[1]
|
Moorhead, J.F., El-Nahas, M., Chan, M.K. and Varghese, Z. (1982) Lipid Nephrotoxicity in Chronic Progressive Glomerular and Tubulo-Interstitial Disease. The Lancet, 320, 1309-1311. https://doi.org/10.1016/s0140-6736(82)91513-6
|
[2]
|
Ruan, X.Z., Varghese, Z. and Moorhead, J.F. (2009) An Update on the Lipid Nephrotoxicity Hypothesis. Nature Reviews Nephrology, 5, 713-721. https://doi.org/10.1038/nrneph.2009.184
|
[3]
|
Chae, S.Y., Kim, Y. and Park, C.W. (2023) Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants, 12, Article 2083. https://doi.org/10.3390/antiox12122083
|
[4]
|
Opazo-Ríos, L., Mas, S., Marín-Royo, G., Mezzano, S., Gómez-Guerrero, C., Moreno, J.A., et al. (2020) Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. International Journal of Molecular Sciences, 21, Article 2632. https://doi.org/10.3390/ijms21072632
|
[5]
|
Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045. https://doi.org/10.2215/cjn.11491116
|
[6]
|
Schelling, J.R. (2022) The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells, 11, Article 3236. https://doi.org/10.3390/cells11203236
|
[7]
|
Tuttle, K.R., Agarwal, R., Alpers, C.E., Bakris, G.L., Brosius, F.C., Kolkhof, P., et al. (2022) Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney International, 102, 248-260. https://doi.org/10.1016/j.kint.2022.05.012
|
[8]
|
Verderio, C., Gabrielli, M. and Giussani, P. (2018) Role of Sphingolipids in the Biogenesis and Biological Activity of Extracellular Vesicles. Journal of Lipid Research, 59, 1325-1340. https://doi.org/10.1194/jlr.r083915
|
[9]
|
Vanni, S. (2017) Intracellular Lipid Droplets: From Structure to Function. Lipid Insights, 10. https://doi.org/10.1177/1178635317745518
|
[10]
|
Olzmann, J.A. and Carvalho, P. (2018) Dynamics and Functions of Lipid Droplets. Nature Reviews Molecular Cell Biology, 20, 137-155. https://doi.org/10.1038/s41580-018-0085-z
|
[11]
|
Nishi, H., Higashihara, T. and Inagi, R. (2019) Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients, 11, Article 1664. https://doi.org/10.3390/nu11071664
|
[12]
|
Mitrofanova, A., Merscher, S. and Fornoni, A. (2023) Kidney Lipid Dysmetabolism and Lipid Droplet Accumulation in Chronic Kidney Disease. Nature Reviews Nephrology, 19, 629-645. https://doi.org/10.1038/s41581-023-00741-w
|
[13]
|
Kazantzis, M. and Stahl, A. (2012) Fatty Acid Transport Proteins, Implications in Physiology and Disease. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1821, 852-857. https://doi.org/10.1016/j.bbalip.2011.09.010
|
[14]
|
Console, L., Scalise, M., Giangregorio, N., Tonazzi, A., Barile, M. and Indiveri, C. (2020) The Link between the Mitochondrial Fatty Acid Oxidation Derangement and Kidney Injury. Frontiers in Physiology, 11, Article 794. https://doi.org/10.3389/fphys.2020.00794
|
[15]
|
Terra, X., Quintero, Y., Auguet, T., Porras, J.A., Hernández, M., Sabench, F., et al. (2011) FABP 4 Is Associated with Inflammatory Markers and Metabolic Syndrome in Morbidly Obese Women. European Journal of Endocrinology, 164, 539-547. https://doi.org/10.1530/eje-10-1195
|
[16]
|
Strazzella, A., Ossoli, A. and Calabresi, L. (2021) High-density Lipoproteins and the Kidney. Cells, 10, Article 764. https://doi.org/10.3390/cells10040764
|
[17]
|
Mitrofanova, A., Burke, G., Merscher, S. and Fornoni, A. (2021) New Insights into Renal Lipid Dysmetabolism in Diabetic Kidney Disease. World Journal of Diabetes, 12, 524-540. https://doi.org/10.4239/wjd.v12.i5.524
|
[18]
|
Park, H., Song, J., Park, J., Lim, B., Moon, O., Son, H., et al. (2020) TXNIP/VDUP1 Attenuates Steatohepatitis via Autophagy and Fatty Acid Oxidation. Autophagy, 17, 2549-2564. https://doi.org/10.1080/15548627.2020.1834711
|
[19]
|
Jankovic, M., Novakovic, I., Nikolic, D., Mitrovic Maksic, J., Brankovic, S., Petronic, I., et al. (2021) Genetic and Epigenomic Modifiers of Diabetic Neuropathy. International Journal of Molecular Sciences, 22, Article 4887. https://doi.org/10.3390/ijms22094887
|
[20]
|
Yan, Q., Song, Y., Zhang, L., Chen, Z., Yang, C., Liu, S., et al. (2018) Autophagy Activation Contributes to Lipid Accumulation in Tubular Epithelial Cells during Kidney Fibrosis. Cell Death Discovery, 4, Article No. 39. https://doi.org/10.1038/s41420-018-0065-2
|
[21]
|
Chitraju, C., Walther, T.C. and Farese, R.V. (2019) The Triglyceride Synthesis Enzymes DGAT1 and DGAT2 Have Distinct and Overlapping Functions in Adipocytes. Journal of Lipid Research, 60, 1112-1120. https://doi.org/10.1194/jlr.m093112
|
[22]
|
Haas, M.E., Levenson, A.E., Sun, X., Liao, W., Rutkowski, J.M., de Ferranti, S.D., et al. (2016) The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation, 134, 61-72. https://doi.org/10.1161/circulationaha.115.020912
|
[23]
|
Sun, C., Mao, S., Chen, S., Zhang, W. and Liu, C. (2021) PPARS-Orchestrated Metabolic Homeostasis in the Adipose Tissue. International Journal of Molecular Sciences, 22, Article 8974. https://doi.org/10.3390/ijms22168974
|
[24]
|
Rawson, R.B. (2003) The SREBP Pathway—Insights from Insights and Insects. Nature Reviews Molecular Cell Biology, 4, 631-640. https://doi.org/10.1038/nrm1174
|
[25]
|
Hardie, D.G., Ross, F.A. and Hawley, S.A. (2012) AMPK: A Nutrient and Energy Sensor That Maintains Energy Homeostasis. Nature Reviews Molecular Cell Biology, 13, 251-262. https://doi.org/10.1038/nrm3311
|
[26]
|
Su, W., Cao, R., He, Y.C., Guan, Y.F. and Ruan, X.Z. (2017) Crosstalk of Hyperglycemia and Dyslipidemia in Diabetic Kidney Disease. Kidney Diseases, 3, 171-180. https://doi.org/10.1159/000479874
|
[27]
|
Li, X., Zhang, T., Geng, J., Wu, Z., Xu, L., Liu, J., et al. (2019) Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxidants & Redox Signaling, 31, 521-538. https://doi.org/10.1089/ars.2018.7634
|
[28]
|
Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. and Gafter, U. (2014) Altered Renal Lipid Metabolism and Renal Lipid Accumulation in Human Diabetic Nephropathy. Journal of Lipid Research, 55, 561-572. https://doi.org/10.1194/jlr.p040501
|
[29]
|
Yao, F., Li, Z., Ehara, T., Yang, L., Wang, D., Feng, L., et al. (2015) Fatty Acid-Binding Protein 4 Mediates Apoptosis via Endoplasmic Reticulum Stress in Mesangial Cells of Diabetic Nephropathy. Molecular and Cellular Endocrinology, 411, 232-242. https://doi.org/10.1016/j.mce.2015.05.003
|
[30]
|
Falkevall, A., Mehlem, A., Palombo, I., Heller Sahlgren, B., Ebarasi, L., He, L., et al. (2017) Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease. Cell Metabolism, 25, 713-726. https://doi.org/10.1016/j.cmet.2017.01.004
|
[31]
|
Khan, S., Gaivin, R., Abramovich, C., Boylan, M., Calles, J. and Schelling, J.R. (2020) Fatty Acid Transport Protein-2 Regulates Glycemic Control and Diabetic Kidney Disease Progression. JCI Insight, 5, e136845 https://doi.org/10.1172/jci.insight.136845
|
[32]
|
Li, W., Zhang, H., Zhang, L., Zhang, T. and Ding, H. (2022) Effect of Thymoquinone on Renal Damage Induced by Hyperlipidemia in LDL Receptor‐Deficient (LDL‐R-/-) Mice. BioMed Research International, 2022, Article ID: 7709926. https://doi.org/10.1155/2022/7709926
|
[33]
|
Ishigaki, N., Yamamoto, T., Shimizu, Y., Kobayashi, K., Yatoh, S., Sone, H., et al. (2007) Involvement of Glomerular SREBP-1c in Diabetic Nephropathy. Biochemical and Biophysical Research Communications, 364, 502-508. https://doi.org/10.1016/j.bbrc.2007.10.038
|
[34]
|
Jiang, T., Wang, Z., Proctor, G., Moskowitz, S., Liebman, S.E., Rogers, T., et al. (2005) Diet-Induced Obesity in C57BL/6J Mice Causes Increased Renal Lipid Accumulation and Glomerulosclerosis via a Sterol Regulatory Element-Binding Protein-1C-Dependent Pathway. Journal of Biological Chemistry, 280, 32317-32325. https://doi.org/10.1074/jbc.m500801200
|
[35]
|
Kim, M.Y., Lim, J.H., Youn, H.H., Hong, Y.A., Yang, K.S., Park, H.S., et al. (2012) Resveratrol Prevents Renal Lipotoxicity and Inhibits Mesangial Cell Glucotoxicity in a Manner Dependent on the AMPK-SIRT1-PGC1α Axis in db/db Mice. Diabetologia, 56, 204-217. https://doi.org/10.1007/s00125-012-2747-2
|
[36]
|
Hong, Y.A., Lim, J.H., Kim, M.Y., Kim, T.W., Kim, Y., Yang, K.S., et al. (2014) Fenofibrate Improves Renal Lipotoxicity through Activation of AMPK-PGC-1α in db/db Mice. PLOS ONE, 9, e96147. https://doi.org/10.1371/journal.pone.0096147
|
[37]
|
Li, L., Wang, C., Yang, H., Liu, S., Lu, Y., Fu, P., et al. (2017) Metabolomics Reveal Mitochondrial and Fatty Acid Metabolism Disorders That Contribute to the Development of DKD in T2DM Patients. Molecular BioSystems, 13, 2392-2400. https://doi.org/10.1039/c7mb00167c
|
[38]
|
Park, C.W., Kim, H.W., Ko, S.H., Chung, H.W., Lim, S.W., Yang, C.W., et al. (2006) Accelerated Diabetic Nephropathy in Mice Lacking the Peroxisome Proliferator–activated Receptor Α. Diabetes, 55, 885-893. https://doi.org/10.2337/diabetes.55.04.06.db05-1329
|
[39]
|
Tsun, J.G.S., Yung, S., Chau, M.K.M., Shiu, S.W.M., Chan, T.M. and Tan, K.C.B. (2014) Cellular Cholesterol Transport Proteins in Diabetic Nephropathy. PLOS ONE, 9, e105787. https://doi.org/10.1371/journal.pone.0105787
|
[40]
|
Wang, Z., Jiang, T., Li, J., Proctor, G., McManaman, J.L., Lucia, S., et al. (2005) Regulation of Renal Lipid Metabolism, Lipid Accumulation, and Glomerulosclerosis in FVB db/db Mice with Type 2 Diabetes. Diabetes, 54, 2328-2335. https://doi.org/10.2337/diabetes.54.8.2328
|
[41]
|
Kiss, E., Kränzlin, B., Bonrouhi, M., Thiery, J., Gröne, E., et al. (2013) Lipid Droplet Accumulation Is Associated with an Increase in Hyperglycemia-Induced Renal Damage: Prevention by Liver X Receptors. The American Journal of Pathology, 182, 727-741. https://doi.org/10.1016/j.ajpath.2012.11.033
|
[42]
|
Koyama, T., Kume, S., Koya, D., Araki, S., Isshiki, K., Chin-Kanasaki, M., et al. (2011) SIRT3 Attenuates Palmitate-Induced ROS Production and Inflammation in Proximal Tubular Cells. Free Radical Biology and Medicine, 51, 1258-1267. https://doi.org/10.1016/j.freeradbiomed.2011.05.028
|
[43]
|
Chen, Q., Su, Y., Ju, Y., Ma, K., Li, W. and Li, W. (2018) Astragalosides IV Protected the Renal Tubular Epithelial Cells from Free Fatty Acids-Induced Injury by Reducing Oxidative Stress and Apoptosis. Biomedicine & Pharmacotherapy, 108, 679-686. https://doi.org/10.1016/j.biopha.2018.09.049
|
[44]
|
Veluthakal, R., Esparza, D., Hoolachan, J.M., Balakrishnan, R., Ahn, M., Oh, E., et al. (2024) Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. International Journal of Molecular Sciences, 25, Article 1504. https://doi.org/10.3390/ijms25031504
|
[45]
|
Zhan, M., Usman, I.M., Sun, L. and Kanwar, Y.S. (2015) Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease. Journal of the American Society of Nephrology, 26, 1304-1321. https://doi.org/10.1681/asn.2014050457
|
[46]
|
Forbes, J.M. and Thorburn, D.R. (2018) Mitochondrial Dysfunction in Diabetic Kidney Disease. Nature Reviews Nephrology, 14, 291-312. https://doi.org/10.1038/nrneph.2018.9
|
[47]
|
Shimizu, Y. and Hendershot, L.M. (2009) Oxidative Folding: Cellular Strategies for Dealing with the Resultant Equimolar Production of Reactive Oxygen Species. Antioxidants & Redox Signaling, 11, 2317-2331. https://doi.org/10.1089/ars.2009.2501
|
[48]
|
Liu, G., Sun, Y., Li, Z., Song, T., Wang, H., Zhang, Y., et al. (2008) Apoptosis Induced by Endoplasmic Reticulum Stress Involved in Diabetic Kidney Disease. Biochemical and Biophysical Research Communications, 370, 651-656. https://doi.org/10.1016/j.bbrc.2008.04.031
|
[49]
|
Katsoulieris, E., Mabley, J.G., Samai, M., Sharpe, M.A., Green, I.C. and Chatterjee, P.K. (2010) Lipotoxicity in Renal Proximal Tubular Cells: Relationship between Endoplasmic Reticulum Stress and Oxidative Stress Pathways. Free Radical Biology and Medicine, 48, 1654-1662. https://doi.org/10.1016/j.freeradbiomed.2010.03.021
|
[50]
|
Jao, T., Nangaku, M., Wu, C., Sugahara, M., Saito, H., Maekawa, H., et al. (2019) Atf6α Downregulation of PPARα Promotes Lipotoxicity-Induced Tubulointerstitial Fibrosis. Kidney International, 95, 577-589. https://doi.org/10.1016/j.kint.2018.09.023
|
[51]
|
Guo, H., Wang, B., Li, H., Ling, L., Niu, J. and Gu, Y. (2018) Glucagon-Like Peptide-1 Analog Prevents Obesity-Related Glomerulopathy by Inhibiting Excessive Autophagy in Podocytes. American Journal of Physiology-Renal Physiology, 314, F181-F189. https://doi.org/10.1152/ajprenal.00302.2017
|
[52]
|
Yamamoto, T., Takabatake, Y., Takahashi, A., Kimura, T., Namba, T., Matsuda, J., et al. (2016) High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney. Journal of the American Society of Nephrology, 28, 1534-1551. https://doi.org/10.1681/asn.2016070731
|
[53]
|
Jiang, X., Chen, X., Wan, J., Gui, H., Ruan, X. and Du, X. (2017) Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in Vitro. Scientific Reports, 7, Article No. 42764. https://doi.org/10.1038/srep42764
|
[54]
|
Zhang, X., Cheng, X., Yu, L., Yang, J., Calvo, R., Patnaik, S., et al. (2016) MCOLN1 Is a ROS Sensor in Lysosomes That Regulates Autophagy. Nature Communications, 7, Article No. 12109. https://doi.org/10.1038/ncomms12109
|
[55]
|
Zheng, H.J., Zhang, X., Guo, J., Zhang, W., Ai, S., Zhang, F., et al. (2020) Lysosomal Dysfunction-Induced Autophagic Stress in Diabetic Kidney Disease. Journal of Cellular and Molecular Medicine, 24, 8276-8290. https://doi.org/10.1111/jcmm.15301
|
[56]
|
Ding, Y. and Choi, M.E. (2014) Autophagy in Diabetic Nephropathy. Journal of Endocrinology, 224, R15-R30. https://doi.org/10.1530/joe-14-0437
|
[57]
|
Lee, E.S., Kang, J.S., Kim, H.M., Kim, S.J., Kim, N., Lee, J.O., et al. (2021) Dehydrozingerone Inhibits Renal Lipotoxicity in High‐Fat Diet-Induced Obese Mice. Journal of Cellular and Molecular Medicine, 25, 8725-8733. https://doi.org/10.1111/jcmm.16828
|
[58]
|
Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., et al. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863. https://doi.org/10.7150/thno.50905
|
[59]
|
Cao, Y., Su, H., Zeng, J., Xie, Y., Liu, Z., Liu, F., et al. (2024) Integrin Β8 Prevents Pericyte-Myofibroblast Transition and Renal Fibrosis through Inhibiting the TGF-β1/TGFBR1/SMAD3 Pathway in Diabetic Kidney Disease. Translational Research, 265, 36-50. https://doi.org/10.1016/j.trsl.2023.10.007
|
[60]
|
Wang, X., Sun, Z., Fu, J., Fang, Z., Zhang, W., He, J.C., et al. (2024) LRG1 Loss Effectively Restrains Glomerular TGF-β Signaling to Attenuate Diabetic Kidney Disease. Molecular Therapy, 32, 3177-3193. https://doi.org/10.1016/j.ymthe.2024.06.027
|
[61]
|
Park, C.W., Zhang, Y., Zhang, X., Wu, J., Chen, L., Cha, D.R., et al. (2006) PPARα Agonist Fenofibrate Improves Diabetic Nephropathy in db/db Mice. Kidney International, 69, 1511-1517. https://doi.org/10.1038/sj.ki.5000209
|
[62]
|
Martin, W.P., Nair, M., Chuah, Y.H.D., Malmodin, D., Pedersen, A., Abrahamsson, S., et al. (2022) Dietary Restriction and Medical Therapy Drives PPARα-Regulated Improvements in Early Diabetic Kidney Disease in Male Rats. Clinical Science, 136, 1485-1511. https://doi.org/10.1042/cs20220205
|
[63]
|
Kang, H.M., Ahn, S.H., Choi, P., Ko, Y., Han, S.H., Chinga, F., et al. (2014) Defective Fatty Acid Oxidation in Renal Tubular Epithelial Cells Has a Key Role in Kidney Fibrosis Development. Nature Medicine, 21, 37-46. https://doi.org/10.1038/nm.3762
|
[64]
|
Sohn, M., Kim, K., Uddin, M.J., Lee, G., Hwang, I., Kang, H., et al. (2017) Delayed Treatment with Fenofibrate Protects against High-Fat Diet-Induced Kidney Injury in Mice: The Possible Role of AMPK Autophagy. American Journal of Physiology-Renal Physiology, 312, F323-F334. https://doi.org/10.1152/ajprenal.00596.2015
|
[65]
|
Jiang, X., Liu, T., Xia, Y., Gan, H., Ren, W. and Du, X. (2024) Activation of the Nrf2/ARE Signaling Pathway Ameliorates Hyperlipidemia-Induced Renal Tubular Epithelial Cell Injury by Inhibiting MTROs-Mediated NLRP3 Inflammasome Activation. Frontiers in Immunology, 15, Article 1342350. https://doi.org/10.3389/fimmu.2024.1342350
|
[66]
|
Al-Waili, N., Al-Waili, H., Al-Waili, T. and Salom, K. (2017) Natural Antioxidants in the Treatment and Prevention of Diabetic Nephropathy; a Potential Approach That Warrants Clinical Trials. Redox Report, 22, 99-118. https://doi.org/10.1080/13510002.2017.1297885
|
[67]
|
Park, J., Sohn, H., Koh, Y.H. and Jo, C. (2021) Curcumin Activates Nrf2 through PKCδ-Mediated P62 Phosphorylation at Ser351. Scientific Reports, 11, Article No. 8430. https://doi.org/10.1038/s41598-021-87225-8
|
[68]
|
Shibusawa, R., Yamada, E., Okada, S., Nakajima, Y., Bastie, C.C., Maeshima, A., et al. (2019) Dapagliflozin Rescues Endoplasmic Reticulum Stress-Mediated Cell Death. Scientific Reports, 9, Article No. 9887. https://doi.org/10.1038/s41598-019-46402-6
|
[69]
|
Sun, H., Chen, J., Hua, Y., Zhang, Y. and Liu, Z. (2022) New Insights into the Role of Empagliflozin on Diabetic Renal Tubular Lipid Accumulation. Diabetology & Metabolic Syndrome, 14, Article No. 121. https://doi.org/10.1186/s13098-022-00886-x
|
[70]
|
Takagi, S., Li, J., Takagaki, Y., Kitada, M., Nitta, K., Takasu, T., et al. (2018) Ipragliflozin Improves Mitochondrial Abnormalities in Renal Tubules Induced by a High‐Fat Diet. Journal of Diabetes Investigation, 9, 1025-1032. https://doi.org/10.1111/jdi.12802
|
[71]
|
Igweonu-Nwakile, E.O., Ali, S., Paul, S., Yakkali, S., Teresa Selvin, S., Thomas, S., et al. (2022) A Systematic Review on the Safety and Efficacy of PCSK9 Inhibitors in Lowering Cardiovascular Risks in Patients with Chronic Kidney Disease. Cureus, 14, e29140. https://doi.org/10.7759/cureus.29140
|
[72]
|
Wei, D., Liao, L., Wang, H., Zhang, W., Wang, T. and Xu, Z. (2020) Canagliflozin Ameliorates Obesity by Improving Mitochondrial Function and Fatty Acid Oxidation via PPARα in Vivo and in Vitro. Life Sciences, 247, Article ID: 117414. https://doi.org/10.1016/j.lfs.2020.117414
|
[73]
|
Heinrich, N.S., Pedersen, R.P., Vestergaard, M.B., Lindberg, U., Andersen, U.B., Haddock, B., et al. (2023) Evaluation of the Effects of Ezetimibe on Albuminuria and Kidney Fat in Individuals with Type 2 Diabetes and Chronic Kidney Disease. Diabetes, Obesity and Metabolism, 25, 2605-2615. https://doi.org/10.1111/dom.15146
|
[74]
|
Thomas, M.C., Cooper, M.E. and Zimmet, P. (2015) Changing Epidemiology of Type 2 Diabetes Mellitus and Associated Chronic Kidney Disease. Nature Reviews Nephrology, 12, 73-81. https://doi.org/10.1038/nrneph.2015.173
|
[75]
|
Rojano Toimil, A. and Ciudin, A. (2021) GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Physiology to Clinical Outcomes. Journal of Clinical Medicine, 10, Article 3955. https://doi.org/10.3390/jcm10173955
|
[76]
|
Marso, S.P., Bain, S.C., Consoli, A., Eliaschewitz, F.G., Jódar, E., Leiter, L.A., et al. (2016) Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine, 375, 1834-1844. https://doi.org/10.1056/nejmoa1607141
|
[77]
|
Jiang, X., Chen, X., Hua, W., He, J., Liu, T., Li, X., et al. (2020) PINK1/Parkin Mediated Mitophagy Ameliorates Palmitic Acid-Induced Apoptosis through Reducing Mitochondrial ROS Production in Podocytes. Biochemical and Biophysical Research Communications, 525, 954-961. https://doi.org/10.1016/j.bbrc.2020.02.170
|
[78]
|
Zhang, J., Wu, Y., Zhang, J., Zhang, R., Wang, Y. and Liu, F. (2023) ABCA1 Deficiency-Mediated Glomerular Cholesterol Accumulation Exacerbates Glomerular Endothelial Injury and Dysfunction in Diabetic Kidney Disease. Metabolism, 139, Article ID: 155377. https://doi.org/10.1016/j.metabol.2022.155377
|
[79]
|
Pagtalunan, M.E., Miller, P.L., Jumping-Eagle, S., Nelson, R.G., Myers, B.D., Rennke, H.G., et al. (1997) Podocyte Loss and Progressive Glomerular Injury in Type II Diabetes. Journal of Clinical Investigation, 99, 342-348. https://doi.org/10.1172/jci119163
|
[80]
|
Ducasa, G.M., Mitrofanova, A., Mallela, S.K., Liu, X., Molina, J., Sloan, A., et al. (2019) ATP-Binding Cassette A1 Deficiency Causes Cardiolipin-Driven Mitochondrial Dysfunction in Podocytes. Journal of Clinical Investigation, 129, 3387-3400. https://doi.org/10.1172/jci125316
|
[81]
|
Kim, J., David, J.M., Wilbon, S.S., Santos, J.V., Patel, D.M., Ahmad, A., et al. (2021) Discoidin Domain Receptor 1 Activation Links Extracellular Matrix to Podocyte Lipotoxicity in Alport Syndrome. EBioMedicine, 63, Article ID: 103162. https://doi.org/10.1016/j.ebiom.2020.103162
|
[82]
|
Byun, J.H., Lebeau, P.F., Platko, K., Carlisle, R.E., Faiyaz, M., Chen, J., et al. (2022) Inhibitory Antibodies against PCSK9 Reduce Surface CD36 and Mitigate Diet-Induced Renal Lipotoxicity. Kidney360, 3, 1394-1410. https://doi.org/10.34067/kid.0007022021
|
[83]
|
Tice, J.A., Kazi, D.S. and Pearson, S.D. (2016) Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors for Treatment of High Cholesterol Levels: Effectiveness and Value. JAMA Internal Medicine, 176, 107-108. https://doi.org/10.1001/jamainternmed.2015.7248
|
[84]
|
Kim, Y., Lim, J.H., Kim, M.Y., Kim, E.N., Yoon, H.E., Shin, S.J., et al. (2018) The Adiponectin Receptor Agonist Adiporon Ameliorates Diabetic Nephropathy in a Model of Type 2 Diabetes. Journal of the American Society of Nephrology, 29, 1108-1127. https://doi.org/10.1681/asn.2017060627
|