[1]
|
Geno, K.A., Gilbert, G.L., Song, J.Y., Skovsted, I.C., Klugman, K.P., Jones, C., et al. (2015) Pneumococcal Capsules and Their Types: Past, Present, and Future. Clinical Microbiology Reviews, 28, 871-899. https://doi.org/10.1128/cmr.00024-15
|
[2]
|
鲍燕敏, 郑跃杰, 杨永弘. 《中国儿童肺炎链球菌性疾病诊断,治疗和预防专家共识》解读[J]. 中华实用儿科临床杂志, 2021, 36(21): 1601-1604.
|
[3]
|
Wang, B., Lin, W., Qian, C., Zhang, Y., Zhao, G., Wang, W., et al. (2023) Disease Burden of Meningitis Caused by Streptococcus Pneumoniae among Under-Fives in China: A Systematic Review and Meta-Analysis. Infectious Diseases and Therapy, 12, 2567-2580. https://doi.org/10.1007/s40121-023-00878-y
|
[4]
|
Heggi, M.T., Nour El-Din, H.T., Morsy, D.I., Abdelaziz, N.I. and Attia, A.S. (2024) Microbial Evasion of the Complement System: A Continuous and Evolving Story. Frontiers in Immunology, 14, Article 1281096. https://doi.org/10.3389/fimmu.2023.1281096
|
[5]
|
Hyams, C., Camberlein, E., Cohen, J.M., Bax, K. and Brown, J.S. (2010) Thestreptococcuspneumoniaecapsule Inhibits Complement Activity and Neutrophil Phagocytosis by Multiple Mechanisms. Infection and Immunity, 78, 704-715. https://doi.org/10.1128/iai.00881-09
|
[6]
|
Hyams, C., Trzcinski, K., Camberlein, E., Weinberger, D.M., Chimalapati, S., Noursadeghi, M., et al. (2013) Streptococcus Pneumoniae Capsular Serotype Invasiveness Correlates with the Degree of Factor H Binding and Opsonization with C3b/iC3b. Infection and Immunity, 81, 354-363. https://doi.org/10.1128/iai.00862-12
|
[7]
|
Thompson, C.D., Bradshaw, J.L., Miller, W.S., Vidal, A.G.J., Vidal, J.E., Rosch, J.W., et al. (2023) Oligopeptide Transporters of Nonencapsulated Streptococcus Pneumoniae Regulate CbpAC and PspA Expression and Reduce Complement-Mediated Clearance. mBio, 14, e03325-22. https://doi.org/10.1128/mbio.03325-22
|
[8]
|
Li, J., Szalai, A.J., Hollingshead, S.K., Nahm, M.H. and Briles, D.E. (2009) Antibody to the Type 3 Capsule Facilitates Immune Adherence of Pneumococci to Erythrocytes and Augments Their Transfer to Macrophages. Infection and Immunity, 77, 464-471. https://doi.org/10.1128/iai.00892-08
|
[9]
|
Brady, A.M., Calix, J.J., Yu, J., Geno, K.A., Cutter, G.R. and Nahm, M.H. (2014) Low Invasiveness of Pneumococcal Serotype 11A Is Linked to Ficolin-2 Recognition of O-Acetylated Capsule Epitopes and Lectin Complement Pathway Activation. The Journal of Infectious Diseases, 210, 1155-1165. https://doi.org/10.1093/infdis/jiu195
|
[10]
|
Yother, J. and Briles, D.E. (1992) Structural Properties and Evolutionary Relationships of PspA, a Surface Protein of Streptococcus Pneumoniae, as Revealed by Sequence Analysis. Journal of Bacteriology, 174, 601-609. https://doi.org/10.1128/jb.174.2.601-609.1992
|
[11]
|
Mukerji, R., Mirza, S., Roche, A.M., Widener, R.W., Croney, C.M., Rhee, D., et al. (2012) Pneumococcal Surface Protein a Inhibits Complement Deposition on the Pneumococcal Surface by Competing with the Binding of C-Reactive Protein to Cell-Surface Phosphocholine. The Journal of Immunology, 189, 5327-5335. https://doi.org/10.4049/jimmunol.1201967
|
[12]
|
Ren, B., Szalai, A.J., Hollingshead, S.K. and Briles, D.E. (2004) Effects of PspA and Antibodies to PspA on Activation and Deposition of Complement on the Pneumococcal Surface. Infection and Immunity, 72, 114-122. https://doi.org/10.1128/iai.72.1.114-122.2004
|
[13]
|
Ren, B., McCrory, M.A., Pass, C., Bullard, D.C., Ballantyne, C.M., Xu, Y., et al. (2004) The Virulence Function of Streptococcus Pneumoniae Surface Protein a Involves Inhibition of Complement Activation and Impairment of Complement Receptor-Mediated Protection. The Journal of Immunology, 173, 7506-7512. https://doi.org/10.4049/jimmunol.173.12.7506
|
[14]
|
Ren, B., Li, J., Genschmer, K., Hollingshead, S.K. and Briles, D.E. (2012) The Absence of PspA or Presence of Antibody to PspA Facilitates the Complement-Dependent Phagocytosis of Pneumococci in Vitro. Clinical and Vaccine Immunology, 19, 1574-1582. https://doi.org/10.1128/cvi.00393-12
|
[15]
|
Li, J., Glover, D.T., Szalai, A.J., Hollingshead, S.K. and Briles, D.E. (2007) PspA and PspC Minimize Immune Adherence and Transfer of Pneumococci from Erythrocytes to Macrophages through Their Effects on Complement Activation. Infection and Immunity, 75, 5877-5885. https://doi.org/10.1128/iai.00839-07
|
[16]
|
Darrieux, M., Miyaji, E.N., Ferreira, D.M., Lopes, L.M., Lopes, A.P.Y., Ren, B., et al. (2007) Fusion Proteins Containing Family 1 and Family 2 PspA Fragments Elicit Protection against Streptococcus Pneumoniae That Correlates with Antibody-Mediated Enhancement of Complement Deposition. Infection and Immunity, 75, 5930-5938. https://doi.org/10.1128/iai.00940-07
|
[17]
|
Moreno, A.T., Oliveira, M.L.S., Ferreira, D.M., Ho, P.L., Darrieux, M., Leite, L.C.C., et al. (2010) Immunization of Mice with Single PspA Fragments Induces Antibodies Capable of Mediating Complement Deposition on Different Pneumococcal Strains and Cross-protection. Clinical and Vaccine Immunology, 17, 439-446. https://doi.org/10.1128/cvi.00430-09
|
[18]
|
Goulart, C., Darrieux, M., Rodriguez, D., Pimenta, F.C., Brandileone, M.C.C., de Andrade, A.L.S.S., et al. (2011) Selection of Family 1 PspA Molecules Capable of Inducing Broad-Ranging Cross-Reactivity by Complement Deposition and Opsonophagocytosis by Murine Peritoneal Cells. Vaccine, 29, 1634-1642. https://doi.org/10.1016/j.vaccine.2010.12.074
|
[19]
|
Ochs, M.M., Bartlett, W., Briles, D.E., Hicks, B., Jurkuvenas, A., Lau, P., et al. (2008) Vaccine-Induced Human Antibodies to PspA Augment Complement C3 Deposition on Streptococcus Pneumoniae. Microbial Pathogenesis, 44, 204-214. https://doi.org/10.1016/j.micpath.2007.09.007
|
[20]
|
Pathak, A., Bergstrand, J., Sender, V., Spelmink, L., Aschtgen, M., Muschiol, S., et al. (2018) Factor H Binding Proteins Protect Division Septa on Encapsulated Streptococcus Pneumoniae against Complement C3b Deposition and Amplification. Nature Communications, 9, Article No.3398. https://doi.org/10.1038/s41467-018-05494-w
|
[21]
|
Herbert, A.P., Makou, E., Chen, Z.A., Kerr, H., Richards, A., Rappsilber, J., et al. (2015) Complement Evasion Mediated by Enhancement of Captured Factor H: Implications for Protection of Self-Surfaces from Complement. The Journal of Immunology, 195, 4986-4998. https://doi.org/10.4049/jimmunol.1501388
|
[22]
|
Orihuela, C.J., Mahdavi, J., Thornton, J., Mann, B., Wooldridge, K.G., Abouseada, N., et al. (2009) Laminin Receptor Initiates Bacterial Contact with the Blood Brain Barrier in Experimental Meningitis Models. Journal of Clinical Investigation, 119, 1638-1646. https://doi.org/10.1172/jci36759
|
[23]
|
Dave, S., Carmicle, S., Hammerschmidt, S., Pangburn, M.K. and McDaniel, L.S. (2004) Dual Roles of PspC, a Surface Protein of Streptococcus Pneumoniae, in Binding Human Secretory Iga and Factor H. The Journal of Immunology, 173, 471-477. https://doi.org/10.4049/jimmunol.173.1.471
|
[24]
|
Smith, B.L. and Hostetter, M.K. (2000) C3 as Substrate for Adhesion of Streptococcus Pneumoniae. The Journal of Infectious Diseases, 182, 497-508. https://doi.org/10.1086/315722
|
[25]
|
Kerr, A.R., Paterson, G.K., McCluskey, J., Iannelli, F., Oggioni, M.R., Pozzi, G., et al. (2006) The Contribution of PspC to Pneumococcal Virulence Varies between Strains and Is Accomplished by Both Complement Evasion and Complement-Independent Mechanisms. Infection and Immunity, 74, 5319-5324. https://doi.org/10.1128/iai.00543-06
|
[26]
|
Rai, P., He, F., Kwang, J., Engelward, B.P. and Chow, V.T.K. (2016) Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest. Scientific Reports, 6, Article No. 22972. https://doi.org/10.1038/srep22972
|
[27]
|
Chang, S., Chen, C., Lin, J., Wang, H., Mori, S., Li, J., et al. (2020) Truncated Pneumolysin from Streptococcus Pneumoniae as a Tlr4-Antagonizing New Drug for Chronic Inflammatory Conditions. Cells, 9, Article 1183. https://doi.org/10.3390/cells9051183
|
[28]
|
Malley, R., Henneke, P., Morse, S.C., Cieslewicz, M.J., Lipsitch, M., Thompson, C.M., et al. (2003) Recognition of Pneumolysin by Toll-Like Receptor 4 Confers Resistance to Pneumococcal Infection. Proceedings of the National Academy of Sciences, 100, 1966-1971. https://doi.org/10.1073/pnas.0435928100
|
[29]
|
McNeela, E.A., Burke, Á., Neill, D.R., Baxter, C., Fernandes, V.E., Ferreira, D., et al. (2010) Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of Tlr4. PLOS Pathogens, 6, e1001191. https://doi.org/10.1371/journal.ppat.1001191
|
[30]
|
Nel, J.G., Theron, A.J., Durandt, C., Tintinger, G.R., Pool, R., Mitchell, T.J., et al. (2016) Pneumolysin Activates Neutrophil Extracellular Trap Formation. Clinical and Experimental Immunology, 184, 358-367. https://doi.org/10.1111/cei.12766
|
[31]
|
Henderson, B. and Martin, A. (2011) Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease. Infection and Immunity, 79, 3476-3491. https://doi.org/10.1128/iai.00179-11
|
[32]
|
Henderson, B. and Martin, A. (2011) Bacterial Moonlighting Proteins and Bacterial Virulence. In: Current Topics in Microbiology and Immunology, Springer, 155-213. https://doi.org/10.1007/82_2011_188
|
[33]
|
Li, S., Zhang, H., Xiao, J., Yuan, T., Shu, Z., Min, Y., et al. (2020) Streptococcus Pneumoniae Endopeptidase O Promotes the Clearance of Staphylococcus Aureus and Streptococcus Pneumoniae via SH2 Domain-Containing Inositol Phosphatase 1-Mediated Complement Receptor 3 Upregulation. Frontiers in Cellular and Infection Microbiology, 10, Article 358. https://doi.org/10.3389/fcimb.2020.00358
|
[34]
|
Agarwal, V., Sroka, M., Fulde, M., Bergmann, S., Riesbeck, K. and Blom, A.M. (2014) Binding of Streptococcus Pneumoniae Endopeptidase O (Pepo) to Complement Component C1q Modulates the Complement Attack and Promotes Host Cell Adherence. Journal of Biological Chemistry, 289, 15833-15844. https://doi.org/10.1074/jbc.m113.530212
|
[35]
|
Bergmann, S., Rohde, M., Preissner, K.T. and Hammerschmidt, S. (2005) The Nine Residue Plasminogen-Binding Motif of the Pneumococcal Enolase Is the Major Cofactor of Plasmin-Mediated Degradation of Extracellular Matrix, Dissolution of Fibrin and Transmigration. Thrombosis and Haemostasis, 94, 304-311. https://doi.org/10.1160/th05-05-0369
|
[36]
|
Bergmann, S., Schoenen, H. and Hammerschmidt, S. (2013) The Interaction between Bacterial Enolase and Plasminogen Promotes Adherence of Streptococcus Pneumoniae to Epithelial and Endothelial Cells. International Journal of Medical Microbiology, 303, 452-462. https://doi.org/10.1016/j.ijmm.2013.06.002
|
[37]
|
Agarwal, V. and Blom, A.M. (2015) Roles of Complement C1q in Pneumococcus-Host Interactions. Critical Reviews in Immunology, 35, 173-184. https://doi.org/10.1615/critrevimmunol.2015012177
|
[38]
|
Agarwal, V., Hammerschmidt, S., Malm, S., Bergmann, S., Riesbeck, K. and Blom, A.M. (2012) Enolase of Streptococcus Pneumoniae Binds Human Complement Inhibitor C4b-Binding Protein and Contributes to Complement Evasion. The Journal of Immunology, 189, 3575-3584. https://doi.org/10.4049/jimmunol.1102934
|
[39]
|
Attali, C., Durmort, C., Vernet, T. and Di Guilmi, A.M. (2008) The Interaction of Streptococcus Pneumoniae with Plasmin Mediates Transmigration across Endothelial and Epithelial Monolayers by Intercellular Junction Cleavage. Infection and Immunity, 76, 5350-5356. https://doi.org/10.1128/iai.00184-08
|
[40]
|
Terrasse, R., Tacnet-Delorme, P., Moriscot, C., Pérard, J., Schoehn, G., Vernet, T., et al. (2012) Human and Pneumococcal Cell Surface Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein. Journal of Biological Chemistry, 287, 42620-42633. https://doi.org/10.1074/jbc.m112.423731
|
[41]
|
Fulde, M., Bernardo-García, N., Rohde, M., Nachtigall, N., Frank, R., Preissner, K.T., et al. (2014) Pneumococcal Phosphoglycerate Kinase Interacts with Plasminogen and Its Tissue Activator. Thrombosis and Haemostasis, 112, 401-416. https://doi.org/10.1160/th13-05-0421
|
[42]
|
Blom, A.M., Bergmann, S., Fulde, M., Riesbeck, K. and Agarwal, V. (2014) Streptococcus Pneumoniae Phosphoglycerate Kinase Is a Novel Complement Inhibitor Affecting the Membrane Attack Complex Formation. Journal of Biological Chemistry, 289, 32499-32511. https://doi.org/10.1074/jbc.m114.610212
|