脂毒性在糖尿病肾疾病中的作用:从生理机制到治疗前景
The Role of Lipotoxicity in Diabetic Nephropathy: From Physiologic Mechanisms to Therapeutic Perspectives
摘要: 脂质代谢稳态在维持细胞功能和能量代谢方面起着关键作用。在正常情况下,细胞通过脂质摄取、合成、消耗和输出维持代谢稳态。在糖尿病肾疾病(DKD)中,肾脏的脂质代谢稳态遭到严重破坏,导致脂质在肾小管上皮细胞和足细胞等肾实质细胞中异常积累。这种积累会引发包括氧化应激、线粒体功能障碍、自噬受损和炎症反应在内的病理变化。基于这些脂质积累和脂毒性机制的靶向治疗,如Nrf-2激动剂、PPAR-α激动剂和SGLT-2抑制剂等有望为未来DKD的治疗提供新方向。
Abstract: Lipid metabolic homeostasis plays a key role in maintaining cellular function and energy metabolism, and under normal conditions, cells maintain metabolic homeostasis through lipid uptake, synthesis, consumption and output. In diabetic kidney disease (DKD), lipid metabolic homeostasis in the kidney is severely disrupted, leading to abnormal lipid accumulation in renal parenchymal cells, such as tubular epithelial cells and podocytes. This accumulation triggers pathological changes, including oxidative stress, mitochondrial dysfunction, impaired autophagy, and inflammatory responses. Targeted therapies based on these mechanisms of lipid accumulation and lipotoxicity, such as Nrf-2 agonists, PPAR-α agonists, and SGLT-2 inhibitors, are expected to provide new directions for the treatment of DKD in the future.
文章引用:范家瑞, 印承孝, 杜晓刚. 脂毒性在糖尿病肾疾病中的作用:从生理机制到治疗前景[J]. 临床医学进展, 2025, 15(4): 2211-2224. https://doi.org/10.12677/acm.2025.1541172

1. 引言

1982年,Moorhead等人首次提出脂毒性的概念[1]。脂毒性是指有害的脂质中间产物在非脂肪组织细胞中过度积累,最初与肥胖和2型糖尿病(T2DM)相关,尤其对胰腺β细胞功能有影响[2] [3]。腹部皮下脂肪沉积增加、血浆非酯化脂肪酸(NEFA)浓度升高、脂肪组织信号传导功能障碍以及脂质异位积累,均与脂毒性的发生和发展密切相关[4]

糖尿病被认为是一种脂肪生成过多的状态[5],在糖尿病肾病(DKD)中,胰岛素抵抗导致的血糖和脂肪酸水平升高,促使肾脏脂质积累。多项研究表明,脂毒性在糖尿病肾病的进展中起着重要作用[6] [7]。然而,在DKD发展过程中,脂质代谢紊乱的具体表现和机制尚未完全阐明。本综述基于脂质代谢稳态,概述了脂毒性与糖尿病肾病之间的相关联系:一方面,有害脂质在DKD肾脏中预先积累;另一方面,脂质过载通过相应机制引发肾脏损伤。最后,针对上述两点,本综述从干预脂质代谢的角度,总结了糖尿病肾病的新型治疗方案。

2. 正常肾脏脂质代谢稳态

脂质作为细胞膜的重要组成部分具有多种生理功能,在细胞稳态中发挥着重要作用[8]-[10]。脂肪细胞作为脂质储存的“燃料库”,通过脂质的摄取、合成、脂肪酸氧化(FAO)和输出等主要途径的调节来维持脂质稳态,这涉及多种代谢途径和信号分子的相互作用[11]。本文总结了肾脏脂质代谢的机制(图1)。

2.1. 脂质摄取和转运

肾脏细胞需要从血液中摄取适量的脂质,以维持细胞膜的更新和能量代谢。脂肪酸和胆固醇的摄取由脂质转运蛋白完成。CD36、FATP和FABP是肾脏细胞关键的脂肪酸转运蛋白,负责将长链游离脂肪酸(FFAs)转运到肾小管上皮细胞和足细胞中[12]。此外,FATP还负责将长链游离脂肪酸转化为活化的酰基辅酶A (acyl-CoA),这是脂肪酸氧化、合成和储存的起始步骤[13]。肝脏脂肪酸结合蛋白(L-FABP,即FABP-1)也能够结合长链游离脂肪酸,并将其转运至线粒体或过氧化物酶体进行β-氧化[14] [15]。低密度脂蛋白受体(LDL-R)负责从血液中摄取胆固醇,维持细胞内胆固醇总量和细胞膜的结构功能,并有序参与细胞信号传导[16]。在正常情况下,上述转运蛋白的表达受到机体调控,通过适度的脂质摄取维持细胞膜的结构和功能。

注:FFA通过CD 36、FATP 1、FABP进入肾细胞。进入线粒体,通过CTP-1、FABP参与脂肪酸氧化产生能量,CPT-1受PPARα/PGC-1α共调控。当机体有足够的能量时,FFA通过一系列的过程在细胞质中合成TG。TG和TC是最常见的非极性脂质,沉积在内质网中,并逐渐融合形成脂滴。脂滴直接与线粒体相互作用,参与代谢,或被溶酶体酸脂肪酶降解,获得间接进入线粒体参与代谢的产物。此外,一小部分TC通过ABCA1/ABCG1和SR-BI通道蛋白被运输到肝脏,在那里它与HDL结合并被运输到肝脏,这一过程受到转录调控因子SREBP、ChREBP和PPARa的调控。(FFA:游离脂肪酸;CD36:分化簇36;FATP1:脂肪酸转运蛋白1;L-FABP:肝脏脂肪酸结合蛋白;FABP4:脂肪酸结合蛋白4;FAO:脂肪酸氧化;PPAR:过氧化物酶体增殖体激活受体;PGC-1α:过氧化物酶体增殖体激活受体共激活物1-阿尔法;TC:总胆固醇;TG:甘油三酯;SREBP:固醇调节元件结合蛋白;ChREBP:碳水化合物反应元件结合蛋白;ABCA1:ATP结合盒转运体A1;ABCG1:ATP结合盒转运体G1;SR-BI:清除剂受体B类I;LDL:高密度脂蛋白;CTP-1:肉碱棕榈酰基转移酶1;LC3:微管相关蛋白1A/1B-轻链3)。

Figure 1. Mechanism of action of renal lipid metabolism

1. 肾脂质代谢的作用机制

2.2. 脂质合成和利用

肾脏细胞可以通过内源性途径合成适量的脂质,以满足细胞需求。在生理条件下,固醇调节元件结合蛋白1 (SREBP-1)和固醇调节元件结合蛋白2 (SREBP-2)从内质网转运至高尔基体,在高尔基体中被切割并转移到细胞核,启动胆固醇合成步骤[17]。脂肪酸合酶(FAS)和胆固醇合酶(HMG-CoA还原酶)分别是脂肪酸合成和胆固醇合成的关键酶。肾脏细胞通过内源性途径合成适量的脂质胆固醇,用于膜结构的合成修复、类固醇激素合成和信号转导等功能,并根据细胞的代谢需求进行相应调节。

2.3. 脂质氧化和能量供应

脂肪酸氧化(FAO)是肾脏细胞的重要能量来源,也是降低肾脏脂质含量的主要途径。肉碱棕榈酰转移酶1 (CPT-1)负责将长链脂肪酸转运至线粒体进行β-氧化生成ATP,是脂肪酸酰基辅酶A进入线粒体的重要限速酶[18]。CPT-1受过氧化物酶体增殖物激活受体α (PPAR-α)和过氧化物酶体增殖物激活受体γ共激活因子(PGC-1α)的共同调节[19]。通过脂肪酸氧化,肾脏细胞中的大量脂肪酸被分解代谢以提供能量,从而避免脂质在细胞内过度积累。

2.4. 脂质流出和清除

胆固醇的清除主要通过ATP结合盒转运蛋白(ABCA1、ABCG1)以及清道夫受体(SR-BI)转运出细胞,进入高密度脂蛋白(HDL),并被运输到肝脏进行进一步代谢[20]。当身体的能量需求得到满足时,肾脏细胞中多余的脂肪酸和胆固醇还会被分配到甘油三酯和胆固醇酯聚集体中,参与肾细胞脂滴的形成,避免过多的脂质积累引发脂毒性。脂肪分解和脂质自噬是脂滴分解代谢为游离脂肪酸的两条主要途径[21] [22]。当身体能量需求增加时,脂滴中的脂肪酸会迅速分解代谢(脂肪分解)以提供能量;而脂质自噬作为一种持久的反应机制,有助于清除未被利用的脂滴。两者相互补充,维持脂质代谢稳态。上述机制确保肾脏细胞中的多余脂质能够及时清除,避免脂质积累导致的细胞毒性。

2.5. 信号调节和代谢调控

脂质代谢的稳态还受到多种信号分子和转录因子的调节。PPAR-α、PPAR-γ和PPAR-δ是调节脂质代谢的重要核受体。PPARs通过与视黄酸X受体(RXR)形成异二聚体,激活靶基因的表达,从而促进脂肪酸的氧化、储存和代谢[23]。固醇调节元件结合蛋白(SREBP)和碳水化合物反应元件结合蛋白(ChREBP)是调节脂肪酸合成的转录因子之一,它们的活性受胰岛素、葡萄糖等代谢水平的调节,负责上调参与脂肪酸和胆固醇合成的酶的表达[24]。腺苷酸活化蛋白激酶(AMPK)是细胞的能量传感器[25],当能量较低时,AMPK被激活,抑制脂质合成并促进脂肪酸氧化,以确保能量供应。此外,还有自噬相关基因如Beclin-1和LC3,通过调节脂质自噬过程,有助于清除脂质过载等[26]。这些信号通路调节脂质代谢的合成和利用,维持肾脏脂质代谢的动态平衡。

3. DKD中肾脏脂质代谢稳态的破坏

在正常情况下,脂质的积聚可通过脂肪组织储存的增加以及脂质处理细胞的各种协调途径来补偿。然而,一旦脂质过载超过了代偿能力,甘油三酯、游离脂肪酸(FFAs)、胆固醇、溶血磷脂酰胆碱和神经酰胺等脂质就会作为有毒物质在非脂肪组织中异常积聚,此时身体无法维持稳态,并通过激活代谢、炎症和氧化途径引发一系列细胞功能障碍,最终可能导致细胞死亡。

3.1. DKD脂质摄取异常增加

在糖尿病状态下,氧化蛋白产物的积累通过CD36依赖的Wnt/β-catenin信号通路导致脂肪酸摄取增加。Su等人在CD36转基因糖尿病肾病小鼠中发现肾脏CD36表达升高,并观察到肾小管中脂质积累增加[26]。Li等人发现抑制CD36表达可改善DKD小鼠的肾纤维化和肾功能[27]。在糖尿病肾病中,FABP家族的表达也发生了类似改变。有相关研究表明DKD患者肾脏中FABP-1的表达下调,这可能与DKD患者肾细胞中的脂肪酸积累有关[28];2015年Yao团队也发现DKD小鼠足细胞以及DKD患者肾小球系膜细胞中FABP-4的表达增加[29],2017年Falkevall A等人进一步发现,DKD小鼠体内VEGF-B信号增加,并通过上调FABP-4促进肾小球足细胞中的脂质积累[30],均表明FABP-4表达上调与DKD中脂肪酸摄取增加密切相关。FATP-1、FATP-2和FATP-4的过度激活或表达上调也与DKD患者肾脏中的脂肪酸积累有关[31]

长期高血糖水平还可导致LDL受体(LDL-R)和清道夫受体(SRs)的表达增加,导致胆固醇摄取过多,尤其是氧化低密度脂蛋白(ox-LDL)的沉积,引发炎症反应加剧,这与肾小球硬化和肾功能下降密切相关[32]

3.2. DKD脂质合成的过度激活

相关动物实验表明,在高脂饮食的小鼠中,SREBP表达增加导致的胆固醇积累与肥胖相关的糖尿病肾脏损伤直接相关[33]。基于Nephroseq数据库,Woroniecka KI团队发现DKD患者肾小球中SREBP-1和SREBP-2的表达显著上调[34]。SREBP-1c主要促进脂肪酸合酶和乙酰辅酶A羧化酶(ACC)等脂质合成相关酶的表达,而SREBP-2促进胆固醇合酶(HMG-CoA还原酶)的表达,从而分别导致糖尿病状态下脂肪酸和胆固醇的积累,使脂肪酸和胆固醇合成过度激活引起脂质积聚。

3.3. DKD脂肪酸氧化减少

脂肪酸氧化是降低肾脏脂质含量的主要途径,脂肪酸氧化受损会导致细胞内脂质积累。与健康个体和非DKD糖尿病患者相比,DKD患者肾脏中与线粒体生物发生和FAO相关基因(包括PPAR-α、PGC-1α和CPT-1)的蛋白质表达水平降低、脂肪酸氧化减弱,并在肾小管细胞中尤为明显[35]-[37]。在链脲佐菌素(STZ)诱导的糖尿病肾病小鼠中,PPAR-α基因敲除小鼠组与对照组相比,血清脂肪酸水平显著升高,并表现出更严重的蛋白尿、肾小球硬化和肾小囊扩张等临床症状[38]。此外,肾脏细胞暴露于高糖高脂环境中,AMPK活性因磷酸化而受到抑制,也会进一步导致脂肪酸氧化受阻,最终导致脂质积累。

3.4. 脂质流出减少

在DKD小鼠模型实验中,实验组小鼠的肾小球和肾小管细胞中ABCG1和SR-BI的表达均显著降低,其中ABCA1的降低尤为明显[21]。前人对糖尿病小鼠的研究发现,肾脏ABCA1的表达显著降低48%,导致肾脏细胞中胆固醇的胞吐作用减少,进而引起细胞内积累[39]。此外,脂质自噬是清除细胞内脂滴的关键过程:而在糖尿病状态下,mTOR等通路的异常激活抑制了自噬的正常功能,导致脂滴无法被有效清除。有体内建模研究发现,在实验构建的DKD小鼠模型中脂滴积累增加[40];还有研究表示,STZ诱导的糖尿病小鼠的特征是显著的脂滴积累,即在肾小球和/或肾小管细胞中存在与47 kDa尾相互作用蛋白(如黄嘌呤氧化还原酶和硝基酪氨酸等)相关的氧化应激标记阳性脂滴;对Sprague-Dawley大鼠的STZ诱导糖尿病研究也表明,糖尿病中脂滴无法有效清除,晚期糖基化终产物的增加会导致脂滴积累引发脂毒性[41]

4. DKD中脂质过载导致肾损伤的机制

DKD中的脂质过载是脂毒性作用机制的基础。有毒脂质在肾脏中的积累可通过多种途径导致DKD中的肾细胞功能障碍及死亡,如氧化应激(OS)、线粒体功能障碍、内质网应激、自噬失调以及炎症和纤维化。其中,氧化应激被认为是DKD发病和进展的主要驱动因素之一,它直接或间接加剧肾细胞损伤和纤维化,导致肾功能下降。这些机制之间并非孤立存在,而是相互作用、相互影响,形成复杂的调控网络(图2)。

4.1. 氧化应激与线粒体功能障碍相互作用

氧化应激与线粒体功能障碍之间存在紧密的相互作用[42]-[44]。一方面,脂质过载诱导产生的过量活性氧(ROS)可直接损伤线粒体膜,影响其流动性和完整性,破坏线粒体呼吸链复合物,导致膜电位降低,ATP生成减少。例如,在高脂饮食诱导的DKD小鼠模型中可以观察到肾小球内皮细胞、足细胞和近端小管细胞的线粒体形态发生显著变化,出现丝状膜丢失、基质密度降低等情况[45] [46]。同时,ROS还会抑制CPT-1的活性,减少脂肪酸进入线粒体进行氧化的量,进一步加重脂质积累。另一方面,线粒体功能障碍也会反向促进ROS的产生。受损的线粒体无法正常进行氧化磷酸化,电子传递链出现异常,使更多的电子泄漏并与氧分子结合生成ROS,形成恶性循环。线粒体功能障碍进一步加剧了ROS的产生和线粒体DNA的损伤的同时,也直接导致FAO减少以及PPAR-γ和PPAR-α活性降低,进一步抑制脂肪酸氧化,脂质堆积加剧。

注:单向和双向箭头表示上述过程之间的相互作用。DKD脂质超载诱导的OS、内质网应激、线粒体功能障碍、自噬功能障碍和炎症在肾损伤中起重要作用,其中OS可能是其中的核心环节,它们之间的恶性循环进一步加剧了肾损伤。

Figure 2. Schematic representation of the mechanism of lipid overload-induced renal injury

2. 脂质超载诱导的肾损伤的机制示意图

4.2. 氧化应激与内质网应激相互作用

在内质网参与蛋白质折叠的过程中,每形成一个二硫键就会伴随产生一单位的ROS [47]。DKD中存在的脂质过载会损害内质网功能,引发内质网应激,应激过度产生的过量的ROS会诱导异常的未折叠蛋白反应(UPR) [48]。UPR由三条主要的信号通路组成:IRE1α、PERK和ATF6。UPR旨在恢复内质网稳态,但长期应激会导致细胞凋亡。同时,氧化应激还可通过激活某些信号通路,如JNK通路,增强内质网应激的程度。例如,2010年Katsoulieris团队对内质网应激和氧化应激的研究发现,棕榈酸(PA)等饱和脂肪酸通过磷酸化JNK通路,增加p-eIF2α、CHOP蛋白等的表达,从而导致内质网应激[49]。反过来,ERS也会通过激活ATF6等转录因子,改变PPAR-α的活性,抑制脂肪酸氧化,加重脂质积累,进一步加剧氧化应激,形成恶性闭环[50]

4.3. 自噬功能障碍与氧化应激的相互作用

自噬在清除细胞内多余脂质、受损细胞器和蛋白质等方面发挥着关键作用。在DKD中,脂毒性诱导的自噬失调表现为早期自噬过度和晚期自噬损伤[51] [52]。氧化应激在此过程中也起到代偿作用,表现为早期氧化应激与自噬失调相互抑制,晚期相互促进。早期,氧化应激通过氧化自噬相关蛋白(如ATG4)和激活mTOR通路来抑制自噬启动,以减少ROS的产生。然而,长期的氧化应激会激活NF-κB转录因子和JNK信号通路等,上调自噬相关基因的表达,导致自噬过程过度激活,引起自噬失调[53] [54]。自噬失调使得受损细胞器和蛋白质在肾细胞中积累,进一步加重脂毒性和氧化应激[55]

4.4. 炎症与其他机制的相互促进

脂质过载产生的氧化应激和内质网应激可激活多种促炎信号通路,如NF-κB通路,导致慢性炎症状态[56] [57]。炎症反应中释放的促炎细胞因子,如白细胞介素-6 (IL-6)、单核细胞趋化蛋白1 (MCP-1)、环氧化酶-2 (COX-2)和肿瘤坏死因子(TNF-α)等,不仅会加剧肾细胞损伤,还会进一步干扰脂质代谢。例如,TNF-α可抑制脂肪酸氧化相关基因的表达,促进脂质合成,加重脂质积累。同时,炎症还会与氧化应激相互促进,ROS可直接介导促炎细胞因子的表达和巨噬细胞趋化水平,而炎症反应又会刺激ROS的产生[58]

自噬异常还会影响炎症反应。自噬可以通过降解炎症相关蛋白来调控炎症水平,当自噬功能受损时,炎症因子如IL-6、TNF-α等的释放增加,引发慢性炎症状态,促进DKD的进展[55]。此外,还存在多种促纤维化因子(如TGF-β)在炎症过程中被激活,导致肾小管间质纤维化和肾小球硬化,进一步损害肾功能[59] [60]

综上所述,在DKD中,脂质过载通过氧化应激、内质网应激、线粒体功能障碍、自噬失调和炎症反应等多种机制相互作用,形成复杂的调控网络,导致肾细胞损伤、炎症和纤维化,进而致使肾功能持续下降。氧化应激在这个网络中可能处于核心地位,引发并加剧其他病理过程。

5. DKD脂质代谢靶向治疗的现状与展望

基于上述脂质代谢失衡的潜在治疗靶点和脂毒性机制,许多新型治疗方案正在应用或探索中,这些干预措施通过减少脂质积累、减轻氧化应激、改善线粒体功能和恢复自噬稳态来保护肾细胞,有望为未来DKD的治疗带来新方向,以下是对上述相关药物简要的归纳总结。

5.1. PPAR-α激动剂

过氧化物酶体增殖物激活受体α (PPAR-α)通过促进脂肪酸的β-氧化,减少有毒脂质积累。非诺贝特是临床常见的PPAR-α激动剂。多项在动物模型和人体中的研究已证实该类药物对DKD进展的作用[61] [62]。在DKD小鼠模型实验中,非诺贝特改善了葡萄糖耐量和氧化应激,减轻了蛋白尿和肾小球病变。此外,非诺贝特还通过AMPK/FOXA2/MCAD途径减轻肾脂毒性诱导的细胞凋亡[63] [64],还可通过降低炎症因子(如NF-κB和TNF-α)的表达,减轻炎症反应,改善肾小球硬化和肾小管间质纤维化。

5.2. Nrf2激动剂

Nrf2激动剂的代表性药物如巴多索隆甲酯,可通过激活Nrf2信号通路诱导抗氧化酶和抗氧化蛋白的表达,减轻DKD中脂质过载引起的氧化应激和炎症[65]。姜黄素也属Nrf2激动剂一类,通过促进NRF2/KEAP1/ARE途径,促使NRF2与KEAP1解离,抑制肾脏脂质积累和氧化应激,从而发挥肾脏保护作用,因其兼具减轻炎症、调节免疫反应的能力而被认可[66]。但姜黄素的不稳定性和有限的全身适用性限制了其在临床实践中的治疗应用[67]

5.3. SGLT-2抑制剂

SGLT-2抑制剂可阻止肾脏对葡萄糖的重吸收,减缓DKD的进展,其在DKD治疗领域的临床疗效已得到广泛认可。在减轻脂毒性方面,SGLT-2抑制剂可通过改善高血糖、减少脂肪酸摄取和增强脂肪分解,减少肾小球和肾小管中的脂质积累;另一方面,SGLT-2抑制剂可抑制内质网应激,同时保持线粒体的形态,恢复线粒体的活力,减少自由基的产生[68]-[70],还可降低TGF-β和胶原蛋白等纤维化相关因子的表达,从而延缓DKD的进展。有趣的是,最近的研究发现,恩格列净可降低db/db小鼠的胆固醇水平和肾小管脂滴积累,与单独使用二甲双胍相比,恩格列净联合二甲双胍可降低小鼠晚期糖基化终末产物和肾脏脂肪含量[71];在动物研究中发现,达格列净联合他汀类药物治疗可改善高脂高糖诱导的胰岛素抵抗、脂肪生成和脂毒性相关的肾脏氧化应激、炎症、纤维化和细胞凋亡,使肾功能部分恢复[72]。因此,SGLT-2抑制剂与合理药物联合使用可能是临床防治糖尿病肾病的新思路。

5.4. 依折麦布

依折麦布公认的降脂原理是通过靶向NPC1L抑制胆固醇摄取。2023年一项针对2型糖尿病和蛋白尿患者的研究表明,依折麦布降低了他们的肾实质脂肪含量[73]。在Alport综合征小鼠模型中,有学者发现依折麦布可通过抑制CD36与DDR1的相互作用,抑制脂肪酸摄取,降低肾实质中的甘油三酯水平[74]

5.5. GLP-1激动剂

利拉鲁肽、司美格鲁肽和度拉鲁肽等GLP-1激动剂已被证明可减少DKD中的蛋白尿并抵抗脂毒性[75]。一方面,GLP-1激动剂通过促进AMPK磷酸化抑制脂质合成并促进脂肪分解;另一方面,GLP-1激动剂上调包括肾小球内皮细胞在内的许多器官中ABCA1的表达,从而促进细胞外胆固醇的转运,减轻糖尿病肾病肾脏异位脂质沉积引起的肾损伤,减少肾小球内皮细胞的凋亡。在DKD大鼠模型的临床前研究中,为期12周的利拉鲁肽疗程有效改善了大鼠的血脂谱,减少了近端肾小管脂滴积累[76]

5.6. sEHase抑制剂

可溶性环氧化物水解酶(sEH)是一种广泛分布于肝脏、心脏和肾脏的酶,可降解花生四烯酸代谢产物(EETs)。t-AUCB作为sEH酶的抑制剂,在动脉粥样硬化、心血管疾病、非酒精性脂肪性肝病和糖尿病肾病等代谢紊乱中发挥重要的保护作用。2020年Du等人团队的动物实验发现,t-AUCB可恢复高糖状态下肾小管上皮细胞受损的自噬流,减轻肾脏线粒体损伤,上调脂肪酸氧化能力,减轻db/db小鼠的脂质聚集[77],这将作为基于自噬机制治疗DKD有力的潜在药物。

5.7. ABCA1诱导剂

ABCA1是一种促进胆固醇向细胞外转运的转运蛋白。ABCA1功能障碍会加剧胆固醇积累,导致足细胞损伤、心磷脂氧化减少和内质网应激,从而加重DKD患者的肾损伤[78] [79]。用ABCA1诱导剂(A30)处理后的db/db小鼠ABCA1表达恢复,临床表现为蛋白尿和血尿素氮降低,组织学分析显示皮质胆固醇、脂肪酸和过氧化亚硝酸盐心磷脂的积累减少,肾小球组织病理学改善[80]。除此之外,其他ABCA1的小分子(吡啶甲酰胺)诱导剂正在作为DKD以及局灶节段性肾小球硬化症(FSGS)和Alport综合征的潜在治疗方案进行研究。

5.8. PCSK-9抑制剂

前蛋白转化酶枯草杆菌蛋白酶/kexin 9型(PCSK-9)抑制剂,如阿利西尤单抗和依洛尤单抗,通过影响肝细胞中低密度脂蛋白的摄取和清除,为血脂异常提供了一种新的补充治疗方案。PCSK-9也在肾脏中表达,其对肾脂毒性的作用存在争议。一方面,动物实验显示依洛尤单抗可通过下调CD36表达减少肾脂质沉积,改善肾功能[81]。另一方面,临床研究发现eGFR < 30 mL/min/1.73m2患者使用PCSK-9抑制剂后,蛋白尿无显著改善,且可能增加感染风险[82]

争议的核心在于其中生理机制的复杂性,即PCSK-9在肾脏的表达调控及其与其他降脂通路(如ABCA1)的交互作用尚不明确。部分研究者猜测在肾功能严重受损的情况下,药物的代谢和排泄发生改变,其作用机制也可能受到影响[83]。因此,为了深入探讨PCSK-9抑制剂在DKD治疗中的作用,未来还需开展更多的尤其针对不同肾功能阶段患者的研究。一方面,应进一步明确PCSK-9抑制剂对不同程度DKD患者肾脏脂质代谢、肾功能指标(如蛋白尿、eGFR等)的影响;另一方面,需要研究其长期使用的安全性,包括对感染风险、心血管事件等方面的影响。同时,结合基础研究,深入探索PCSK-9在肾脏中的作用机制,以及与其他降脂和肾脏保护途径的相互关系,将有助于更准确地评估其在DKD治疗中的价值。

5.9. 脂质运载蛋白受体激动剂

脂质运载蛋白是脂肪细胞分泌的一种脂肪因子,因其具有抗炎和抗氧化特性,在调节血糖水平、脂质代谢和胰岛素敏感性方面的作用已得到广泛认可。脂质运载蛋白受体激动剂(AdipoRon)通过激活细胞内Ca2+/(LKB1)-AMPK/PPARα通路,同时增强与抗氧化、抗炎和脂质代谢相关的下游信号,可以改善肾小球内皮细胞和足细胞损伤,并显著降低db/db小鼠的蛋白尿[84],也是具有多方潜力的DKD治疗药物方向。

6. 总结

糖尿病患者肾脏中脂质的异常代谢积累是由于脂质摄取增加、脂质氧化减少、分解代谢减少和流出减少之间的失衡所致。脂质代谢失调与氧化应激、线粒体功能障碍、内质网应激、自噬失调和炎症之间存在显著相关性,其中氧化应激起关键作用。各机制之间相互作用、相互影响,形成复杂的调控网络共同推动DKD的发展。了解DKD肾脏中脂质积累的机制和脂毒性的重要机制,可为减缓糖尿病肾病发生发展的治疗提供特定靶点。

然而,尽管现有研究在理解肾脏脂质代谢方面取得了显著进展,但仍有许多问题尚未解决。例如,由于糖尿病肾病发病机制的复杂性和多样性,以及不同患者表现出的特征性病理变化,从调节脂质代谢的角度开发未来DKD治疗方案时,是否应进一步仔细考虑个体和病因差异;此外,脂质影响不同细胞类型功能和活力的机制尚未完全明确,是否有机会开发多种多部位肾脏治疗靶点,如靶向肾小球或肾小管的治疗等。总之,进一步研究DKD脂毒性的机制,结合创新治疗靶点的探索,可能为糖尿病肾疾病的临床管理开辟新途径。

致 谢

特别感谢导师杜晓刚教授在论文选题、框架建立、内容修改全过程中的悉心指导。

附 录

Figure A1. Picture summary

A1. 图片摘要

NOTES

*通讯作者。

参考文献

[1] Moorhead, J.F., El-Nahas, M., Chan, M.K. and Varghese, Z. (1982) Lipid Nephrotoxicity in Chronic Progressive Glomerular and Tubulo-Interstitial Disease. The Lancet, 320, 1309-1311.
https://doi.org/10.1016/s0140-6736(82)91513-6
[2] Ruan, X.Z., Varghese, Z. and Moorhead, J.F. (2009) An Update on the Lipid Nephrotoxicity Hypothesis. Nature Reviews Nephrology, 5, 713-721.
https://doi.org/10.1038/nrneph.2009.184
[3] Chae, S.Y., Kim, Y. and Park, C.W. (2023) Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants, 12, Article 2083.
https://doi.org/10.3390/antiox12122083
[4] Opazo-Ríos, L., Mas, S., Marín-Royo, G., Mezzano, S., Gómez-Guerrero, C., Moreno, J.A., et al. (2020) Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. International Journal of Molecular Sciences, 21, Article 2632.
https://doi.org/10.3390/ijms21072632
[5] Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045.
https://doi.org/10.2215/cjn.11491116
[6] Schelling, J.R. (2022) The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells, 11, Article 3236.
https://doi.org/10.3390/cells11203236
[7] Tuttle, K.R., Agarwal, R., Alpers, C.E., Bakris, G.L., Brosius, F.C., Kolkhof, P., et al. (2022) Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney International, 102, 248-260.
https://doi.org/10.1016/j.kint.2022.05.012
[8] Verderio, C., Gabrielli, M. and Giussani, P. (2018) Role of Sphingolipids in the Biogenesis and Biological Activity of Extracellular Vesicles. Journal of Lipid Research, 59, 1325-1340.
https://doi.org/10.1194/jlr.r083915
[9] Vanni, S. (2017) Intracellular Lipid Droplets: From Structure to Function. Lipid Insights, 10.
https://doi.org/10.1177/1178635317745518
[10] Olzmann, J.A. and Carvalho, P. (2018) Dynamics and Functions of Lipid Droplets. Nature Reviews Molecular Cell Biology, 20, 137-155.
https://doi.org/10.1038/s41580-018-0085-z
[11] Nishi, H., Higashihara, T. and Inagi, R. (2019) Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients, 11, Article 1664.
https://doi.org/10.3390/nu11071664
[12] Mitrofanova, A., Merscher, S. and Fornoni, A. (2023) Kidney Lipid Dysmetabolism and Lipid Droplet Accumulation in Chronic Kidney Disease. Nature Reviews Nephrology, 19, 629-645.
https://doi.org/10.1038/s41581-023-00741-w
[13] Kazantzis, M. and Stahl, A. (2012) Fatty Acid Transport Proteins, Implications in Physiology and Disease. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1821, 852-857.
https://doi.org/10.1016/j.bbalip.2011.09.010
[14] Console, L., Scalise, M., Giangregorio, N., Tonazzi, A., Barile, M. and Indiveri, C. (2020) The Link between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury. Frontiers in Physiology, 11, Article 794.
https://doi.org/10.3389/fphys.2020.00794
[15] Terra, X., Quintero, Y., Auguet, T., Porras, J.A., Hernández, M., Sabench, F., et al. (2011) FABP 4 Is Associated with Inflammatory Markers and Metabolic Syndrome in Morbidly Obese Women. European Journal of Endocrinology, 164, 539-547.
https://doi.org/10.1530/eje-10-1195
[16] Strazzella, A., Ossoli, A. and Calabresi, L. (2021) High-density Lipoproteins and the Kidney. Cells, 10, Article 764.
https://doi.org/10.3390/cells10040764
[17] Mitrofanova, A., Burke, G., Merscher, S. and Fornoni, A. (2021) New Insights into Renal Lipid Dysmetabolism in Diabetic Kidney Disease. World Journal of Diabetes, 12, 524-540.
https://doi.org/10.4239/wjd.v12.i5.524
[18] Park, H., Song, J., Park, J., Lim, B., Moon, O., Son, H., et al. (2020) TXNIP/VDUP1 Attenuates Steatohepatitis via Autophagy and Fatty Acid Oxidation. Autophagy, 17, 2549-2564.
https://doi.org/10.1080/15548627.2020.1834711
[19] Jankovic, M., Novakovic, I., Nikolic, D., Mitrovic Maksic, J., Brankovic, S., Petronic, I., et al. (2021) Genetic and Epigenomic Modifiers of Diabetic Neuropathy. International Journal of Molecular Sciences, 22, Article 4887.
https://doi.org/10.3390/ijms22094887
[20] Yan, Q., Song, Y., Zhang, L., Chen, Z., Yang, C., Liu, S., et al. (2018) Autophagy Activation Contributes to Lipid Accumulation in Tubular Epithelial Cells during Kidney Fibrosis. Cell Death Discovery, 4, Article No. 39.
https://doi.org/10.1038/s41420-018-0065-2
[21] Chitraju, C., Walther, T.C. and Farese, R.V. (2019) The Triglyceride Synthesis Enzymes DGAT1 and DGAT2 Have Distinct and Overlapping Functions in Adipocytes. Journal of Lipid Research, 60, 1112-1120.
https://doi.org/10.1194/jlr.m093112
[22] Haas, M.E., Levenson, A.E., Sun, X., Liao, W., Rutkowski, J.M., de Ferranti, S.D., et al. (2016) The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation, 134, 61-72.
https://doi.org/10.1161/circulationaha.115.020912
[23] Sun, C., Mao, S., Chen, S., Zhang, W. and Liu, C. (2021) PPARS-Orchestrated Metabolic Homeostasis in the Adipose Tissue. International Journal of Molecular Sciences, 22, Article 8974.
https://doi.org/10.3390/ijms22168974
[24] Rawson, R.B. (2003) The SREBP Pathway—Insights from Insights and Insects. Nature Reviews Molecular Cell Biology, 4, 631-640.
https://doi.org/10.1038/nrm1174
[25] Hardie, D.G., Ross, F.A. and Hawley, S.A. (2012) AMPK: A Nutrient and Energy Sensor That Maintains Energy Homeostasis. Nature Reviews Molecular Cell Biology, 13, 251-262.
https://doi.org/10.1038/nrm3311
[26] Su, W., Cao, R., He, Y.C., Guan, Y.F. and Ruan, X.Z. (2017) Crosstalk of Hyperglycemia and Dyslipidemia in Diabetic Kidney Disease. Kidney Diseases, 3, 171-180.
https://doi.org/10.1159/000479874
[27] Li, X., Zhang, T., Geng, J., Wu, Z., Xu, L., Liu, J., et al. (2019) Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxidants & Redox Signaling, 31, 521-538.
https://doi.org/10.1089/ars.2018.7634
[28] Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. and Gafter, U. (2014) Altered Renal Lipid Metabolism and Renal Lipid Accumulation in Human Diabetic Nephropathy. Journal of Lipid Research, 55, 561-572.
https://doi.org/10.1194/jlr.p040501
[29] Yao, F., Li, Z., Ehara, T., Yang, L., Wang, D., Feng, L., et al. (2015) Fatty Acid-Binding Protein 4 Mediates Apoptosis via Endoplasmic Reticulum Stress in Mesangial Cells of Diabetic Nephropathy. Molecular and Cellular Endocrinology, 411, 232-242.
https://doi.org/10.1016/j.mce.2015.05.003
[30] Falkevall, A., Mehlem, A., Palombo, I., Heller Sahlgren, B., Ebarasi, L., He, L., et al. (2017) Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease. Cell Metabolism, 25, 713-726.
https://doi.org/10.1016/j.cmet.2017.01.004
[31] Khan, S., Gaivin, R., Abramovich, C., Boylan, M., Calles, J. and Schelling, J.R. (2020) Fatty Acid Transport Protein-2 Regulates Glycemic Control and Diabetic Kidney Disease Progression. JCI Insight, 5, e136845
https://doi.org/10.1172/jci.insight.136845
[32] Li, W., Zhang, H., Zhang, L., Zhang, T. and Ding, H. (2022) Effect of Thymoquinone on Renal Damage Induced by Hyperlipidemia in LDL Receptor‐Deficient (LDL‐R-/-) Mice. BioMed Research International, 2022, Article ID: 7709926.
https://doi.org/10.1155/2022/7709926
[33] Ishigaki, N., Yamamoto, T., Shimizu, Y., Kobayashi, K., Yatoh, S., Sone, H., et al. (2007) Involvement of Glomerular SREBP-1c in Diabetic Nephropathy. Biochemical and Biophysical Research Communications, 364, 502-508.
https://doi.org/10.1016/j.bbrc.2007.10.038
[34] Jiang, T., Wang, Z., Proctor, G., Moskowitz, S., Liebman, S.E., Rogers, T., et al. (2005) Diet-Induced Obesity in C57BL/6J Mice Causes Increased Renal Lipid Accumulation and Glomerulosclerosis via a Sterol Regulatory Element-Binding Protein-1C-Dependent Pathway. Journal of Biological Chemistry, 280, 32317-32325.
https://doi.org/10.1074/jbc.m500801200
[35] Kim, M.Y., Lim, J.H., Youn, H.H., Hong, Y.A., Yang, K.S., Park, H.S., et al. (2012) Resveratrol Prevents Renal Lipotoxicity and Inhibits Mesangial Cell Glucotoxicity in a Manner Dependent on the AMPK-SIRT1-PGC1α Axis in db/db Mice. Diabetologia, 56, 204-217.
https://doi.org/10.1007/s00125-012-2747-2
[36] Hong, Y.A., Lim, J.H., Kim, M.Y., Kim, T.W., Kim, Y., Yang, K.S., et al. (2014) Fenofibrate Improves Renal Lipotoxicity through Activation of AMPK-PGC-1α in db/db Mice. PLOS ONE, 9, e96147.
https://doi.org/10.1371/journal.pone.0096147
[37] Li, L., Wang, C., Yang, H., Liu, S., Lu, Y., Fu, P., et al. (2017) Metabolomics Reveal Mitochondrial and Fatty Acid Metabolism Disorders That Contribute to the Development of DKD in T2DM Patients. Molecular BioSystems, 13, 2392-2400.
https://doi.org/10.1039/c7mb00167c
[38] Park, C.W., Kim, H.W., Ko, S.H., Chung, H.W., Lim, S.W., Yang, C.W., et al. (2006) Accelerated Diabetic Nephropathy in Mice Lacking the Peroxisome Proliferator–activated Receptor Α. Diabetes, 55, 885-893.
https://doi.org/10.2337/diabetes.55.04.06.db05-1329
[39] Tsun, J.G.S., Yung, S., Chau, M.K.M., Shiu, S.W.M., Chan, T.M. and Tan, K.C.B. (2014) Cellular Cholesterol Transport Proteins in Diabetic Nephropathy. PLOS ONE, 9, e105787.
https://doi.org/10.1371/journal.pone.0105787
[40] Wang, Z., Jiang, T., Li, J., Proctor, G., McManaman, J.L., Lucia, S., et al. (2005) Regulation of Renal Lipid Metabolism, Lipid Accumulation, and Glomerulosclerosis in FVB db/db Mice with Type 2 Diabetes. Diabetes, 54, 2328-2335.
https://doi.org/10.2337/diabetes.54.8.2328
[41] Kiss, E., Kränzlin, B., Bonrouhi, M., Thiery, J., Gröne, E., et al. (2013) Lipid Droplet Accumulation Is Associated with an Increase in Hyperglycemia-Induced Renal Damage: Prevention by Liver X Receptors. The American Journal of Pathology, 182, 727-741.
https://doi.org/10.1016/j.ajpath.2012.11.033
[42] Koyama, T., Kume, S., Koya, D., Araki, S., Isshiki, K., Chin-Kanasaki, M., et al. (2011) SIRT3 Attenuates Palmitate-Induced ROS Production and Inflammation in Proximal Tubular Cells. Free Radical Biology and Medicine, 51, 1258-1267.
https://doi.org/10.1016/j.freeradbiomed.2011.05.028
[43] Chen, Q., Su, Y., Ju, Y., Ma, K., Li, W. and Li, W. (2018) Astragalosides IV Protected the Renal Tubular Epithelial Cells from Free Fatty Acids-Induced Injury by Reducing Oxidative Stress and Apoptosis. Biomedicine & Pharmacotherapy, 108, 679-686.
https://doi.org/10.1016/j.biopha.2018.09.049
[44] Veluthakal, R., Esparza, D., Hoolachan, J.M., Balakrishnan, R., Ahn, M., Oh, E., et al. (2024) Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. International Journal of Molecular Sciences, 25, Article 1504.
https://doi.org/10.3390/ijms25031504
[45] Zhan, M., Usman, I.M., Sun, L. and Kanwar, Y.S. (2015) Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease. Journal of the American Society of Nephrology, 26, 1304-1321.
https://doi.org/10.1681/asn.2014050457
[46] Forbes, J.M. and Thorburn, D.R. (2018) Mitochondrial Dysfunction in Diabetic Kidney Disease. Nature Reviews Nephrology, 14, 291-312.
https://doi.org/10.1038/nrneph.2018.9
[47] Shimizu, Y. and Hendershot, L.M. (2009) Oxidative Folding: Cellular Strategies for Dealing with the Resultant Equimolar Production of Reactive Oxygen Species. Antioxidants & Redox Signaling, 11, 2317-2331.
https://doi.org/10.1089/ars.2009.2501
[48] Liu, G., Sun, Y., Li, Z., Song, T., Wang, H., Zhang, Y., et al. (2008) Apoptosis Induced by Endoplasmic Reticulum Stress Involved in Diabetic Kidney Disease. Biochemical and Biophysical Research Communications, 370, 651-656.
https://doi.org/10.1016/j.bbrc.2008.04.031
[49] Katsoulieris, E., Mabley, J.G., Samai, M., Sharpe, M.A., Green, I.C. and Chatterjee, P.K. (2010) Lipotoxicity in Renal Proximal Tubular Cells: Relationship between Endoplasmic Reticulum Stress and Oxidative Stress Pathways. Free Radical Biology and Medicine, 48, 1654-1662.
https://doi.org/10.1016/j.freeradbiomed.2010.03.021
[50] Jao, T., Nangaku, M., Wu, C., Sugahara, M., Saito, H., Maekawa, H., et al. (2019) Atf6α Downregulation of PPARα Promotes Lipotoxicity-Induced Tubulointerstitial Fibrosis. Kidney International, 95, 577-589.
https://doi.org/10.1016/j.kint.2018.09.023
[51] Guo, H., Wang, B., Li, H., Ling, L., Niu, J. and Gu, Y. (2018) Glucagon-Like Peptide-1 Analog Prevents Obesity-Related Glomerulopathy by Inhibiting Excessive Autophagy in Podocytes. American Journal of Physiology-Renal Physiology, 314, F181-F189.
https://doi.org/10.1152/ajprenal.00302.2017
[52] Yamamoto, T., Takabatake, Y., Takahashi, A., Kimura, T., Namba, T., Matsuda, J., et al. (2016) High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney. Journal of the American Society of Nephrology, 28, 1534-1551.
https://doi.org/10.1681/asn.2016070731
[53] Jiang, X., Chen, X., Wan, J., Gui, H., Ruan, X. and Du, X. (2017) Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in Vitro. Scientific Reports, 7, Article No. 42764.
https://doi.org/10.1038/srep42764
[54] Zhang, X., Cheng, X., Yu, L., Yang, J., Calvo, R., Patnaik, S., et al. (2016) MCOLN1 Is a ROS Sensor in Lysosomes That Regulates Autophagy. Nature Communications, 7, Article No. 12109.
https://doi.org/10.1038/ncomms12109
[55] Zheng, H.J., Zhang, X., Guo, J., Zhang, W., Ai, S., Zhang, F., et al. (2020) Lysosomal Dysfunction-Induced Autophagic Stress in Diabetic Kidney Disease. Journal of Cellular and Molecular Medicine, 24, 8276-8290.
https://doi.org/10.1111/jcmm.15301
[56] Ding, Y. and Choi, M.E. (2014) Autophagy in Diabetic Nephropathy. Journal of Endocrinology, 224, R15-R30.
https://doi.org/10.1530/joe-14-0437
[57] Lee, E.S., Kang, J.S., Kim, H.M., Kim, S.J., Kim, N., Lee, J.O., et al. (2021) Dehydrozingerone Inhibits Renal Lipotoxicity in High‐Fat Diet-Induced Obese Mice. Journal of Cellular and Molecular Medicine, 25, 8725-8733.
https://doi.org/10.1111/jcmm.16828
[58] Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., et al. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863.
https://doi.org/10.7150/thno.50905
[59] Cao, Y., Su, H., Zeng, J., Xie, Y., Liu, Z., Liu, F., et al. (2024) Integrin Β8 Prevents Pericyte-Myofibroblast Transition and Renal Fibrosis through Inhibiting the TGF-β1/TGFBR1/SMAD3 Pathway in Diabetic Kidney Disease. Translational Research, 265, 36-50.
https://doi.org/10.1016/j.trsl.2023.10.007
[60] Wang, X., Sun, Z., Fu, J., Fang, Z., Zhang, W., He, J.C., et al. (2024) LRG1 Loss Effectively Restrains Glomerular TGF-β Signaling to Attenuate Diabetic Kidney Disease. Molecular Therapy, 32, 3177-3193.
https://doi.org/10.1016/j.ymthe.2024.06.027
[61] Park, C.W., Zhang, Y., Zhang, X., Wu, J., Chen, L., Cha, D.R., et al. (2006) PPARα Agonist Fenofibrate Improves Diabetic Nephropathy in db/db Mice. Kidney International, 69, 1511-1517.
https://doi.org/10.1038/sj.ki.5000209
[62] Martin, W.P., Nair, M., Chuah, Y.H.D., Malmodin, D., Pedersen, A., Abrahamsson, S., et al. (2022) Dietary Restriction and Medical Therapy Drives PPARα-Regulated Improvements in Early Diabetic Kidney Disease in Male Rats. Clinical Science, 136, 1485-1511.
https://doi.org/10.1042/cs20220205
[63] Kang, H.M., Ahn, S.H., Choi, P., Ko, Y., Han, S.H., Chinga, F., et al. (2014) Defective Fatty Acid Oxidation in Renal Tubular Epithelial Cells Has a Key Role in Kidney Fibrosis Development. Nature Medicine, 21, 37-46.
https://doi.org/10.1038/nm.3762
[64] Sohn, M., Kim, K., Uddin, M.J., Lee, G., Hwang, I., Kang, H., et al. (2017) Delayed Treatment with Fenofibrate Protects against High-Fat Diet-Induced Kidney Injury in Mice: The Possible Role of AMPK Autophagy. American Journal of Physiology-Renal Physiology, 312, F323-F334.
https://doi.org/10.1152/ajprenal.00596.2015
[65] Jiang, X., Liu, T., Xia, Y., Gan, H., Ren, W. and Du, X. (2024) Activation of the Nrf2/ARE Signaling Pathway Ameliorates Hyperlipidemia-Induced Renal Tubular Epithelial Cell Injury by Inhibiting MTROs-Mediated NLRP3 Inflammasome Activation. Frontiers in Immunology, 15, Article 1342350.
https://doi.org/10.3389/fimmu.2024.1342350
[66] Al-Waili, N., Al-Waili, H., Al-Waili, T. and Salom, K. (2017) Natural Antioxidants in the Treatment and Prevention of Diabetic Nephropathy; a Potential Approach That Warrants Clinical Trials. Redox Report, 22, 99-118.
https://doi.org/10.1080/13510002.2017.1297885
[67] Park, J., Sohn, H., Koh, Y.H. and Jo, C. (2021) Curcumin Activates Nrf2 through PKCδ-Mediated P62 Phosphorylation at Ser351. Scientific Reports, 11, Article No. 8430.
https://doi.org/10.1038/s41598-021-87225-8
[68] Shibusawa, R., Yamada, E., Okada, S., Nakajima, Y., Bastie, C.C., Maeshima, A., et al. (2019) Dapagliflozin Rescues Endoplasmic Reticulum Stress-Mediated Cell Death. Scientific Reports, 9, Article No. 9887.
https://doi.org/10.1038/s41598-019-46402-6
[69] Sun, H., Chen, J., Hua, Y., Zhang, Y. and Liu, Z. (2022) New Insights into the Role of Empagliflozin on Diabetic Renal Tubular Lipid Accumulation. Diabetology & Metabolic Syndrome, 14, Article No. 121.
https://doi.org/10.1186/s13098-022-00886-x
[70] Takagi, S., Li, J., Takagaki, Y., Kitada, M., Nitta, K., Takasu, T., et al. (2018) Ipragliflozin Improves Mitochondrial Abnormalities in Renal Tubules Induced by a High‐Fat Diet. Journal of Diabetes Investigation, 9, 1025-1032.
https://doi.org/10.1111/jdi.12802
[71] Igweonu-Nwakile, E.O., Ali, S., Paul, S., Yakkali, S., Teresa Selvin, S., Thomas, S., et al. (2022) A Systematic Review on the Safety and Efficacy of PCSK9 Inhibitors in Lowering Cardiovascular Risks in Patients with Chronic Kidney Disease. Cureus, 14, e29140.
https://doi.org/10.7759/cureus.29140
[72] Wei, D., Liao, L., Wang, H., Zhang, W., Wang, T. and Xu, Z. (2020) Canagliflozin Ameliorates Obesity by Improving Mitochondrial Function and Fatty Acid Oxidation via PPARα in Vivo and in Vitro. Life Sciences, 247, Article ID: 117414.
https://doi.org/10.1016/j.lfs.2020.117414
[73] Heinrich, N.S., Pedersen, R.P., Vestergaard, M.B., Lindberg, U., Andersen, U.B., Haddock, B., et al. (2023) Evaluation of the Effects of Ezetimibe on Albuminuria and Kidney Fat in Individuals with Type 2 Diabetes and Chronic Kidney Disease. Diabetes, Obesity and Metabolism, 25, 2605-2615.
https://doi.org/10.1111/dom.15146
[74] Thomas, M.C., Cooper, M.E. and Zimmet, P. (2015) Changing Epidemiology of Type 2 Diabetes Mellitus and Associated Chronic Kidney Disease. Nature Reviews Nephrology, 12, 73-81.
https://doi.org/10.1038/nrneph.2015.173
[75] Rojano Toimil, A. and Ciudin, A. (2021) GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. Journal of Clinical Medicine, 10, Article 3955.
https://doi.org/10.3390/jcm10173955
[76] Marso, S.P., Bain, S.C., Consoli, A., Eliaschewitz, F.G., Jódar, E., Leiter, L.A., et al. (2016) Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine, 375, 1834-1844.
https://doi.org/10.1056/nejmoa1607141
[77] Jiang, X., Chen, X., Hua, W., He, J., Liu, T., Li, X., et al. (2020) PINK1/Parkin Mediated Mitophagy Ameliorates Palmitic Acid-Induced Apoptosis through Reducing Mitochondrial ROS Production in Podocytes. Biochemical and Biophysical Research Communications, 525, 954-961.
https://doi.org/10.1016/j.bbrc.2020.02.170
[78] Zhang, J., Wu, Y., Zhang, J., Zhang, R., Wang, Y. and Liu, F. (2023) ABCA1 Deficiency-Mediated Glomerular Cholesterol Accumulation Exacerbates Glomerular Endothelial Injury and Dysfunction in Diabetic Kidney Disease. Metabolism, 139, Article ID: 155377.
https://doi.org/10.1016/j.metabol.2022.155377
[79] Pagtalunan, M.E., Miller, P.L., Jumping-Eagle, S., Nelson, R.G., Myers, B.D., Rennke, H.G., et al. (1997) Podocyte Loss and Progressive Glomerular Injury in Type II Diabetes. Journal of Clinical Investigation, 99, 342-348.
https://doi.org/10.1172/jci119163
[80] Ducasa, G.M., Mitrofanova, A., Mallela, S.K., Liu, X., Molina, J., Sloan, A., et al. (2019) ATP-Binding Cassette A1 Deficiency Causes Cardiolipin-Driven Mitochondrial Dysfunction in Podocytes. Journal of Clinical Investigation, 129, 3387-3400.
https://doi.org/10.1172/jci125316
[81] Kim, J., David, J.M., Wilbon, S.S., Santos, J.V., Patel, D.M., Ahmad, A., et al. (2021) Discoidin Domain Receptor 1 Activation Links Extracellular Matrix to Podocyte Lipotoxicity in Alport Syndrome. EBioMedicine, 63, Article ID: 103162.
https://doi.org/10.1016/j.ebiom.2020.103162
[82] Byun, J.H., Lebeau, P.F., Platko, K., Carlisle, R.E., Faiyaz, M., Chen, J., et al. (2022) Inhibitory Antibodies against PCSK9 Reduce Surface CD36 and Mitigate Diet-Induced Renal Lipotoxicity. Kidney360, 3, 1394-1410.
https://doi.org/10.34067/kid.0007022021
[83] Tice, J.A., Kazi, D.S. and Pearson, S.D. (2016) Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors for Treatment of High Cholesterol Levels: Effectiveness and Value. JAMA Internal Medicine, 176, 107-108.
https://doi.org/10.1001/jamainternmed.2015.7248
[84] Kim, Y., Lim, J.H., Kim, M.Y., Kim, E.N., Yoon, H.E., Shin, S.J., et al. (2018) The Adiponectin Receptor Agonist Adiporon Ameliorates Diabetic Nephropathy in a Model of Type 2 Diabetes. Journal of the American Society of Nephrology, 29, 1108-1127.
https://doi.org/10.1681/asn.2017060627