宫内发育迟缓合并肺动脉高压的诊治进展
Advances in Diagnosis and Treatment of Intrauterine Growth Restriction (IUGR) Complicated with Pulmonary Hypertension (PH)
DOI: 10.12677/acm.2025.1541173, PDF, HTML, XML,   
作者: 刘露迁, 韦 红*:重庆医科大学附属儿童医院新生儿科,儿童发育疾病研究教育部重点实验室,国家儿童健康与疾病临床医学研究中心,儿童发育重大疾病国家国际科技合作基地,重庆
关键词: 宫内发育迟缓肺动脉高压血管重塑遗传调控靶向治疗Intrauterine Growth Restriction Pulmonary Hypertension Vascular Remodeling Epigenetic Regulation Targeted Therapy
摘要: 宫内发育迟缓(Intrauterine Growth Restriction, IUGR)指胎儿因病理因素无法达到其遗传潜力的生长水平,出生体重低于同胎龄第10百分位数或平均体重2个标准差(−2 SD),是围产期死亡及远期神经发育障碍的重要危险因素。近年研究发现,IUGR新生儿中肺动脉高压(Pulmonary Hypertension, PH)的发病率显著升高(15%~30%),其病理机制与慢性缺氧性肺血管重塑、胎盘源性炎症因子释放(如TNF-α、IL-6),以及表观遗传调控异常(如eNOS基因甲基化失衡)等密切相关。一旦进展为新生儿持续性肺动脉高压(Persistent Pulmonary Hypertension of the Newborn, PPHN),可因严重低氧血症诱发多器官功能障碍,死亡率可高达10%~20%,且幸存者常遗留认知障碍或运动功能障碍。目前研究聚焦于:1) 分子机制解析(如BMPR2信号通路异常、miRNA调控网络;2) 靶向治疗优化(如一氧化氮吸入联合磷酸二酯酶-5抑制剂);3) 早期预警体系建立(基于胎盘多普勒血流参数联合血清生物标志物)。本文将对IUGR-PH的流行病学特征、病理生理机制、临床表现与临床管理、预防干预、未来展望等方面进行综述。
Abstract: Intrauterine Growth Restriction (IUGR) refers to a pathological condition in which the fetus fails to achieve its genetically determined growth potential, with birth weight below the 10th percentile for gestational age or 2 standard deviations (−2 SD) from the mean. It is a significant risk factor for perinatal mortality and long-term neurodevelopmental impairments. Recent studies have revealed a markedly increased incidence of Pulmonary Hypertension (PH) in IUGR neonates (15%~30%), with pathological mechanisms closely linked to chronic hypoxic pulmonary vascular remodeling, placenta-derived inflammatory factor release (e.g., TNF-α, IL-6), and aberrant epigenetic regulation (e.g., dysregulated eNOS gene methylation). Once progressing to Persistent Pulmonary Hypertension of the Newborn (PPHN), severe hypoxemia may trigger multi-organ dysfunction, with mortality rates as high as 10%~20%. Survivors often exhibit cognitive or motor deficits. Current research focuses on three key areas: 1) Elucidating molecular mechanisms (e.g., BMPR2 signaling pathway dysfunction, miRNA regulatory networks); 2) Optimizing targeted therapies (e.g., inhaled nitric oxide combined with phosphodiesterase-5 inhibitors); and 3) Establishing early warning systems (based on placental Doppler flow parameters and serum biomarkers). This review summarizes the epidemiological features, pathophysiological mechanisms, clinical manifestations, management strategies, preventive interventions, and future perspectives of IUGR-PH.
文章引用:刘露迁, 韦红. 宫内发育迟缓合并肺动脉高压的诊治进展[J]. 临床医学进展, 2025, 15(4): 2225-2231. https://doi.org/10.12677/acm.2025.1541173

1. 流行性流行病学特征

全球范围内,IUGR在妊娠中的发生率为7%~15%,其围产期死亡率比正常婴儿高4~10倍,且发展中国家发病率较发达国家高6倍。约30%~50%的IUGR患儿可能继发PH,尤其在合并先天性心脏病或围产期窒息的情况下风险显著增高,PH合并妊娠的孕妇新生儿存活率为87%~89%,但母婴死亡率仍处于较高水平[1]

2. 致病机制与病理生理

2.1. IUGR与PH的交互作用

2.1.1. 胎盘功能不全

胎盘功能不全是IUGR的主要病因,占致病因素的60%~70% [2]。其核心机制为母体–胎盘循环障碍及胎儿–胎盘血流动力学异常,如子痫前期患者胎盘床小动脉痉挛及重塑失败[3],导致胎盘血流阻力增加和灌注不足;或母体疾病高血压、糖尿病等基础疾病引发母体小动脉硬化,减少胎盘血流量[4],加剧氧合障碍;脐动脉S/D比值 ≥ 3提示胎盘血管阻力显著升高,阻碍胎儿–胎盘循环交换[5],加重胎盘缺血和胎儿供氧不足。胎儿慢性缺氧驱动肺血管重塑,使肺动脉压力升高,形成PH [6]

2.1.2. 缺氧性损伤

IUGR胎儿长期处于低氧环境,缺氧可以干扰胎盘组织的表观遗传修饰,导致胎盘组织中关键基因内皮型一氧化氮合酶(eNOS)基因启动子区呈现低甲基化,抑制其转录活性,促使eNOS mRNA和蛋白表达下降,从而NO合成减少,引发肺血管收缩阻力升高和内皮屏障破坏[7]。慢性缺氧使HIF-1α信号轴激活,胎盘及肺组织中的miR-210显著表达(表达量较正常胎儿升高5倍),miR-210通过特异性结合铁硫簇支架蛋白(ISCU) mRNA 3'UTR区域,抑制其翻译导致线粒体呼吸链复合体活性[8],导致ATP生成障碍,能量危机迫使肺血管内皮细胞转向糖酵解供能,但无法满足高耗能需求,导致细胞代谢衰竭。同时,电子传递链泄漏引发活性氧(ROS)暴发,加剧肺血管内皮细胞凋亡及肺动脉平滑肌细胞异常增殖[9],加快肺血管中层肥厚及纤维化。上述两者可发生协同作用,使肺血管阻力持续升高,最终进展为不可逆的肺动脉高压(PH) [10]

2.1.3. 母体代谢与营养因素

母体蛋白质–能量营养不良可阻碍肺泡II型上皮细胞增殖与表面活性物质合成,直接抑制肺组织正常发育,以及脂代谢紊乱(如游离脂肪酸水平升高)加剧胎儿氧化应激,进一步损伤肺血管内皮细胞屏障功能。微量元素如维生素A缺乏可显著降低视黄酸受体(RAR/RXR)表达,抑制肺泡II型上皮细胞分化[11],或削弱肺组织局部免疫调节功能,增加炎性细胞因子(如IL-6、TNF-α)释放,加剧肺血管重塑。铁缺乏通过抑制铁依赖的脯氨酰羟化酶活性,稳定缺氧诱导因子HIF-2α,导致胎儿肺血管收缩相关基因(如ET-1、ACE)过度表达,使肺血管对缺氧反应阈值降低,同时减少细胞色素C氧化酶活性,导致肺血管平滑肌线粒体能量代谢障碍[12],加速缺氧性肺血管收缩。蛋白质–能量营养不良与微量元素缺乏可产生协同作用,加速不可逆性肺动脉高压(PH)进展。

2.1.4. 遗传与感染因素

病原体如CMV不仅可以直接侵袭胎盘血管内皮细胞,导致胎盘血流灌注不足及血管功能障碍[13],还可诱导胎儿体内促炎因子(如IL-1β)大量分泌,激活NF-κB信号通路,促进内皮细胞增殖和血管平滑肌收缩,导致肺血管阻力升高,及促进活性氧(ROS)生成[14],加重肺血管内皮功能障碍和结构重塑。研究发现,BMPR2基因突变通过干扰BMP信号通路,促使血管内皮细胞增殖和抗凋亡能力下降,引发细胞稳态失衡[15],加速肺血管的重构。同时,由于遗传易感性,携带BMPR2突变的胎儿在CMV感染等环境刺激下,炎症因子(如TNF-α)释放增多,并与BMPR2突变引起的信号通路紊乱共同作用,导致肺血管病变风险显著升高[16],加速IUGR-PH进展。遗传–环境的相互作用不仅可以使肺血管阻力升高,还会因为胎盘功能异常使胎儿缺氧加重,形成IUGR与PH恶性循环。

2.2. 病理生理改变

2.2.1. 心脏负荷增加

宫内生长受限(IUGR)新生儿易发生肺动脉高压(PH),其病理生理改变主要体现在心脏负荷的显著增加。肺动脉高压导致肺循环阻力显著升高,右心室需要产生更高的压力来维持肺血流。长期的压力负荷使右心室代偿性肥大,但随着心肌耗氧量的增加和能量代谢失衡,右心室收缩功能逐渐减退,最终导致失代偿。心脏负荷过重会进一步引起心排血量下降,导致全身低灌注和器官缺氧,进而引发脑、肾等重要器官的缺血性损伤,显著增加死亡风险。

2.2.2. 低氧血症与血管重塑

IUGR导致的低氧血症是肺动脉高压发生的重要诱因之一。低氧环境下,炎症因子如肿瘤坏死因子α (TNF-α)和白细胞介素-6 (IL-6)释放增加,激活肺血管内皮细胞的Toll样受体4/核因子κB (TLR4/NF-κB)通路,促进活性氧(ROS)的爆发性生成。同时,这些炎症因子可抑制内皮型一氧化氮合酶(eNOS)的活性,减少一氧化氮(NO)的合成[17],从而促进肺血管收缩和纤维化。这种病理过程最终导致持续性新生儿肺动脉高压(PPHN)的发生,严重影响新生儿的预后。

同时,PH的病理特征还包括肺血管重塑,主要表现在肺小动脉结构和功能的改变,这些改变不仅可以增加肺循环阻力,还可以加重右心室的负担,导致恶性循环[18]

综上所述,IUGR可以通过多种机制导致PH发生,其病理生理过程复杂,对患儿近期、及远期健康均可以产生重要影响。

3. 临床表现

3.1. 呼吸系统

机体可以通过增加呼吸频率改善氧合情况,表现为呼吸急促、呼吸困难。血氧饱和度降低使还原血红蛋白明显增多,口唇、甲床等部位发生紫绀,在患儿哭闹、喂养等活动时加重明显。早产儿或低体重儿肺动脉压力升高时,呼吸肌容易发生疲劳,使呛奶、窒息等风险明显增高。反复吸入性损害和继发感染,进一步促进肺血管收缩,促肺动脉压力升高,形成PH。

3.2. 心血管系统

右心室后负荷增加导致右心扩张,体循环淤血,中心静脉压升高,肝静脉回流受阻出现肝肿大;毛细血管静水压升高引发下肢或全身凹陷性水肿。严重右心衰竭时,胸腔、腹腔及心包腔漏出液积聚,可能与低蛋白血症共同作用。右心输出量减少导致左心室充盈不足(心室间依赖),全身组织灌注不足,表现为四肢厥冷、尿量减少。无氧代谢增加,乳酸堆积;高血钾则因细胞缺氧致Na⁺/K⁺泵功能障碍,细胞内钾外流,同时肾灌注不足减少排钾。

3.3. 生长发育受限

喂养困难、慢性缺氧可引起喂养不耐受(如腹胀、呕吐),导致能量摄入不足,且呼吸做功可增加机体能量消耗,共同作用导致生长发育迟缓,身高和体重显著落后于同龄儿童;长期蛋白质–能量营养不良可引发低蛋白血症、恶病质等,进一步加重器官功能障碍。

3.4. 多器官功能损害

严重低氧血症(PaO2 < 40 mmHg)引发脑细胞ATP耗竭、钠钾泵衰竭(细胞毒性水肿),合并酸中毒时血脑屏障破坏,可导致颅内出血或脑梗死,嗜睡、抽搐、昏迷、偏瘫等中枢神经系统症状。部分患儿合并急性肾功能衰竭,表现为少尿、管型尿、氮质血症及电解质紊乱(高钾血症、低钠血症、低钙血症等),电解质紊乱使心律失常风险增加。

3.5. 感染及免疫相关表现

慢性缺氧抑制T淋巴细胞增殖及细胞因子分泌(如IL-2、IFN-γ),新生儿期中性粒细胞趋化/吞噬功能不足,易发生细菌/病毒感染,如发生新生儿肺炎、NEC等疾病。感染时发热、代谢率升高增加氧耗,炎性因子(如TNF-α、IL-6)促进肺血管收缩,进一步加重肺动脉高压及多器官衰竭[19]

4. 诊断与评估

定期产前检查,超声监测胎儿生长曲线、脐动脉血流阻力指数,预测IUGR风险[20];超声心动图的检查是诊断PH的首先方法,根据美国心脏协会(AHA)标准,PH诊断需满足:① 超声心动图测得肺动脉收缩压(PASP) ≥ 25 mmHg (三尖瓣反流峰速 ≥ 2.8 m/s);② 右心导管检查平均肺动脉压(mPAP) ≥ 20 mmHg。新生儿病情评估需借助动脉血气分析(PaO2 < 50 mmHg)、胸部X线(肺血流减少)及心脏超声(右向左分流)综合考虑。

5. 临床治疗策略

IUGR-PH的治疗早期阶段以呼吸支持及肺血管扩张为主,进展期或难治性PH需予以强化ECMO与靶向药物联合应用,必要时行动脉导管结扎术减轻右心负荷。总之,IUGR-PH的治疗需遵循多学科协作的综合治疗模式,制定个体化方案,动态调整干预措施。

5.1. 呼吸支持

5.1.1. 机械通气

采用目标导向通气策略,维持PaO2 50~70 mmHg、PaCO2 35~45 mmHg,注意避免容量伤及氧毒性[21]

5.1.2. 选择性扩张肺血管

一氧化氮吸入(iNO):起始剂量20 ppm,根据肺动脉压下降幅度逐步调整至维持剂量5~10 ppm,联合西地那非可增强疗效[22] [23]。西地那非:口服负荷量0.5 mg/kg,维持量0.3 mg/kg q6h,目标血药浓度50~100 ng/mL [24]。曲前列环素:持续静脉泵注(1~2 ng/kg/min),适用于难治性PH [25]

5.2. 循环支持

多巴胺(5~10 μg/kg/min)或去甲肾上腺素(0.05~0.3 μg/kg/min)用于维持体循环阻力[26],防止右向左分流加重低氧血症。

5.3. 高级治疗

体外膜肺氧合(ECMO)适用于难治性低氧血症(氧合指数 > 40)或乳酸 > 10 mmol/L者,存活率可达58% [27]

5.4. 基因/表观遗传靶向治疗

针对存在BMPR2或eNOS基因突变的患儿,优选靶向调控BMP信号通路(如他达拉非)或改善NO合成的药物(如精氨酸) [28] [29];表观遗传异常患儿(如eNOS低甲基化),则探索甲基供体(如甜菜碱)或组蛋白去乙酰化酶抑制剂(HDACi)的潜在应用[30]

5.5. 其它

脑、肾等重要器官的防治,维持内环境稳定、营养支持、手术治疗等治疗。

6. 预防与干预

6.1. 孕前/孕期

母体方面积极治疗妊娠期糖尿病、高血压等基础疾病,避免接触有毒有害物质等,保持良好生活习惯,营养支持等,对有高危妊娠的产妇需多学科联合,并制定个体化干预方案。胎儿方面定期孕期检查评估胎儿情况,早期识别IUGR迹象。

6.2. 产时/产后

分娩时密切监测胎儿及母体状态,必要时缩短产程或选择剖宫产;针对高危新生儿,及时予以呼吸循环支持、药物治疗,维持内环境稳定等,并在生后24小时内行振幅整合脑电图(aEEG)及心脏超声,识别PH及脑损伤。

6.3. 远期随访

定期评估神经发育及心肺功能情况,必要时需予以康复治疗。

7. 未来展望

未来将着力于机制研究,例如将单细胞测序技术与时空组学技术相结合,以揭示PH的分子分型及演进路径,为靶点筛选提供更多依据;积极研发靶向药物(如BMPR2激动剂、miRNA抑制剂)、干细胞疗法临床化(间充质干细胞移植修复肺血管内皮)、表观遗传药物治疗等,构建精准预测模型,实现精准医学应用。

NOTES

*通讯作者。

参考文献

[1] Regitz-Zagrosek, V., Roos-Hesselink, J.W., Bauersachs, J., Blomström-Lundqvist, C., Cífková, R., De Bonis, M., et al. (2018) 2018 ESC Guidelines for the Management of Cardiovascular Diseases during Pregnancy. European Heart Journal, 39, 3165-3241.
https://doi.org/10.1093/eurheartj/ehy340
[2] 李红梅, 张建国, 王丽华, 陈志强. 胎儿生长受限的胎盘病理机制分析[J]. 中华妇产科杂志, 2016, 51(3): 189-194.
[3] 王雪, 李明, 赵丹, 周涛. 子痫前期胎盘血管重塑的临床研究[J]. 中国实用妇科与产科杂志, 2020, 36(5): 412-417.
[4] 陈晓琳, 刘伟, 吴芳. 妊娠期高血压对胎盘功能的影响[J]. 中国妇幼健康研究, 2021, 32(7): 1021-1026.
[5] Lees, C.C., Stampalija, T., Baschat, A.A., da Silva Costa, F. and Ferrazzi, E. (2022) Fetal Doppler in IUGR: ISUOG Practice Guidelines. Ultrasound in Obstetrics & Gynecology, 59, 158-167.
[6] 刘志刚, 王红梅, 陈静, 李娜. 胎儿缺氧相关肺动脉高压的分子机制[J]. 中华儿科杂志, 2020, 58(8): 645-650.
[7] Stanley, J.L., Andersson, I.J., Poudel, R., et al. (2018) Placental eNOS Dysfunction in Fetal Growth Restriction: Role of Oxidative Stress. Free Radical Biology and Medicine, 128, 1-9.
[8] Huang, X., Ding, H., Li, Y., et al. (2018) MicroRNA-210 Targets Iron-Sulfur Cluster Scaffold Homologue (ISCU) to Promote Mitochondrial Dysfunction in Hypoxic Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 59, 731-743.
[9] Diebold, I., Hennigs, J.K., Miyagawa, K., Li, C.G., Nickel, N.P., Kaschwich, M., et al. (2015) BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation to Promote Endothelial Cell Survival and Reverse Pulmonary Hypertension. Cell Metabolism, 21, 596-608.
https://doi.org/10.1016/j.cmet.2015.03.010
[10] Pullamsetti, S.S., Savai, R., Janssen, W., et al. (2017) Inflammation, Immunological Reaction, and Angiogenesis in Pulmonary Hyper-Tension: A Complex Network of Interactions. European Respiratory Journal, 50, Article ID: 1602469.
[11] Catharine Ross, A. and Zolfaghari, R. (2011) Cytochrome P450s in the Regulation of Cellular Retinoic Acid Metabolism. Annual Review of Nutrition, 31, 65-87.
https://doi.org/10.1146/annurev-nutr-072610-145127
[12] Hentze, M.W., Muckenthaler, M.U., Galy, B. and Camaschella, C. (2010) Two to Tango: Regulation of Mammalian Iron Metabolism. Cell, 142, 24-38.
https://doi.org/10.1016/j.cell.2010.06.028
[13] Maidji, E., Percivalle, E., Gerna, G., Fisher, S. and Pereira, L. (2002) Transmission of Human Cytomegalovirus from Infected Uterine Microvascular Endothelial Cells to Differentiating/Invasive Placental Cytotrophoblasts. Virology, 304, 53-69.
https://doi.org/10.1006/viro.2002.1661
[14] Chan, G., Hemmings, D.G., Yurochko, A.D., et al. (2002) Human Cytomegalovirus-Induced Activation of Prostaglandin H Synthase-2 in Human Umbilical Vein Endothelial Cells. Journal of Virology, 76, 7108-7113.
[15] Morrell, N.W., Bloch, D.B., ten Dijke, P., Goumans, M.T.H., Hata, A., Smith, J., et al. (2015) Targeting BMP Signalling in Cardiovascular Disease and Anaemia. Nature Reviews Cardiology, 13, 106-120.
https://doi.org/10.1038/nrcardio.2015.156
[16] West, J., Cogan, J., Geraci, M., et al. (2008) Gene Expression in BMPR2 Mutation Carriers with and without Evidence of Penetrant Pulmonary Arterial Hypertension Suggests Pathways Involved in Disease Expression. Circulation Research, 103, 735-743.
[17] Farrow, K.N., Lakshminrusimha, S., Reda, W.J., Wedgwood, S., Czech, L., Gugino, S.F., et al. (2008) Superoxide Dismutase Restores Enos Expression and Function in Resistance Pulmonary Arteries from Neonatal Lambs with Persistent Pulmonary Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 295, L979-L987.
https://doi.org/10.1152/ajplung.90238.2008
[18] Stenmark, K.R., Meyrick, B., Galie, N., Mooi, W.J. and McMurtry, I.F. (2009) Animal Models of Pulmonary Arterial Hypertension: The Hope for Etiological Discovery and Pharmacological Cure. American Journal of Physiology-Lung Cellular and Molecular Physiology, 297, L1013-L1032.
https://doi.org/10.1152/ajplung.00217.2009
[19] Kumar, V.H., Lakshminrusimha, S., Kishkurno, S., et al. (2017) Neonatal Pulmonary Hypertension: The Role of Inflammation. Frontiers in Pediatrics, 5, Article 111.
[20] American College of Obstetricians and Gynecologists (2019) Practice Bulletin No. 204: Fetal Growth Restriction. Obstetrics & Gynecology, 133, e97-e109.
[21] Sweet, D.G., Carnielli, V.P., Greisen, G., Hallman, M., Klebermass-Schrehof, K., Ozek, E., et al. (2023) European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology, 120, 3-23.
https://doi.org/10.1159/000528914
[22] Steinhorn, R.H., Kinsella, J.P., Pierce, C., Butrous, G., Dilleen, M., Oakes, M., et al. (2009) Intravenous Sildenafil in the Treatment of Neonates with Persistent Pulmonary Hypertension. The Journal of Pediatrics, 155, 841-847.e1.
https://doi.org/10.1016/j.jpeds.2009.06.012
[23] Kinsella, J.P., Parker, T.A., Ivy, D.D. and Abman, S.H. (2003) Noninvasive Delivery of Inhaled Nitric Oxide Therapy for Late Pulmonary Hypertension in Newborn Infants with Congential Diaphragmatic Hernia. The Journal of Pediatrics, 142, 397-401.
https://doi.org/10.1067/mpd.2003.140
[24] Barst, R.J., Ivy, D.D., Gaitan, G., Szatmari, A., Rudzinski, A., Garcia, A.E., et al. (2012) A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Study of Oral Sildenafil Citrate in Treatment-Naive Children with Pulmonary Arterial Hypertension. Circulation, 125, 324-334.
https://doi.org/10.1161/circulationaha.110.016667
[25] Lakshminrusimha, S., Mathew, B. and Leach, C.L. (2016) Pharmacologic Strategies in Neonatal Pulmonary Hypertension Other than Nitric Oxide. Seminars in Perinatology, 40, 160-173.
https://doi.org/10.1053/j.semperi.2015.12.004
[26] McNamara, P.J., Shivananda, S.P., Sahni, M., Freeman, D. and Taddio, A. (2013) Pharmacology of Milrinone in Neonates with Persistent Pulmonary Hypertension of the Newborn and Suboptimal Response to Inhaled Nitric Oxide. Pediatric Critical Care Medicine, 14, 74-84.
https://doi.org/10.1097/pcc.0b013e31824ea2cd
[27] Extracorporeal Life Support Organization (ELSO) (2021) ELSO Registry Report: International Summary. EL-SO.
[28] Austin, E.D., Phillips, J.A., Cogan, J.D., Hamid, R., Yu, C., Stanton, K.C., et al. (2009) Truncating and Missense BMPR2 Mutations Differentially Affect the Severity of Heritable Pulmonary Arterial Hypertension. Respiratory Research, 10, Article No. 87.
https://doi.org/10.1186/1465-9921-10-87
[29] Pearson, D.L., Dawling, S., Walsh, W.F., Haines, J.L., Christman, B.W., Bazyk, A., et al. (2001) Neonatal Pulmonary Hypertension. New England Journal of Medicine, 344, 1832-1838.
https://doi.org/10.1056/nejm200106143442404
[30] Zeisel, S.H. (2013) Metabolic Crosstalk between Choline/1-Carbon Metabolism and Energy Homeostasis. Clinical Chemistry and Laboratory Medicine, 51, 467-475.
https://doi.org/10.1515/cclm-2012-0518