肌层浸润性膀胱癌免疫治疗进展
Advances in Immunotherapy for Muscle-Invasive Bladder Cancer
摘要: 肌层浸润性膀胱癌作为泌尿系统侵袭性最强的恶性肿瘤之一,传统的根治性膀胱切除术存在着创伤大、并发症多、患者生活质量下降等不足。近年来,以各类免疫检查点抑制剂,如程序性死亡受体1/程序性死亡受体配体1抑制剂为核心的围手术期免疫治疗策略显著改善了患者预后,治疗前景迎来了前所未有的拓展,免疫治疗逐渐展示出令人振奋的效果。有关基层浸润性膀胱癌的临床研究显示,免疫治疗不仅在晚期膀胱癌中是一种更安全、潜在有效的治疗选择,而且在疾病早期的治疗中也表现出良好的疗效。本文就肌层浸润性膀胱癌相关免疫治疗方面的进展及替雷利珠等免疫抑制剂在肌层浸润性膀胱癌中的应用展开综述。
Abstract: Muscle-invasive bladder cancer (MIBC) is one of the most aggressive malignancies in the urological system, is traditionally managed with radical cystectomy. However, this approach is associated with high morbidity, significant complications, and compromised quality of life. In recent years, perioperative immunotherapy strategies centered on immune checkpoint inhibitors (ICIs), particularly programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors, have markedly improved patient prognosis, and the therapeutic landscape has undergone unprecedented expansion. Emerging clinical trials demonstrate that immunotherapy not only serves as a safer and potentially effective option for advanced bladder cancer but also exhibits promising efficacy in early-stage disease. This article provides a comprehensive review of recent advances in immunotherapy for MIBC, with a focus on the clinical applications of immune checkpoint inhibitors, particularly PD-1 inhibitors such as tislelizumab, in the management of this disease.
文章引用:万士豪, 何云锋. 肌层浸润性膀胱癌免疫治疗进展[J]. 临床医学进展, 2025, 15(4): 2144-2150. https://doi.org/10.12677/acm.2025.1541164

1. 引言

膀胱癌(bladder cancer, BCa)是泌尿系统最常见的恶性肿瘤之一,近年来发病率呈逐渐升高趋势,在中国及世界中的新发肿瘤排名中均位居前列[1] [2]。其中,肌层浸润性膀胱癌(muscle invasive bladder cancer, MIBC)约占据25% [3],作为泌尿系统侵袭性最强的恶性肿瘤之一,传统新辅助化疗联合根治性膀胱切除术(radical cystectomy, RC)的5年生存率不足50% [4]。此外,RC手术风险高,创伤大且往往导致生活质量明显下降,高龄或基础情况差的患者难以耐受[5],因此有相当一部分MIBC患者倾向于选择保膀胱治疗[6]。近年来,各类免疫检查点抑制剂(Immune checkpoint inhibitors, ICIs)的出现,为MIBC患者的保留膀胱治疗提供了新的选择。其中,以程序性死亡受体1 (programmed death-1, PD-1)/程序性死亡配体1 (programmed cell death ligand 1, PD-L1)抑制剂为核心的围手术期免疫治疗策略在多项临床试验中大放异彩。如NIAGARA III期试验中便证实了度伐利尤单抗联合化疗可提高病理完全缓解率(pathological complete response, pCR)并延长无事件生存期(event-Free Survival, EFS) [7]。显示出PD-1/PD-L1抑制剂在晚期及转移性膀胱癌患者治疗中的独特优势。

2. 免疫逃逸机制与治疗靶点

MIBC的免疫抑制微环境由多重机制共同调控:(1) PD-L1、CTLA-4等共抑制分子介导的T细胞功能异常[8];(2) 肿瘤相关巨噬细胞(TAMs)分泌IL-10、TGF-β等抑制性细胞因子[9];(3) 调节性T细胞(Tregs)浸润及髓源性抑制细胞(MDSCs)扩增[10]。其中,PD-1作为重要的共抑制受体,主要表达于活化T/B淋巴细胞表面,其与PD-L1的相互作用在肿瘤免疫逃逸中发挥关键作用[11]。而PD-1/PD-L1抑制剂正是通过阻断PD-1/PD-L1结合,逆转T细胞功能障碍,重新激活机体对肿瘤细胞的识别与杀伤功能[12]。CTLA-4抑制剂则通过抑制CTLA-4与相应配体的结合,增强抗原呈递细胞的功能以激活初始T细胞[13]。当前免疫治疗缺少针对疗效评估的指标。有研究显示,肿瘤突变负荷(TMB) ≥ 10 mut/Mb的MIBC患者在免疫检查点抑制剂(ICIs)治疗中的获益可能相对更高,这或可作为寻找潜在预测标志物的突破口[14] [15]

3. 免疫治疗的临床应用

3.1. 新辅助治疗

免疫抑制剂在MIBC新辅助治疗方面的研究是当前的主流研究方向。研究表明,与单纯的新辅助化疗相比,度伐利尤单抗联合化疗的新辅助治疗在MIBC患者中改善了无事件生存期和总生存期,且具有良好的安全性特征[16]。在此之前,新辅助化疗因其在MIBC的治疗中可缩小原发肿瘤体积,提高手术的R0切除率,而在MIBC的术前治疗中有举足轻重的地位,但其化疗毒性对患者的身体情况有着较高要求,部分高龄、基础情况较差的人群则难以耐受,失去治疗机会。免疫治疗药物的加入,或可使这一现状得到改善。

在新辅助免疫治疗的联合用药方面,RC48-C017研究显示出令人惊喜的结果:特瑞普利单抗(PD-1抑制剂)联合维迪西妥单抗(HER2靶向ADC)新辅助治疗HER2阳性MIBC患者,pCR率达63.6% (95%CI: 45.1%~79.6%),显著优于传统化疗(36%~42%) [17],且3级以上不良事件发生率仅27.7% [18]。该方案通过抗体依赖细胞介导的细胞毒性(ADCC)与免疫激活双重机制实现协同增效,为MIBC的精准治疗提供了新的思路。

3.2. 辅助治疗

PD-1/PD-L1抑制剂在MIBC的术后辅助治疗中展现出巨大的潜力。CheckMate 274试验显示,纳武利尤单抗辅助治疗可延长DFS至20.8个月,相较于对照组DFS为10.8个月,疗效显著,且在PD-L1表达水平大于1%的患者中,纳武利尤单抗组和安慰剂组的6个月无病生存率分别为74.5%和55.7%,差异显著[15]。而AMBASSADOR试验中则表明,帕博利珠单抗辅助治疗使PD-L1阳性的肌层浸润性尿路上皮癌患者获得了显著的无病生存期(DFS)改善,而总生存期(OS)方面则无明显差异[19]。当前研究的另一个方向,是ctDNA动态监测指导的个体化辅助治疗,IMvigor011试验旨在评估ctDNA阳性的MIBC患者RC术后接受阿替利珠单抗辅助治疗的疗效,初步数据提示ctDNA清除率与DFS呈显著正相关[20]

4. 替雷利珠单抗在MIBC中的治疗进展

4.1. 新辅助治疗

新辅助免疫治疗的目标是通过术前缩小肿瘤体积,提高根治性手术的成功率,并为保膀胱治疗创造条件。替雷利珠单抗在此领域的应用主要包括单药及联合治疗两方面。

4.1.1. 单药新辅助治疗

当前替雷利珠单抗在MIBC患者中的单药新辅助治疗研究较少,关于替雷利珠的新辅助治疗主要集中于与新辅助化疗或靶向治疗的联合应用。与替雷利珠单抗同属于PD-1抑制剂的帕博利珠单抗在试验中获得了令人欣喜的结果。PURE-01研究显示,未接受额外化疗的MIBC患者,在RC术前接受帕博利珠单抗新辅助治疗后,3年RFS率可获得明显改善[21]。目前的已有研究证实,相较于传统的细胞毒性药物,替雷利珠在MIBC患者的新辅助治疗中不良反应更少,且延长了患者的生存时间[22]。相信随着后续有关替雷利珠单抗的临床试验的进一步展开,其在MIBC的新辅助治疗中的应用能获得更多开发。

4.1.2. 联合新辅助治疗

一项APL-1202 (一种选择性的人甲硫氨酸氨基肽酶Ⅱ型抑制剂)联合替雷利珠单抗的Ⅱ期试验显示[23],APL-1202联合替雷利珠单抗的pCR率为41%,显著高于单药组的20%,且安全性可控。该联合方案适用于顺铂不耐受或拒绝化疗的患者,为后续保膀胱治疗提供了新选择。

一项替雷利珠单抗联合GC化疗的多中心II期研究(BGB-A317-2002)显示,57例接受替雷利珠单抗联合GC方案的患者中,pCR率达50.9%,病理降期率(pDS)达86.1%,显著高于传统化疗(pCR率21%~30%) [24]。生物标志物分析发现,免疫炎症表型(S3亚型)患者的pCR率高达80%,提示该亚型可能成为疗效预测指标[24]

4.2. 术后辅助治疗

术后辅助免疫治疗旨在清除残留肿瘤细胞及可能的微转移灶,从而降低复发风险。CheckMate 274试验表明,在RC术后的患者中,与安慰剂治疗(对照组)相比,接受纳武利尤单抗辅助治疗的患者的中位DFS显著获益[3]。尽管替雷利珠单抗的辅助治疗数据尚在积累,缺乏足够的证据支持其临床疗效,但结合其他PD-1抑制剂在MIBC术后辅助治疗中的良好表现,以及其在新辅助治疗中展现出的潜力,替雷利珠单抗未来可能成为术后标准治疗的重要补充。

4.3. 转移性/晚期MIBC治疗

对于铂类化疗失败的晚期或转移性MIBC患者,替雷利珠单抗作为二线治疗的疗效已得到验证。其在我国已获批用于而其他PD-1/PD-L1的疗效在其他试验中也得到初步验证。IMvigor011研究显示,阿替利珠在ctDNA阳性的晚期高危MIBC患者的辅助免疫治疗中,较安慰剂组在复发率和生存期上获得改善[20]

5. 免疫联合治疗进展

5.1. 免疫联合局部放疗

一项研究结果表明,放疗或可增强抗肿瘤免疫应答,提升PD-1抑制剂在肿瘤治疗中的疗效[25]。HOPE-02研究显示,36例MIBC患者在接受新辅助化疗联合替雷利珠单抗治疗的同时,予以序贯放疗后,完全缓解率可达100%,在随访过程中仅4例患者出现复发,3年OS率达81.0% [26]。另外,在PD-1/PD-L1的分子机制研究中表明,对PD-1/PD-L1抑制剂耐药的患者中,普遍存在β-2-微球蛋白(B2M)基因突变,同时伴随T细胞的功能障碍,而放疗后肿瘤微环境中CD8+T细胞浸润密度增加,这或许增强了免疫治疗的效果[27] [28]

5.2. 靶向–免疫联合治疗

当前,由于新生代靶向药物的陆续登场,ICIs联合靶向药物亦是MIBC治疗领域研究的焦点。一项关于联合替雷利珠单抗的Ⅱ期试验显示,替雷利珠单抗联合APL-1202在部分MIBC患者中pCR可达39%,提示PD-1抑制剂与APL-1202或存在某种协同作用[23]。此外,强生公司所开发的TAR-200 (一种新型膀胱内靶向释放系统)联合西利单抗(PD-1抑制剂)在SunRISe-2试验中pCR达42%,高于单用西利单抗组(Pcr = 23%) [29]。靶向治疗与免疫治疗药物的联合应用,或许是未来主流的方向之一,但其具体疗效及不良反应仍需进一步的临床试验证明。

5.3. 保膀胱多学科协作

根据2024版《膀胱癌保膀胱治疗专家共识》推荐:cT2N0且新辅助治疗后达临床完全缓解(cCR)的患者可接受经尿道肿瘤切除联合放化疗的三联疗法(tri-modality therapy, TMT),其5年总生存率与根治性膀胱切除术相当(68.2% vs 71.5%, P = 0.32),但生活质量评分显著提高(EORTC QLQ-C30: 82 vs 64, P < 0.001) [30]。然而,其放化疗毒性仍是一个值得注意的问题。免疫检查点抑制剂的出现,或可使该方案进一步优化。有研究表明,在TMT基础上加入免疫治疗后,部分不适合行保留膀胱的TMT患者在肿瘤分级、分期方面也获得了明显改善[31],这有望扩大保留膀胱治疗的适应人群,使更多的MIBC患者获得保留膀胱的机会。

6. 挑战与转化研究方向

6.1. 生物标志物体系优化

当前PD-1/PD-L1抑制剂的免疫治疗中,以联合阳性评分(Combined Positive Score, CPS)预测疗效仍存在不确定性。如一项NIAGARA的3期临床试验中,部分PD-L1检测阴性的患者仍可从度伐利尤单抗治疗中获益[32],提示需整合多组学标志物(如T细胞受体克隆性、肠道微生物组特征)。基于TCGA分子分型,基底/鳞状细胞亚型(Basal/Squamous)对ICIs响应率最高(ORR = 44%) [33],而管腔乳头状亚型(Luminal Papillary)则更适合FGFR抑制剂联合治疗[34]

6.2. 耐药机制与逆转策略

有研究表明,在结直肠癌患者中,针对PD-1/PD-L1的耐药机制可能与患者肿瘤微环境中B2M突变相关,并建议所有使用PD-1/PD-L1抑制剂的临床试验都应尽量考虑原发灶的B2M突变状态[27]。未来或许可通过针对该突变的进一步研究,使部分对PD-1/PD-L1耐药的患者重新获得免疫治疗的机会。Matthew M Gubin的研究发现,肿瘤特异性突变抗原是PD-1治疗中的T细胞免疫应答的主要排斥抗原[35]。该发现不仅证实肿瘤特异性突变抗原是检查点阻断治疗的重要作用靶点,同时为开发个体化肿瘤疫苗及解析不同检查点阻断疗法的机制差异提供了理论依据。

6.3. 新型疗法开发

在一项关于溶瘤病毒疗法(CG0070)联合帕博利珠单抗的研究中,35例患者中共有29例(82.9%)在治疗达3个月时获得完全缓解[36]。但是,其纳入的主要为高风险的非肌层浸润性膀胱癌患者,尚缺乏该疗法针对MIBC的临床证据。此外,免疫治疗作为一种MIBC的新兴治疗手段,其与多种治疗手段相结合的新型联合疗法,在临床试验中取得了较为满意的结果。一项针对局限性MIBC患者的临床试验中,度伐利尤单抗(PD-L1抑制剂)联合替西木单抗(CTLA-4抑制剂)及放疗的疗法,完全缓解率达到81% [37]

7. 结论与展望

MIBC作为一种侵袭性强,致死率高的疾病,其治疗受到医师的重视。但是,其金标准治疗方案RC存在高手术风险、低生活质量、高复发等不足。当前,随着各类免疫检查点抑制剂的相继问世,免疫治疗已深刻改变MIBC治疗格局,但多数药物仍处在临床试验阶段,仍需更大规模的试验验证疗效。另外,HER-2抑制剂等靶向药物的出现,也为免疫联合治疗提供了参考。未来,通过寻找新的免疫治疗作用靶点及免疫治疗生物标记物,结合ctDNA微小残留病灶检测的指导分层治疗[15]、双免疫检查点阻断联合ADC的增效模式以及保膀胱综合治疗体系的标准化,有望为MIBC的免疫治疗带来革新与突破,为患者提供更为个性化、精细化的治疗[38] [39]。随着各种新型药物及精准化治疗的进一步开发,相信MIBC在未来有望成为一种相对可控、预后较好的疾病。

NOTES

*通讯作者。

参考文献

[1] 李辉章, 郑荣寿, 杜灵彬, 等. 中国膀胱癌流行现状与趋势分析[J]. 中华肿瘤杂志, 2021, 43(3): 293-298.
[2] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[3] Alfred Witjes, J., Max Bruins, H., Carrión, A., Cathomas, R., Compérat, E., Efstathiou, J.A., et al. (2024) European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2023 Guidelines. European Urology, 85, 17-31.
https://doi.org/10.1016/j.eururo.2023.08.016
[4] Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[5] Ramani, V.A.C., Maddineni, S.B., Grey, B.R. and Clarke, N.W. (2010) Differential Complication Rates Following Radical Cystectomy in the Irradiated and Nonirradiated Pelvis. European Urology, 57, 1058-1063.
https://doi.org/10.1016/j.eururo.2009.12.002
[6] Gray, P.J., Fedewa, S.A., Shipley, W.U., Efstathiou, J.A., Lin, C.C., Zietman, A.L., et al. (2013) Use of Potentially Curative Therapies for Muscle-Invasive Bladder Cancer in the United States: Results from the National Cancer Data Base. European Urology, 63, 823-829.
https://doi.org/10.1016/j.eururo.2012.11.015
[7] Powles, T., Rosenberg, J.E., Sonpavde, G.P., et al. (2025) NIAGARA: A Phase 3 Trial of Durvalumab Plus Gemcitabine and Cisplatin in Muscle-Invasive Bladder Cancer. The Lancet Oncology, 26, 345-357.
[8] Alfred Witjes, J., Max Bruins, H., Carrión, A., Cathomas, R., Compérat, E., Efstathiou, J.A., et al. (2024) European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2023 Guidelines. European Urology, 85, 17-31.
https://doi.org/10.1016/j.eururo.2023.08.016
[9] Crispen, P.L. and Kusmartsev, S. (2019) Mechanisms of Immune Evasion in Bladder Cancer. Cancer Immunology, Immunotherapy, 69, 3-14.
https://doi.org/10.1007/s00262-019-02443-4
[10] Serritella, A.V. and Shenoy, N.K. (2023) Nivolumab Plus Ipilimumab vs Nivolumab Alone in Advanced Cancers Other than Melanoma: A Meta-Analysis. JAMA Oncology, 9, 1441-1446.
https://doi.org/10.1001/jamaoncol.2023.3295
[11] Nishimura, H. and Honjo, T. (2001) PD-1: An Inhibitory Immunoreceptor Involved in Peripheral Tolerance. Trends in Immunology, 22, 265-268.
https://doi.org/10.1016/s1471-4906(01)01888-9
[12] Sharma, P., Hu-Lieskovan, S., Wargo, J.A. and Ribas, A. (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168, 707-723.
https://doi.org/10.1016/j.cell.2017.01.017
[13] Liu, Y. and Zheng, P. (2020) Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends in Pharmacological Sciences, 41, 4-12.
https://doi.org/10.1016/j.tips.2019.11.003
[14] Hu, J., Chen, J., Ou, Z., et al. (2022) Neoadjuvant Immunotherapy, Chemotherapy, and Combination Therapy in Muscle-Invasive Bladder Cancer: A Multi-Center Real-World Retrospective Study. Cell Reports Medicine, 3, Article ID: 100785.
https://doi.org/10.1016/j.xcrm.2022.100785
[15] Bajorin, D.F., Witjes, J.A., Gschwend, J.E., Schenker, M., Valderrama, B.P., Tomita, Y., et al. (2021) Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. New England Journal of Medicine, 384, 2102-2114.
https://doi.org/10.1056/nejmoa2034442
[16] Powles, T., Catto, J.W.F., Galsky, M.D., et al. (2024) Perioperative Durvalumab with Neoadjuvant Chemotherapy in Operable Bladder Cancer. New England Journal of Medicine, 391, 1773-1786.
https://doi.org/10.1056/NEJMoa2408154
[17] Zhou, L., Yang, K.W., Zhang, S., Yan, X.Q., Li, S.M., Xu, H.Y., et al. (2025) Disitamab Vedotin Plus Toripalimab in Patients with Locally Advanced or Metastatic Urothelial Carcinoma (RC48-C014): A Phase IB/II Dose-Escalation and Dose-Expansion Study. Annals of Oncology, 36, 331-339.
https://doi.org/10.1016/j.annonc.2024.12.002
[18] Wen, F., Lin, T., Zhang, P. and Shen, Y. (2024) RC48-ADC Combined with Tislelizumab as Neoadjuvant Treatment in Patients with HER2-Positive Locally Advanced Muscle-Invasive Urothelial Bladder Cancer: A Multi-Center Phase IB/II Study (Hope-03). Frontiers in Oncology, 13, Article 1233196.
https://doi.org/10.3389/fonc.2023.1233196
[19] Balar, A.V., Kamat, A.M., Kulkarni, G.S., Uchio, E.M., Boormans, J.L., Roumiguié, M., et al. (2021) Pembrolizumab Monotherapy for the Treatment of High-Risk Non-Muscle-Invasive Bladder Cancer Unresponsive to BCG (KEYNOTE-057): An Open-Label, Single-Arm, Multicentre, Phase 2 Study. The Lancet Oncology, 22, 919-930.
https://doi.org/10.1016/s1470-2045(21)00147-9
[20] Jackson-Spence, F., Toms, C., O’Mahony, L.F., Choy, J., Flanders, L., Szabados, B., et al. (2023) IMvigor011: A Study of Adjuvant Atezolizumab in Patients with High-Risk MIBC Who Are CTDNA+ Post-Surgery. Future Oncology, 19, 509-515.
https://doi.org/10.2217/fon-2022-0868
[21] Necchi, A., Raggi, D., Gallina, A., et al. (2020) Pembrolizumab as Neoadjuvant Therapy Before Radical Cystectomy in MIBC (PURE-01). Journal of Clinical Oncology, 38, 3353-3362.
[22] Netto, G.J. (2016) Role for Anti-PD-L1 Immune Checkpoint Inhibitor in Advanced Urothelial Carcinoma. The Lancet, 387, 1881-1882.
https://doi.org/10.1016/s0140-6736(16)00654-1
[23] Galsky, M.D., Sfakianos, J.P., Ye, D., He, D., Hu, H., Song, X., et al. (2024) Oral APL-1202 in Combination with Tislelizumab as Neoadjuvant Therapy in Patients with Muscle-Invasive Bladder Cancer (MIBC): Interim Analysis of Anticipate Phase II Trial. Journal of Clinical Oncology, 42, 632-632.
https://doi.org/10.1200/jco.2024.42.4_suppl.632
[24] Li, K., Zhong, W., Fan, J., Wang, S., Yu, D., Xu, T., et al. (2024) Neoadjuvant Gemcitabine-Cisplatin Plus Tislelizumab in Persons with Resectable Muscle-Invasive Bladder Cancer: A Multicenter, Single-Arm, Phase 2 Trial. Nature Cancer, 5, 1465-1478.
https://doi.org/10.1038/s43018-024-00822-0
[25] Zhao, Z., Liu, S., Zhou, T., Chen, G., Long, H., Su, X., et al. (2024) Stereotactic Body Radiotherapy with Sequential Tislelizumab and Chemotherapy as Neoadjuvant Therapy in Patients with Resectable Non-Small-Cell Lung Cancer in China (SACTION01): A Single-Arm, Single-Centre, Phase 2 Trial. The Lancet Respiratory Medicine, 12, 988-996.
https://doi.org/10.1016/s2213-2600(24)00215-7
[26] Bellmunt, J., Hussain, M., Gschwend, J.E., Albers, P., Oudard, S., Castellano, D., et al. (2021) Adjuvant Atezolizumab versus Observation in Muscle-Invasive Urothelial Carcinoma (IMvigor010): A Multicentre, Open-Label, Randomised, Phase 3 Trial. The Lancet Oncology, 22, 525-537.
https://doi.org/10.1016/s1470-2045(21)00004-8
[27] Janikovits, J., Müller, M., Krzykalla, J., Körner, S., Echterdiek, F., Lahrmann, B., et al. (2017) High Numbers of PDCD1 (Pd-1)-Positive T Cells and B2M Mutations in Microsatellite-Unstable Colorectal Cancer. OncoImmunology, 7, e1390640.
https://doi.org/10.1080/2162402x.2017.1390640
[28] Sun, J., Zhang, D., Wu, S., Xu, M., Zhou, X., Lu, X., et al. (2020) Resistance to PD-1/PD-L1 Blockade Cancer Immunotherapy: Mechanisms, Predictive Factors, and Future Perspectives. Biomarker Research, 8, Article No. 35.
https://doi.org/10.1186/s40364-020-00212-5
[29] Williams, S., Cutie, C., Keegan, K.A., Raybold, B., Stewart, R., Acharya, M., et al. (2021) Sunrise-2: A Phase 3, Multicenter, Randomized Study Evaluating the Efficacy of TAR-200 in Combination with Cetrelimab versus Concurrent Chemoradiotherapy in Participants with Muscle-Invasive Urothelial Carcinoma of the Bladder. European Urology Open Science, 33, S376.
https://doi.org/10.1016/s2666-1683(21)03201-8
[30] Liu, J., Wang, H., Li, X., et al. (2024) Safety and Efficacy of Neoadjuvant Immunotherapy Combined with Chemotherapy for MIBC: A Retrospective Analysis. ModMed Urology, 29, 1-10.
[31] Witjes, J.A., Bruins, H.M., Cathomas, R., Compérat, E.M., Cowan, N.C., Gakis, G., et al. (2021) European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. European Urology, 79, 82-104.
https://doi.org/10.1016/j.eururo.2020.03.055
[32] Raggi, D. and Huddart, R.A. (2024) Transformative or Transitional? Deciphering the Role of NIAGARA in Shaping Future Practice. Med, 5, 1456-1458.
https://doi.org/10.1016/j.medj.2024.11.004
[33] European Association of Urology (EAU) (2023) Guidelines on Muscle-Invasive and Metastatic Bladder Cancer (2023 Edition). European Urology, 84, 789-801.
[34] Loriot, Y., Necchi, A., Park, S.H., Garcia-Donas, J., Huddart, R., Burgess, E., et al. (2019) Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. New England Journal of Medicine, 381, 338-348.
https://doi.org/10.1056/nejmoa1817323
[35] Gubin, M.M., Zhang, X., Schuster, H., Caron, E., Ward, J.P., Noguchi, T., et al. (2014) Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens. Nature, 515, 577-581.
https://doi.org/10.1038/nature13988
[36] Li, R., Shah, P.H., Stewart, T.F., Nam, J.K., Bivalacqua, T.J., Lamm, D.L., et al. (2024) Author Correction: Oncolytic Adenoviral Therapy Plus Pembrolizumab in BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer: The Phase 2 CORE-001 Trial. Nature Medicine, 30, 2372-2372.
https://doi.org/10.1038/s41591-024-03137-w
[37] Cuellar, M.A., Medina, A., Girones, R., Valderrama, B.P., Font, A., Juan-fita, M., et al. (2020) Phase II Trial of Durvalumab Plus Tremelimumab with Concurrent Radiotherapy as Bladder-Sparing Therapy in Patients with Localized Muscle Invasive Bladder Cancer: A SOGUG Study. Journal of Clinical Oncology, 38, TPS5097.
https://doi.org/10.1200/jco.2020.38.15_suppl.tps5097
[38] Rose, T.L., Milowsky, M.I., Fraietta, J.A., et al. (2021) Phase 2 Study of Enfortumab Vedotin in Metastatic Urothelial Cancer. Journal of Clinical Oncology, 39, 4517.
[39] Chinese Society of Clinical Oncology (CSCO) (2024) Expert Consensus on Multidisciplinary Management of Bladder Preservation for MIBC (2024 Edition). Chinese Journal of Oncology, 46, 891-905.