[1]
|
Talbot, G.H., Bradley, J., Edwards, J.E., Gilbert, D., Scheld, M. and Bartlett, J.G. (2006) Bad Bugs Need Drugs: An Update on the Development Pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clinical Infectious Diseases, 42, 657-668. https://doi.org/10.1086/499819
|
[2]
|
Wyres, K.L. and Holt, K.E. (2018) Klebsiella pneumoniae as a Key Trafficker of Drug Resistance Genes from Environmental to Clinically Important Bacteria. Current Opinion in Microbiology, 45, 131-139. https://doi.org/10.1016/j.mib.2018.04.004
|
[3]
|
Clegg, S. and Murphy, C.N. (2016) Epidemiology and Virulence of Klebsiella pneumoniae. Microbiology Spectrum, 4. https://doi.org/10.1128/microbiolspec.uti-0005-2012
|
[4]
|
Martin, R.M. and Bachman, M.A. (2018) Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8, Article 4. https://doi.org/10.3389/fcimb.2018.00004
|
[5]
|
Pu, D., Zhao, J., Chang, K., Zhuo, X. and Cao, B. (2023) “Superbugs” with Hypervirulence and Carbapenem Resistance in Klebsiella pneumoniae: The Rise of Such Emerging Nosocomial Pathogens in China. Science Bulletin, 68, 2658-2670. https://doi.org/10.1016/j.scib.2023.09.040
|
[6]
|
Nordmann, P., Cuzon, G. and Naas, T. (2009) The Real Threat of Klebsiella pneumoniae Carbapenemase-Producing Bacteria. The Lancet Infectious Diseases, 9, 228-236. https://doi.org/10.1016/s1473-3099(09)70054-4
|
[7]
|
Koch-Weser, J., Sidel, V.W., Federman, E.B., Kanarek, P., Finer, D.C. and Eaton, A.E. (1970) Adverse Effects of Sodium Colistimethate: Manifestations and Specific Reaction Rates During 317 Courses of Therapy. Annals of Internal Medicine, 72, 857-868. https://doi.org/10.7326/0003-4819-72-6-857
|
[8]
|
Kerob, D., Bouaziz, J.D., Sarfati, C., Pavie, J., Vignon‐Pennamen, M.D., Menotti, J., et al. (2006) First Case of Cutaneous Reconstitution Inflammatory Syndrome Associated with HIV Infection and Leishmaniasis. Clinical Infectious Diseases, 43, 664-666. https://doi.org/10.1086/506572
|
[9]
|
Granata, G. and Petrosillo, N. (2017) Resistance to Colistin in Klebsiella pneumoniae: A 4.0 Strain? Infectious Disease Reports, 9, Article 7104. https://doi.org/10.4081/idr.2017.7104
|
[10]
|
Capone, A., Giannella, M., Fortini, D., Giordano, A., Meledandri, M., Ballardini, M., et al. (2013) High Rate of Colistin Resistance among Patients with Carbapenem-Resistant Klebsiella pneumoniae Infection Accounts for an Excess of Mortality. Clinical Microbiology and Infection, 19, E23-E30. https://doi.org/10.1111/1469-0691.12070
|
[11]
|
Liu, Y., Wang, Y., Walsh, T.R., Yi, L., Zhang, R., Spencer, J., et al. (2016) Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. The Lancet Infectious Diseases, 16, 161-168. https://doi.org/10.1016/s1473-3099(15)00424-7
|
[12]
|
Velkov, T., Deris, Z.Z., Huang, J.X., Azad, M.A., Butler, M., Sivanesan, S., et al. (2013) Surface Changes and Polymyxin Interactions with a Resistant Strain of Klebsiella pneumoniae. Innate Immunity, 20, 350-363. https://doi.org/10.1177/1753425913493337
|
[13]
|
Li, L., Ma, J., Cheng, P., Li, M., Yu, Z., Song, X., et al. (2023) Roles of Two-Component Regulatory Systems in Klebsiella pneumoniae: Regulation of Virulence, Antibiotic Resistance, and Stress Responses. Microbiological Research, 272, Article 127374. https://doi.org/10.1016/j.micres.2023.127374
|
[14]
|
Groisman, E.A. (2016) Feedback Control of Two-Component Regulatory Systems. Annual Review of Microbiology, 70, 103-124. https://doi.org/10.1146/annurev-micro-102215-095331
|
[15]
|
Tierney, A.R. and Rather, P.N. (2019) Roles of Two-Component Regulatory Systems in Antibiotic Resistance. Future Microbiology, 14, 533-552. https://doi.org/10.2217/fmb-2019-0002
|
[16]
|
Elias, R., Duarte, A. and Perdigão, J. (2021) A Molecular Perspective on Colistin and Klebsiella pneumoniae: Mode of Action, Resistance Genetics, and Phenotypic Susceptibility. Diagnostics, 11, Article 1165. https://doi.org/10.3390/diagnostics11071165
|
[17]
|
Huang, J., Li, C., Song, J., Velkov, T., Wang, L., Zhu, Y., et al. (2020) Regulating Polymyxin Resistance in Gram-Negative Bacteria: Roles of Two-Component Systems PhoPQ and PmrAB. Future Microbiology, 15, 445-459. https://doi.org/10.2217/fmb-2019-0322
|
[18]
|
Shahab, M., Waqas, M., Fahira, A., Zhang, H., Zheng, G. and Huang, Z. (2024) Investigating the Role of PmRB Mutation on Colistin Antibiotics Drug Resistance in Klebsiella pneumoniae. International Journal of Biological Macromolecules, 281, Article 136414. https://doi.org/10.1016/j.ijbiomac.2024.136414
|
[19]
|
Jayol, A., Nordmann, P., Brink, A., Villegas, M., Dubois, V. and Poirel, L. (2017) High-Level Resistance to Colistin Mediated by Various Mutations in the crrB Gene among Carbapenemase-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 61. https://doi.org/10.1128/aac.01423-17
|
[20]
|
Cheng, Y., Lin, T., Lin, Y. and Wang, J. (2016) Amino Acid Substitutions of CrrB Responsible for Resistance to Colistin through CrrC in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 60, 3709-3716. https://doi.org/10.1128/aac.00009-16
|
[21]
|
McConville, T.H., Annavajhala, M.K., Giddins, M.J., Macesic, N., Herrera, C.M., Rozenberg, F.D., et al. (2020) CrrB Positively Regulates High-Level Polymyxin Resistance and Virulence in Klebsiella pneumoniae. Cell Reports, 33, Article 108313. https://doi.org/10.1016/j.celrep.2020.108313
|
[22]
|
Kim, S.J., Shin, J.H., Kim, H. and Ko, K.S. (2024) Roles of CrrAB Two-Component Regulatory System in Klebsiella pneumoniae: Growth Yield, Survival in Initial Colistin Treatment Stage, and Virulence. International Journal of Antimicrobial Agents, 63, Article 107011. https://doi.org/10.1016/j.ijantimicag.2023.107011
|
[23]
|
Cheng, Y., Lin, T., Lin, Y. and Wang, J. (2018) A Putative RND-Type Efflux Pump, H239_3064, Contributes to Colistin Resistance through CrrB in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 73, 1509-1516. https://doi.org/10.1093/jac/dky054
|
[24]
|
Poirel, L., Jayol, A., Bontron, S., Villegas, M.-V., Ozdamar, M., Turkoglu, S., et al. (2014) The mgrB Gene as a Key Target for Acquired Resistance to Colistin in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 70, 75-80. https://doi.org/10.1093/jac/dku323
|
[25]
|
Bray, A.S., Smith, R.D., Hudson, A.W., Hernandez, G.E., Young, T.M., George, H.E., et al. (2022) MgrB-Dependent Colistin Resistance in Klebsiella pneumoniae Is Associated with an Increase in Host-To-Host Transmission. mBio, 13, e03595-21. https://doi.org/10.1128/mbio.03595-21
|
[26]
|
Lippa, A.M. and Goulian, M. (2009) Feedback Inhibition in the PhOQ/PhOP Signaling System by a Membrane Peptide. PLOS Genetics, 5, e1000788. https://doi.org/10.1371/journal.pgen.1000788
|
[27]
|
Liu, X., Wu, Y., Zhu, Y., Jia, P., Li, X., Jia, X., et al. (2022) Emergence of Colistin-Resistant Hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerging Microbes & Infections, 11, 648-661. https://doi.org/10.1080/22221751.2022.2036078
|
[28]
|
Cannatelli, A., D’Andrea, M.M., Giani, T., Di Pilato, V., Arena, F., Ambretti, S., et al. (2013) In Vivo Emergence of Colistin Resistance in Klebsiella pneumoniae Producing Kpc-Type Carbapenemases Mediated by Insertional Inactivation of the PhOQ/PhOP mgrB Regulator. Antimicrobial Agents and Chemotherapy, 57, 5521-5526. https://doi.org/10.1128/aac.01480-13
|
[29]
|
Cannatelli, A., Giani, T., D’Andrea, M.M., Di Pilato, V., Arena, F., Conte, V., et al. (2014) MgrB Inactivation Is a Common Mechanism of Colistin Resistance in Kpc-Producing Klebsiella pneumoniae of Clinical Origin. Antimicrobial Agents and Chemotherapy, 58, 5696-5703. https://doi.org/10.1128/aac.03110-14
|
[30]
|
Talat, A., Khan, F. and Khan, A.U. (2024) Genome Analyses of Colistin-Resistant High-Risk blaNDM-5 Producing Klebsiella pneumoniae ST147 and Pseudomonas Aeruginosa ST235 and ST357 in Clinical Settings. BMC Microbiology, 24, Article No. 174. https://doi.org/10.1186/s12866-024-03306-4
|
[31]
|
Olaitan, A.O., Morand, S. and Rolain, J. (2014) Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Frontiers in Microbiology, 5, Article 643. https://doi.org/10.3389/fmicb.2014.00643
|
[32]
|
Maharramov, E., Czikkely, M.S., Szili, P., Farkas, Z., Grézal, G., Daruka, L., et al. (2025) Exploring the Principles behind Antibiotics with Limited Resistance. Nature Communications, 16, Article No. 1842. https://doi.org/10.1038/s41467-025-56934-3
|
[33]
|
Xu, L., Li, J., Wu, W., Wu, X. and Ren, J. (2024) Klebsiella pneumoniae Capsular Polysaccharide: Mechanism in Regulation of Synthesis, Virulence, and Pathogenicity. Virulence, 15, Article 2439509. https://doi.org/10.1080/21505594.2024.2439509
|
[34]
|
Neumann, B., Stürhof, C., Rath, A., Kieninger, B., Eger, E., Müller, J.U., et al. (2023) Detection and Characterization of Putative Hypervirulent Klebsiella pneumoniae Isolates in Microbiological Diagnostics. Scientific Reports, 13, Article No. 19025. https://doi.org/10.1038/s41598-023-46221-w
|
[35]
|
Llobet, E., Campos, M.A., Giménez, P., Moranta, D. and Bengoechea, J.A. (2011) Analysis of the Networks Controlling the Antimicrobial-Peptide-Dependent Induction of Klebsiella pneumoniae Virulence Factors. Infection and Immunity, 79, 3718-3732. https://doi.org/10.1128/iai.05226-11
|
[36]
|
Ling, Z., Yin, W., Shen, Z., Wang, Y., Shen, J. and Walsh, T.R. (2020) Epidemiology of Mobile Colistin Resistance Genes mcr-1 to mcr-9. Journal of Antimicrobial Chemotherapy, 75, 3087-3095. https://doi.org/10.1093/jac/dkaa205
|
[37]
|
Liu, M.C., Jian, Z., Liu, W., Li, J. and Pei, N. (2022) One Health Analysis of mcr-Carrying Plasmids and Emergence of mcr-10.1 in Three Species of Klebsiella Recovered from Humans in China. Microbiology Spectrum, 10, e02306-22. https://doi.org/10.1128/spectrum.02306-22
|
[38]
|
Chen, F., Lauderdale, T., Huang, W., Shiau, Y., Wang, H. and Kuo, S. (2021) Emergence of mcr-1, mcr-3 and mcr-8 in Clinical Klebsiella pneumoniae Isolates. Clinical Microbiology and Infection, 27, 305-307. https://doi.org/10.1016/j.cmi.2020.07.043
|
[39]
|
El-Sayed Ahmed, M.A.E., Zhong, L., Shen, C., Yang, Y., Doi, Y. and Tian, G. (2020) Colistin and Its Role in the Era of Antibiotic Resistance: An Extended Review (2000-2019). Emerging Microbes & Infections, 9, 868-885. https://doi.org/10.1080/22221751.2020.1754133
|
[40]
|
Snesrud, E., He, S., Chandler, M., Dekker, J.P., Hickman, A.B., McGann, P., et al. (2016) A Model for Transposition of the Colistin Resistance Gene mcr-1 by ISapl1. Antimicrobial Agents and Chemotherapy, 60, 6973-6976. https://doi.org/10.1128/aac.01457-16
|
[41]
|
Snesrud, E., McGann, P. and Chandler, M. (2018) The Birth and Demise of the IS apl1-mcr-1-ISapl1 Composite Transposon: The Vehicle for Transferable Colistin Resistance. mBio, 9. https://doi.org/10.1128/mbio.02381-17
|
[42]
|
Liu, C., Guo, J., Lu, M., Shen, N. and Du, P. (2023) Dissemination of the Mobilised RND Efflux Pump Gene Cluster tmexCD-toprJ among Klebsiella pneumoniae. The Lancet Microbe, 4, e135. https://doi.org/10.1016/s2666-5247(22)00325-1
|
[43]
|
Stojowska-Swędrzyńska, K., Łupkowska, A., Kuczyńska-Wiśnik, D. and Laskowska, E. (2021) Antibiotic Heteroresistance in Klebsiella pneumoniae. International Journal of Molecular Sciences, 23, 449. https://doi.org/10.3390/ijms23010449
|
[44]
|
Wang, Y., Ma, X., Zhao, L., He, Y., Yu, W., Fu, S., et al. (2022) Heteroresistance Is Associated with in Vitro Regrowth during Colistin Treatment in Carbapenem-Resistant Klebsiella pneumoniae. Frontiers in Microbiology, 13, Article 868991. https://doi.org/10.3389/fmicb.2022.868991
|
[45]
|
Halaby, T., Kucukkose, E., Janssen, A.B., Rogers, M.R.C., Doorduijn, D.J., van der Zanden, A.G.M., et al. (2016) Genomic Characterization of Colistin Heteroresistance in Klebsiella pneumoniae during a Nosocomial Outbreak. Antimicrobial Agents and Chemotherapy, 60, 6837-6843. https://doi.org/10.1128/aac.01344-16
|
[46]
|
Braspenning, A.J.M.M., Rajakani, S.G., Sey, A., El Bounja, M., Lammens, C., Glupczynski, Y., et al. (2024) Assessment of Colistin Heteroresistance among Multidrug-Resistant Klebsiella pneumoniae Isolated from Intensive Care Patients in Europe. Antibiotics, 13, Article 281. https://doi.org/10.3390/antibiotics13030281
|
[47]
|
Vatansever, C., Ozer, B., Atac, N., Guler, O.U., Kilicoglu, B.K., Berkkan, M., et al. (2022) Efficacy of Amikacin and Meropenem on Colistin-Induced Klebsiella pneumoniae Persisters. Microbial Drug Resistance, 28, 765-772. https://doi.org/10.1089/mdr.2021.0207
|
[48]
|
Abokhalil, R.N., Elkhatib, W.F., Aboulwafa, M.M. and Hassouna, N.A. (2020) Persisters of Klebsiella pneumoniae and Proteus Mirabilis: A Common Phenomenon and Different Behavior Profiles. Current Microbiology, 77, 1233-1244. https://doi.org/10.1007/s00284-020-01926-3
|
[49]
|
Mondol, S.M., Hossain, M.A. and Haque, F.K.M. (2025) Comprehensive Genomic Insights into a Highly Pathogenic Clone ST656 of mcr8.1 Containing Multidrug-Resistant Klebsiella pneumoniae from Bangladesh. Scientific Reports, 15, Article No. 5909. https://doi.org/10.1038/s41598-025-90414-4
|