebo-Controlled, Phase 3 Study. The Lancet, 398, 759-771. https://doi.org/10.1016/s0140-6736(21)01234-4
|
[10]
|
Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Kaufman, D.R., et al. (2017) IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. Journal of Clinical Investigation, 127, 2930-2940. https://doi.org/10.1172/jci91190
|
[11]
|
Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. and Kroemer, G. (2020) Immunostimulation with Chemotherapy in the Era of Immune Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 17, 725-741. https://doi.org/10.1038/s41571-020-0413-z
|
[12]
|
Galon, J. and Bruni, D. (2019) Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nature Reviews Drug Discovery, 18, 197-218. https://doi.org/10.1038/s41573-018-0007-y
|
[13]
|
Garcia-Diaz, A., Shin, D.S., Moreno, B.H., Saco, J., Escuin-Ordinas, H., Rodriguez, G.A., et al. (2017) Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Reports, 19, 1189-1201. https://doi.org/10.1016/j.celrep.2017.04.031
|
[14]
|
Doki, Y., Ajani, J.A., Kato, K., Xu, J., Wyrwicz, L., Motoyama, S., et al. (2022) Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. New England Journal of Medicine, 386, 449-462. https://doi.org/10.1056/nejmoa2111380
|
[15]
|
Xu, J., Jiang, H., Pan, Y., Gu, K., Cang, S., Han, L., et al. (2023) Sintilimab Plus Chemotherapy for Unresectable Gastric or Gastroesophageal Junction Cancer: The ORIENT-16 Randomized Clinical Trial. JAMA, 330, 2064-2074. https://doi.org/10.1001/jama.2023.19918
|
[16]
|
Chen, D.S. and Mellman, I. (2017) Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature, 541, 321-330. https://doi.org/10.1038/nature21349
|
[17]
|
Taube, J.M., Klein, A., Brahmer, J.R., Xu, H., Pan, X., Kim, J.H., et al. (2014) Association of PD-1, PD-1 Ligands, and Other Features of the Tumor Immune Microenvironment with Response to Anti-PD-1 Therapy. Clinical Cancer Research, 20, 5064-5074. https://doi.org/10.1158/1078-0432.ccr-13-3271
|
[18]
|
Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M., Robert, L., et al. (2014) PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature, 515, 568-571. https://doi.org/10.1038/nature13954
|
[19]
|
Farrag, M.S., Abdelwahab, K., Farrag, N.S., Elrefaie, W.E. and Emarah, Z. (2021) Programmed Death Ligand-1 and CD8 Tumor-Infiltrating Lymphocytes (TILs) as Prognostic Predictors in Ovarian High-Grade Serous Carcinoma (HGSC). Journal of the Egyptian National Cancer Institute, 33, Article No. 16. https://doi.org/10.1186/s43046-021-00073-5
|
[20]
|
Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. and Allavena, P. (2017) Tumour-associated Macrophages as Treatment Targets in Oncology. Nature Reviews Clinical Oncology, 14, 399-416. https://doi.org/10.1038/nrclinonc.2016.217
|
[21]
|
Chau, I. (2017) Clinical Development of PD-1/PD-L1 Immunotherapy for Gastrointestinal Cancers: Facts and Hopes. Clinical Cancer Research, 23, 6002-6011. https://doi.org/10.1158/1078-0432.ccr-17-0020
|
[22]
|
Chen, Z., Zhou, L., Liu, L., Hou, Y., Xiong, M., Yang, Y., et al. (2020) Single-Cell RNA Sequencing Highlights the Role of Inflammatory Cancer-Associated Fibroblasts in Bladder Urothelial Carcinoma. Nature Communications, 11, Article No. 5077. https://doi.org/10.1038/s41467-020-18916-5
|
[23]
|
Ma, F., Liu, X., Zhang, Y., Tao, Y., Zhao, L., Abusalamah, H., et al. (2025) Tumor Extracellular Vesicle-Derived PD-L1 Promotes T Cell Senescence through Lipid Metabolism Reprogramming. Science Translational Medicine, 17, eadm7269. https://doi.org/10.1126/scitranslmed.adm7269
|
[24]
|
Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086. https://doi.org/10.1158/2159-8290.cd-18-0367
|
[25]
|
Zhang, Y. and Chen, L. (2016) Classification of Advanced Human Cancers Based on Tumor Immunity in the Microenvironment (TIME) for Cancer Immunotherapy. JAMA Oncology, 2, 1403-1404. https://doi.org/10.1001/jamaoncol.2016.2450
|
[26]
|
Bagaev, A., Kotlov, N., Nomie, K., Svekolkin, V., Gafurov, A., Isaeva, O., et al. (2021) Conserved Pan-Cancer Microenvironment Subtypes Predict Response to Immunotherapy. Cancer Cell, 39, 845-865.e7. https://doi.org/10.1016/j.ccell.2021.04.014
|
[27]
|
Teng, M.W.L., Ngiow, S.F., Ribas, A. and Smyth, M.J. (2015) Classifying Cancers Based on T-Cell Infiltration and Pd-l1. Cancer Research, 75, 2139-2145. https://doi.org/10.1158/0008-5472.can-15-0255
|
[28]
|
Binnewies, M., Roberts, E.W., Kersten, K., Chan, V., Fearon, D.F., Merad, M., et al. (2018) Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nature Medicine, 24, 541-550. https://doi.org/10.1038/s41591-018-0014-x
|
[29]
|
Sun, D., Liu, J., Zhou, H., Shi, M., Sun, J., Zhao, S., et al. (2023) Classification of Tumor Immune Microenvironment According to Programmed Death-Ligand 1 Expression and Immune Infiltration Predicts Response to Immunotherapy Plus Chemotherapy in Advanced Patients with NSCLC. Journal of Thoracic Oncology, 18, 869-881. https://doi.org/10.1016/j.jtho.2023.03.012
|
[30]
|
Jiao, R., Luo, H., Xu, W. and Ge, H. (2019) immune Checkpoint Inhibitors in Esophageal Squamous Cell Carcinoma: Progress and Opportunities. OncoTargets and Therapy, 12, 6023-6032. https://doi.org/10.2147/ott.s214579
|