肺炎链球菌表面蛋白逃避补体系统介导的免疫反应机制的研究进展
Advances in the Mechanism of Streptococcus Pneumoniae Surface Proteins Evading the Immune Response Mediated by the Complement System
DOI: 10.12677/acm.2025.1541169, PDF, HTML, XML,   
作者: 万学每, 刘成军*:重庆医科大学附属儿童医院重症医学科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童代谢与炎症性疾病重庆市重点实验室,重庆
关键词: 肺炎链球菌补体系统免疫逃避表面蛋白Streptococcus Pneumoniae Complement System Immune Evasion Pneumococcal Surface Proteins
摘要: 尽管抗生素及疫苗的使用降低了肺炎链球菌肺炎的发病率及病死率,肺炎链球菌性疾病仍然是全球5岁以下儿童感染和死亡的常见原因。补体系统对肺炎链球菌的免疫防御相关研究众多,研究表明肺炎球菌表面蛋白在限制补体介导的免疫系统的溶菌过程和吞噬过程中发挥了重要的作用。本文综述了肺炎链球菌表面蛋白为逃避机体补体系统介导的免疫反应的机制,为后续相关研究开展提供借鉴。
Abstract: The widespread use of antibiotics and vaccines has reduced the incidence and mortality of Streptococcus pneumonia, yet, pneumococcal disease remains a common cause of infection and death in children under 5 years old. Studies related to the immune defense of the complement system against streptococcus pneumoniae are numbered, and show that pneumococcal surface proteins play an important role in limiting complement mediated opsonization and phagocytosis of the immune system. This review focuses on the mechanism of Streptococcus pneumoniae surface proteins evading the immune response mediated by the complement system, providing a reference for the future related research.
文章引用:万学每, 刘成军. 肺炎链球菌表面蛋白逃避补体系统介导的免疫反应机制的研究进展[J]. 临床医学进展, 2025, 15(4): 2186-2192. https://doi.org/10.12677/acm.2025.1541169

1. 引言

肺炎链球菌属于链球菌属,是革兰氏阳性双球菌,兼性厌氧,肺炎链球菌的血清学分型主要根据其表面荚膜多糖抗原,目前共报道了97种[1]。肺炎链球菌是引起儿童急性中耳炎、鼻窦炎、支气管炎、肺炎、败血症、脑膜炎常见的病原菌,少数情况下也会引起儿童软组织炎、骨关节炎(化脓性关节炎、骨髓炎)、心内膜炎、腹膜炎、淋巴结炎、坏死性筋膜炎、胰腺脓肿、肝脓肿、卵巢脓肿、睾丸脓肿等[2]。是全球范围内5岁以下儿童感染及死亡的重要病原菌,据报道,中国5岁以下儿童肺炎链球菌脑膜炎的发病率为5.9/10,000~74.6/10,000,病死率为19.35%~30.28% [3]

补体系统是机体先天性免疫系统的重要组成之一,由多种可溶性蛋白、膜结合性蛋白和补体受体组成,补体蛋白主要由肝细胞和巨噬细胞产生,主要分布在血液、组织液及细胞膜表面。补体系统的调控过程既精密又复杂,在抵御病原微生物的入侵、清除免疫复合物、维持机体内环境稳定等方面发挥着重要作用[4]。补体系统的激活主要由3种途径参与:经典途径、旁路途径及凝集素途径,最终均可在细胞膜表面形成膜攻击复合物导致细胞的溶解。

当肺炎链球菌入侵机体时,补体系统的激活在机体的免疫反应中发挥着重要作用。肺炎链球菌为了逃避补体系统介导的免疫反应,进化出了多种表面蛋白,这些表面蛋白有利肺炎链球菌抑制补体系统的活化,从而逃避其介导的免疫反应。现对相关表面蛋白及其对补体系统的作用、免疫逃避机制综述如下,为后续相关的研究提供一定的借鉴,为肺炎链球菌疫苗的研发提供一定的参考。

2. 肺炎链球菌荚膜多糖

荚膜多糖是肺炎链球菌主要的毒力因子,荚膜多糖抗原是其血清学分型的主要依据。Hyams等人的研究[5]发现:荚膜多糖可抑制经典途径和旁路途径的激活从而抑制免疫细胞对肺炎链球菌的吞噬作用,也可阻止C3b向iC3b的转化;还可阻止肺炎链球菌与IgG,IgM和CRP的结合。Hyams等人的研究团队又在后续的研究中[6]发现:不同血清型的肺炎链球菌的表面蛋白C和H因子的结合能力不同,且这种结合能力和肺炎链球菌的侵袭性呈负相关。Thompson等人的研究[7]发现:无荚膜的肺炎链球菌可通过调节胆碱结合蛋白AC的表达,抑制CRP与肺炎链球菌表面的结合,从而阻断经典途径的激活,提高其毒力和在机体的存活率。Li等人[8]则对比了实验组(3型肺炎链球菌 + 荚膜多糖单克隆抗体)及对照组(3型肺炎链球菌)中补体C3、C1q和C4在肺炎链球菌表面的沉积量,发现实验组的明显高于对照组,且实验组中红细胞对菌株的免疫粘附作用更强,实验组菌株从红细胞向巨噬细胞的转移更明显,提示荚膜多糖单克隆抗体有利于机体免疫系统抵抗肺炎链球菌的感染。后续的一项研究[9]通过流行病学荟萃分析方法比较了30种较流行的肺炎球菌血清型的侵袭性,该研究发现11A血清型的肺炎链球菌侵袭性最低,且其侵袭性和荚膜多糖中的o-乙酰化表位相关,该表位可以被ficolin-2 (一种凝集素途径的启动因子)识别并激活凝集素途径,从而介导机体对肺炎链球菌的吞噬。

3. 肺炎链球菌表面蛋白A

表面蛋白也是肺炎链球菌重要的毒力因子,在肺炎链球菌性疾病的发生发展过程中起到了重要的作用。表面蛋白A的C端附着在细菌细胞壁上的磷酸化胆碱残基上,N端结构域则暴露在细菌表面[10]。Mukerji等人的研究[11]表明:表面蛋白A可以竞争性地抑制CRP与细菌细胞壁上的磷酸胆碱的结合,从而抑制补体的产生。Ren等人的研究[12]则发现:运用表面蛋白A缺乏菌株感染小鼠,小鼠体内的补体C3产生得更多,单独抑制小鼠体内补体激活的经典途径后补体C3的产生明显受到抑制,单独抑制小鼠体内补体激活的旁路途径后补体C3的产生部分受到抑制,提示表面蛋白A可抑制机体补体系统激活的经典途径和旁路途径。Ren等人的另一项研究[13]发现:不表达D因子的小鼠对表面蛋白A缺乏菌株更易感,表明表面蛋白A介导的补体抑制需要旁路途径的参与,该研究同时还对肺炎链球菌表面补体C3降解的片段C3b和iC3b进行了检测,发现表面蛋白A缺乏菌株组的iC3b水平更高,提示表面蛋白A抑制了iC3b生成。Ren等人在后续的研究[14]中又发现,表面蛋白A抑制机体补体系统进而抑制了吞噬细胞对肺炎链球菌的清除。Li等人的研究[15]发现:表面蛋白A对补体系统的抑制可通过抑制红细胞对肺炎链球菌的免疫黏附从而抑制免疫系统对肺炎链球菌的吞噬作用,同时抑制表面蛋白A和表面蛋白C,红细胞的黏附作用及吞噬作用更强,也提示了表面蛋白A和表面蛋白C可协同促进肺炎链球菌对补体系统的抑制作用。Darrieux等、Moreno等、Goulart等先后通过研究[16]-[18]发现:与表面蛋白A片段免疫的小鼠和正常小鼠相比,免疫小鼠被肺炎链球菌感染后的存活率有所增加,且存活率和表面蛋白A抗体水平呈正相关,表明表面蛋白A抗体的产生有助于机体通过补体系统介导肺炎链球菌的清除,Ochs等[19]运用肺炎链球菌表面蛋白A免疫的人的血清也获得了类似的结果。

4. 肺炎链球菌表面蛋白C

肺炎链球菌表面蛋白C有与肺炎链球菌表面蛋白A高度同源的胆碱结合结构域,其既是一种黏附素,也是一种侵袭蛋白,在肺炎链球菌黏附、入侵和逃避机体补体系统进攻过程中发挥着重要的作用。其主要通过以下机制逃避补体系统介导的机体免疫反应:1) 结合宿主的补体调节蛋白H因子抑制补体在细菌表面的沉积。2) 与黏膜表面的sIgA结合。3) 与上皮细胞表面的糖蛋白或细胞外基质成分结合,增强其在宿主组织的黏附能力。Pathak等人的研究[20]发现:肺炎球菌表面蛋白C能够与H因子结合,从而抑制补体C3介导的吞噬作用、抑制膜攻击复合物的形成以及抑制粘附蛋白的功能。Herberte等人的研究发现[21]:肺炎球菌表面蛋白C可以和H因子相互作用,并与B因子竞争性地结合C3b,进而抑制C3bBb的形成。肺炎链球菌也可层粘连蛋白–整合素受体相互作用,增强肺炎链球菌的粘附和扩散能力[22]。Dave等的研究则[23]表明:肺炎球菌表面蛋白C的α-helical区域可同时与H因子和sIgA结合,且这两种宿主蛋白与肺炎球菌表面蛋白C结合位点并不相同。Smith等的研究[24]发现:肺炎球菌表面蛋白C能够与补体C3的αβ链的非共价结合,从而增强其粘附作用。Kerr等人的研究[25]表明缺乏肺炎球菌表面蛋白C的菌株较正常菌株毒力更差,而在C3缺陷敲除小鼠模型中缺陷菌株的毒力得以恢复。

5. 肺炎链球菌溶血素

肺炎链球菌溶血素是一种细胞毒性蛋白,存在于细胞质和细胞壁中,在细菌的生长过程中会被释放出来。其在肺炎球菌感染机体的过程中发挥着重要作用[26]-[33],这些作用包括:1) 溶血效应和基因毒性效应。2) 诱导不同类型的细胞凋亡。3) 与Toll样受体4的相互作用和抑制炎症细胞因子的产生。4) 激活NLRP3炎性小体。5) 诱导中性粒细胞胞外陷阱形成。6) 抑制呼吸道上皮细胞中纤毛的运动。7) 激活补体系统。

Chang等人的研究[27]证实C70PLY4作为Toll样受体4的拮抗剂,可以有效治疗慢性炎症性疾病。Malley等人研究[28]发现携带Toll样受体4自发突变的小鼠的巨噬细胞对肺炎链球菌溶血素本身以及肺炎球菌细胞壁的结合均反应低下,同时Toll样受体4突变小鼠更容易受到致命感染,提示肺炎链球菌溶血素与Toll样受体4的相互作用在肺炎球菌的先天免疫反应中发挥着重要的作用。另一项研究[29]对比了肺炎链球菌溶血素缺陷型菌株感染小鼠和野生型肺炎链球菌感染小鼠肺泡内细胞因子水平,发现肺炎链球菌溶血素缺陷组IFN-γ和IL-17A的水平明显更低,该研究同时还发现肺炎链球菌溶血素与TLR激动剂可协同作用,促进树突状细胞对IL-12、IL-23、IL-6、IL-1β、IL-1α和TNF-α等促炎细胞因子的分泌。Nel等通过体外试验[30],测定肺炎链球菌溶血素处理后的人中性粒细胞胞外物质的含量,发现肺炎链球菌溶血素组中性粒细胞胞外陷阱的形成量更多,从侧面证明了肺炎链球菌溶血素可诱导中性粒细胞胞外陷阱形成。

6. 肺炎链球菌兼职蛋白

肺炎链球菌兼职蛋白的一个重要特征是它们能够通过表面暴露的纤溶酶原结合模体(如羧基端赖氨酸残基)与宿主纤溶酶原特异性地结合并诱导纤溶酶原发生构象改变,进而将纤溶酶原转化为具有蛋白酶活性的纤溶酶[31]。活化的纤溶酶通过降解细胞外基质成分、激活前基质金属蛋白酶、直接降解补体成分(C3b、C5等)促进肺炎链球菌入侵宿主细胞、有助于其避免补体系统的攻击。肺炎链球菌兼职蛋白包括:肺炎链球菌肽链内切酶O、α-烯醇化酶、甘油醛-3-磷酸脱氢酶、磷酸甘油酸激酶和延长因子Tu [32]

6.1. 肺炎链球菌肽链内切酶O

肺炎链球菌肽链内切酶O是一种新发现的、广泛表达于肺炎链球菌表面的毒力蛋白,其有助于肺炎链球菌黏附侵袭入宿主细胞。据报道[33],肺炎链球菌肽链内切酶O可上调补体受体3的功能促进机体对金黄色葡萄球菌和肺炎链球菌的清除。Agarwal等人的研究[34]发现:在肺炎球菌表面和培养上清液中发现的肺炎链球菌肽链内切酶O可以结合纤溶酶原和纤连蛋白促进肺炎球菌粘附和侵袭宿主细胞,同时还可抑制补体介导的免疫反应。肺炎链球菌肽链内切酶O可结合C1q,从而促进补体系统的激活和细菌周围补体成分的快速消耗,并可与补体调节因子C4BP作用,进一步抑制补体系统的激活。

6.2. α-烯醇化酶

在过去的很长一段时间中,研究认为α-烯醇化酶是一种古老的、功能单一的糖酵解酶,是糖酵解过程中的限速酶,近年发现其除了在糖酵解中发挥作用外,还具有多种生物学功能,目前研究主要集中在α-烯醇化酶的免疫原性、纤溶酶原受体、肿瘤生长调控作用等。其已被证明可通过与纤溶酶原结合,从而有利于肺炎链球菌的粘附和对宿主的入侵,同时可促进细胞外基质成分的降解[35] [36]。另外有研究报道[37] [38] α-烯醇化酶可以与C4BP结合,促进纤溶酶原向纤溶酶的转化,同时其还可作为I因子的辅助因子降解补体C4d,导致补体C3b的生成减少。

6.3. 甘油醛-3-磷酸脱氢酶

甘油醛-3-磷酸脱氢酶,是糖酵解过程中的关键酶之一,近年来的研究发现其不仅存在于细菌的胞内也定位于细菌的表面,并且参与了细胞凋亡、DNA修复和细胞自噬等生理过程,有研究报道甘油醛-3-磷酸脱氢酶与细菌毒力密切相关。Attali等的研究[39]发现:甘油醛-3-磷酸脱氢酶可以作为粘附素并结合纤溶酶原,增加肺炎链球菌的黏附性和侵袭性。Terrasse等的研究[40]发现缺乏甘油醛-3-磷酸脱氢酶的肺炎链球菌与纤溶酶原的结合减少,补体C1q、C3和C4产生也有所减少。

6.4. 磷酸甘油酸激酶

磷酸甘油酸激酶是糖酵解途径的关键酶,是一个单体的、高度柔曲性的糖酵解酶,参与ATP的生成,近年来研究发现磷酸甘油酸激酶在促进肿瘤的侵袭、转移、影响肿瘤血管的生成的过程中发挥着一定的作用,同时其还可以影响哺乳动物细胞核内DNA复制和修复。有研究发现磷酸甘油酸激酶可与组织纤溶酶原激活物相互作用,导致细胞外基质蛋白降解,有利于肺炎链球菌入侵机体并向机体其他部位的扩散[41]。磷酸甘油酸激酶可消耗并与补体C5、C7、C9相互作用,进而破坏膜攻击复合物的形成[42]

肺炎链球菌荚膜多糖是肺炎链球菌逃避机体免疫反应的核心屏障,其在肺炎链球菌感染机体及致病过程发挥着重要作用,其缺失后肺炎链球菌的致病力显著下降。肺炎链球菌溶血素在肺炎链球菌侵袭性感染中起关键作用,兼具免疫逃逸和炎症损伤双重功能。肺炎链球菌表面蛋白A和肺炎链球菌表面蛋白C则通过靶向补体和抗体系统增强肺炎链球菌的逃逸能力。兼职蛋白更多通过间接机制(活化纤溶酶)参与到肺炎链球菌的致病过程,直接逃逸作用相对有限。不同种类的表面蛋白逃避补体系统介导的免疫反应的具体机制有所不同,但可在补体系统激活的某一步骤上共同发挥作用,提示不同种类的肺炎链球菌表面蛋白在逃避补体系统介导的免疫反应过程中可能具有协同作用,未来开发新型肺炎链球菌蛋白抗原疫苗时可考虑使用两种及以上肺炎链球菌表面蛋白抗原。介于目前的相关研究以动物实验及细胞实验为主,期待未来有更多的研究成果进一步揭示肺炎链球菌表面蛋白逃避补体系统介导的免疫反应的具体机制,为临床研究奠定坚实的基础。

NOTES

*通讯作者。

参考文献

[1] Geno, K.A., Gilbert, G.L., Song, J.Y., Skovsted, I.C., Klugman, K.P., Jones, C., et al. (2015) Pneumococcal Capsules and Their Types: Past, Present, and Future. Clinical Microbiology Reviews, 28, 871-899.
https://doi.org/10.1128/cmr.00024-15
[2] 鲍燕敏, 郑跃杰, 杨永弘. 《中国儿童肺炎链球菌性疾病诊断,治疗和预防专家共识》解读[J]. 中华实用儿科临床杂志, 2021, 36(21): 1601-1604.
[3] Wang, B., Lin, W., Qian, C., Zhang, Y., Zhao, G., Wang, W., et al. (2023) Disease Burden of Meningitis Caused by Streptococcus Pneumoniae among Under-Fives in China: A Systematic Review and Meta-Analysis. Infectious Diseases and Therapy, 12, 2567-2580.
https://doi.org/10.1007/s40121-023-00878-y
[4] Heggi, M.T., Nour El-Din, H.T., Morsy, D.I., Abdelaziz, N.I. and Attia, A.S. (2024) Microbial Evasion of the Complement System: A Continuous and Evolving Story. Frontiers in Immunology, 14, Article 1281096.
https://doi.org/10.3389/fimmu.2023.1281096
[5] Hyams, C., Camberlein, E., Cohen, J.M., Bax, K. and Brown, J.S. (2010) Thestreptococcuspneumoniaecapsule Inhibits Complement Activity and Neutrophil Phagocytosis by Multiple Mechanisms. Infection and Immunity, 78, 704-715.
https://doi.org/10.1128/iai.00881-09
[6] Hyams, C., Trzcinski, K., Camberlein, E., Weinberger, D.M., Chimalapati, S., Noursadeghi, M., et al. (2013) Streptococcus Pneumoniae Capsular Serotype Invasiveness Correlates with the Degree of Factor H Binding and Opsonization with C3b/iC3b. Infection and Immunity, 81, 354-363.
https://doi.org/10.1128/iai.00862-12
[7] Thompson, C.D., Bradshaw, J.L., Miller, W.S., Vidal, A.G.J., Vidal, J.E., Rosch, J.W., et al. (2023) Oligopeptide Transporters of Nonencapsulated Streptococcus Pneumoniae Regulate CbpAC and PspA Expression and Reduce Complement-Mediated Clearance. mBio, 14, e03325-22.
https://doi.org/10.1128/mbio.03325-22
[8] Li, J., Szalai, A.J., Hollingshead, S.K., Nahm, M.H. and Briles, D.E. (2009) Antibody to the Type 3 Capsule Facilitates Immune Adherence of Pneumococci to Erythrocytes and Augments Their Transfer to Macrophages. Infection and Immunity, 77, 464-471.
https://doi.org/10.1128/iai.00892-08
[9] Brady, A.M., Calix, J.J., Yu, J., Geno, K.A., Cutter, G.R. and Nahm, M.H. (2014) Low Invasiveness of Pneumococcal Serotype 11A Is Linked to Ficolin-2 Recognition of O-Acetylated Capsule Epitopes and Lectin Complement Pathway Activation. The Journal of Infectious Diseases, 210, 1155-1165.
https://doi.org/10.1093/infdis/jiu195
[10] Yother, J. and Briles, D.E. (1992) Structural Properties and Evolutionary Relationships of PspA, a Surface Protein of Streptococcus Pneumoniae, as Revealed by Sequence Analysis. Journal of Bacteriology, 174, 601-609.
https://doi.org/10.1128/jb.174.2.601-609.1992
[11] Mukerji, R., Mirza, S., Roche, A.M., Widener, R.W., Croney, C.M., Rhee, D., et al. (2012) Pneumococcal Surface Protein a Inhibits Complement Deposition on the Pneumococcal Surface by Competing with the Binding of C-Reactive Protein to Cell-Surface Phosphocholine. The Journal of Immunology, 189, 5327-5335.
https://doi.org/10.4049/jimmunol.1201967
[12] Ren, B., Szalai, A.J., Hollingshead, S.K. and Briles, D.E. (2004) Effects of PspA and Antibodies to PspA on Activation and Deposition of Complement on the Pneumococcal Surface. Infection and Immunity, 72, 114-122.
https://doi.org/10.1128/iai.72.1.114-122.2004
[13] Ren, B., McCrory, M.A., Pass, C., Bullard, D.C., Ballantyne, C.M., Xu, Y., et al. (2004) The Virulence Function of Streptococcus Pneumoniae Surface Protein a Involves Inhibition of Complement Activation and Impairment of Complement Receptor-Mediated Protection. The Journal of Immunology, 173, 7506-7512.
https://doi.org/10.4049/jimmunol.173.12.7506
[14] Ren, B., Li, J., Genschmer, K., Hollingshead, S.K. and Briles, D.E. (2012) The Absence of PspA or Presence of Antibody to PspA Facilitates the Complement-Dependent Phagocytosis of Pneumococci in Vitro. Clinical and Vaccine Immunology, 19, 1574-1582.
https://doi.org/10.1128/cvi.00393-12
[15] Li, J., Glover, D.T., Szalai, A.J., Hollingshead, S.K. and Briles, D.E. (2007) PspA and PspC Minimize Immune Adherence and Transfer of Pneumococci from Erythrocytes to Macrophages through Their Effects on Complement Activation. Infection and Immunity, 75, 5877-5885.
https://doi.org/10.1128/iai.00839-07
[16] Darrieux, M., Miyaji, E.N., Ferreira, D.M., Lopes, L.M., Lopes, A.P.Y., Ren, B., et al. (2007) Fusion Proteins Containing Family 1 and Family 2 PspA Fragments Elicit Protection against Streptococcus Pneumoniae That Correlates with Antibody-Mediated Enhancement of Complement Deposition. Infection and Immunity, 75, 5930-5938.
https://doi.org/10.1128/iai.00940-07
[17] Moreno, A.T., Oliveira, M.L.S., Ferreira, D.M., Ho, P.L., Darrieux, M., Leite, L.C.C., et al. (2010) Immunization of Mice with Single PspA Fragments Induces Antibodies Capable of Mediating Complement Deposition on Different Pneumococcal Strains and Cross-protection. Clinical and Vaccine Immunology, 17, 439-446.
https://doi.org/10.1128/cvi.00430-09
[18] Goulart, C., Darrieux, M., Rodriguez, D., Pimenta, F.C., Brandileone, M.C.C., de Andrade, A.L.S.S., et al. (2011) Selection of Family 1 PspA Molecules Capable of Inducing Broad-Ranging Cross-Reactivity by Complement Deposition and Opsonophagocytosis by Murine Peritoneal Cells. Vaccine, 29, 1634-1642.
https://doi.org/10.1016/j.vaccine.2010.12.074
[19] Ochs, M.M., Bartlett, W., Briles, D.E., Hicks, B., Jurkuvenas, A., Lau, P., et al. (2008) Vaccine-Induced Human Antibodies to PspA Augment Complement C3 Deposition on Streptococcus Pneumoniae. Microbial Pathogenesis, 44, 204-214.
https://doi.org/10.1016/j.micpath.2007.09.007
[20] Pathak, A., Bergstrand, J., Sender, V., Spelmink, L., Aschtgen, M., Muschiol, S., et al. (2018) Factor H Binding Proteins Protect Division Septa on Encapsulated Streptococcus Pneumoniae against Complement C3b Deposition and Amplification. Nature Communications, 9, Article No.3398.
https://doi.org/10.1038/s41467-018-05494-w
[21] Herbert, A.P., Makou, E., Chen, Z.A., Kerr, H., Richards, A., Rappsilber, J., et al. (2015) Complement Evasion Mediated by Enhancement of Captured Factor H: Implications for Protection of Self-Surfaces from Complement. The Journal of Immunology, 195, 4986-4998.
https://doi.org/10.4049/jimmunol.1501388
[22] Orihuela, C.J., Mahdavi, J., Thornton, J., Mann, B., Wooldridge, K.G., Abouseada, N., et al. (2009) Laminin Receptor Initiates Bacterial Contact with the Blood Brain Barrier in Experimental Meningitis Models. Journal of Clinical Investigation, 119, 1638-1646.
https://doi.org/10.1172/jci36759
[23] Dave, S., Carmicle, S., Hammerschmidt, S., Pangburn, M.K. and McDaniel, L.S. (2004) Dual Roles of PspC, a Surface Protein of Streptococcus Pneumoniae, in Binding Human Secretory Iga and Factor H. The Journal of Immunology, 173, 471-477.
https://doi.org/10.4049/jimmunol.173.1.471
[24] Smith, B.L. and Hostetter, M.K. (2000) C3 as Substrate for Adhesion of Streptococcus Pneumoniae. The Journal of Infectious Diseases, 182, 497-508.
https://doi.org/10.1086/315722
[25] Kerr, A.R., Paterson, G.K., McCluskey, J., Iannelli, F., Oggioni, M.R., Pozzi, G., et al. (2006) The Contribution of PspC to Pneumococcal Virulence Varies between Strains and Is Accomplished by Both Complement Evasion and Complement-Independent Mechanisms. Infection and Immunity, 74, 5319-5324.
https://doi.org/10.1128/iai.00543-06
[26] Rai, P., He, F., Kwang, J., Engelward, B.P. and Chow, V.T.K. (2016) Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest. Scientific Reports, 6, Article No. 22972.
https://doi.org/10.1038/srep22972
[27] Chang, S., Chen, C., Lin, J., Wang, H., Mori, S., Li, J., et al. (2020) Truncated Pneumolysin from Streptococcus Pneumoniae as a Tlr4-Antagonizing New Drug for Chronic Inflammatory Conditions. Cells, 9, Article 1183.
https://doi.org/10.3390/cells9051183
[28] Malley, R., Henneke, P., Morse, S.C., Cieslewicz, M.J., Lipsitch, M., Thompson, C.M., et al. (2003) Recognition of Pneumolysin by Toll-Like Receptor 4 Confers Resistance to Pneumococcal Infection. Proceedings of the National Academy of Sciences, 100, 1966-1971.
https://doi.org/10.1073/pnas.0435928100
[29] McNeela, E.A., Burke, Á., Neill, D.R., Baxter, C., Fernandes, V.E., Ferreira, D., et al. (2010) Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of Tlr4. PLOS Pathogens, 6, e1001191.
https://doi.org/10.1371/journal.ppat.1001191
[30] Nel, J.G., Theron, A.J., Durandt, C., Tintinger, G.R., Pool, R., Mitchell, T.J., et al. (2016) Pneumolysin Activates Neutrophil Extracellular Trap Formation. Clinical and Experimental Immunology, 184, 358-367.
https://doi.org/10.1111/cei.12766
[31] Henderson, B. and Martin, A. (2011) Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease. Infection and Immunity, 79, 3476-3491.
https://doi.org/10.1128/iai.00179-11
[32] Henderson, B. and Martin, A. (2011) Bacterial Moonlighting Proteins and Bacterial Virulence. In: Current Topics in Microbiology and Immunology, Springer, 155-213.
https://doi.org/10.1007/82_2011_188
[33] Li, S., Zhang, H., Xiao, J., Yuan, T., Shu, Z., Min, Y., et al. (2020) Streptococcus Pneumoniae Endopeptidase O Promotes the Clearance of Staphylococcus Aureus and Streptococcus Pneumoniae via SH2 Domain-Containing Inositol Phosphatase 1-Mediated Complement Receptor 3 Upregulation. Frontiers in Cellular and Infection Microbiology, 10, Article 358.
https://doi.org/10.3389/fcimb.2020.00358
[34] Agarwal, V., Sroka, M., Fulde, M., Bergmann, S., Riesbeck, K. and Blom, A.M. (2014) Binding of Streptococcus Pneumoniae Endopeptidase O (Pepo) to Complement Component C1q Modulates the Complement Attack and Promotes Host Cell Adherence. Journal of Biological Chemistry, 289, 15833-15844.
https://doi.org/10.1074/jbc.m113.530212
[35] Bergmann, S., Rohde, M., Preissner, K.T. and Hammerschmidt, S. (2005) The Nine Residue Plasminogen-Binding Motif of the Pneumococcal Enolase Is the Major Cofactor of Plasmin-Mediated Degradation of Extracellular Matrix, Dissolution of Fibrin and Transmigration. Thrombosis and Haemostasis, 94, 304-311.
https://doi.org/10.1160/th05-05-0369
[36] Bergmann, S., Schoenen, H. and Hammerschmidt, S. (2013) The Interaction between Bacterial Enolase and Plasminogen Promotes Adherence of Streptococcus Pneumoniae to Epithelial and Endothelial Cells. International Journal of Medical Microbiology, 303, 452-462.
https://doi.org/10.1016/j.ijmm.2013.06.002
[37] Agarwal, V. and Blom, A.M. (2015) Roles of Complement C1q in Pneumococcus-Host Interactions. Critical Reviews in Immunology, 35, 173-184.
https://doi.org/10.1615/critrevimmunol.2015012177
[38] Agarwal, V., Hammerschmidt, S., Malm, S., Bergmann, S., Riesbeck, K. and Blom, A.M. (2012) Enolase of Streptococcus Pneumoniae Binds Human Complement Inhibitor C4b-Binding Protein and Contributes to Complement Evasion. The Journal of Immunology, 189, 3575-3584.
https://doi.org/10.4049/jimmunol.1102934
[39] Attali, C., Durmort, C., Vernet, T. and Di Guilmi, A.M. (2008) The Interaction of Streptococcus Pneumoniae with Plasmin Mediates Transmigration across Endothelial and Epithelial Monolayers by Intercellular Junction Cleavage. Infection and Immunity, 76, 5350-5356.
https://doi.org/10.1128/iai.00184-08
[40] Terrasse, R., Tacnet-Delorme, P., Moriscot, C., Pérard, J., Schoehn, G., Vernet, T., et al. (2012) Human and Pneumococcal Cell Surface Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein. Journal of Biological Chemistry, 287, 42620-42633.
https://doi.org/10.1074/jbc.m112.423731
[41] Fulde, M., Bernardo-García, N., Rohde, M., Nachtigall, N., Frank, R., Preissner, K.T., et al. (2014) Pneumococcal Phosphoglycerate Kinase Interacts with Plasminogen and Its Tissue Activator. Thrombosis and Haemostasis, 112, 401-416.
https://doi.org/10.1160/th13-05-0421
[42] Blom, A.M., Bergmann, S., Fulde, M., Riesbeck, K. and Agarwal, V. (2014) Streptococcus Pneumoniae Phosphoglycerate Kinase Is a Novel Complement Inhibitor Affecting the Membrane Attack Complex Formation. Journal of Biological Chemistry, 289, 32499-32511.
https://doi.org/10.1074/jbc.m114.610212