[1]
|
Ashokkumar, S., White, J.L., Kyeyune, D., et al. (2023) SARS-CoV-2 Seroprevalence among Ugandan Blood Donors: 2019-2022. Topics in Antiviral Medicine, 31, 36-39.
|
[2]
|
Song, J., Choi, S., Jeong, S., Chang, J.Y., Park, S.J., Oh, Y.H., et al. (2024) Protective Effect of Vaccination on the Risk of Cardiovascular Disease after SARS-CoV-2 Infection. Clinical Research in Cardiology, 113, 235-245. https://doi.org/10.1007/s00392-023-02271-8
|
[3]
|
Li, N., Zhu, L., Sun, L. and Shao, G. (2021) The Effects of Novel Coronavirus (SARS-CoV-2) Infection on Cardiovascular Diseases and Cardiopulmonary Injuries. Stem Cell Research, 51, Article 102168. https://doi.org/10.1016/j.scr.2021.102168
|
[4]
|
Marfella, R., Paolisso, P., Sardu, C., Palomba, L., D’Onofrio, N., Cesaro, A., et al. (2021) SARS-COV-2 Colonizes Coronary Thrombus and Impairs Heart Microcirculation Bed in Asymptomatic Sars-Cov-2 Positive Subjects with Acute Myocardial Infarction. Critical Care, 25, Article No. 217. https://doi.org/10.1186/s13054-021-03643-0
|
[5]
|
Agarwal, S., Al Hashimi, H., Agarwal, S.K. and Albastaki, U. (2020) Possible Association between Myocardial Infarction with Nonobstructed Coronary Arteries and SARS-CoV-2 Infection. Canadian Medical Association Journal, 192, E1633-E1636. https://doi.org/10.1503/cmaj.202106
|
[6]
|
汤云霞, 黄翯. 女性心血管疾病现状及性别特异性危险因素分析[J]. 心电与循环, 2024, 43(6): 544-549.
|
[7]
|
李瑞珍, 李星辉, 曾璟, 等. 急性心肌梗死合并心脏破裂的研究进展[J]. 临床荟萃, 2024, 39(3): 264-268.
|
[8]
|
韩闯, 阙文戈, 王治忠, 等. 基于心电图的心肌梗死智能辅助诊断方法研究综述[J]. 生物医学工程学杂志, 2023, 40(5): 1019-1026.
|
[9]
|
Mueller, C., Möckel, M., Giannitsis, E., Huber, K., Mair, J., Plebani, M., et al. (2017) Use of Copeptin for Rapid Rule-Out of Acute Myocardial Infarction. European Heart Journal: Acute Cardiovascular Care, 7, 570-576. https://doi.org/10.1177/2048872617710791
|
[10]
|
Khan, S., Hasan, A., Attar, F., Sharifi, M., Siddique, R., Mraiche, F., et al. (2020) Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. ACS Biomaterials Science & Engineering, 6, 6460-6477. https://doi.org/10.1021/acsbiomaterials.0c00955
|
[11]
|
Perez Assef, H., Ferrer Arrocha, M. and Aguiar Perez, J.E. (2022) Type 2 Acute Myocardial Infarction: Challenges in Clinical Practice. Internal and Emergency Medicine, 12, 20-22.
|
[12]
|
邹明静, 赵玉娟, 孙玉茗, 等. 急性心肌梗死标志物检测方法研究进展[J]. 检验医学与临床, 2024, 21(13): 1964-1967+1971.
|
[13]
|
Yang, S., Liu, C., Ji, X., Chen, X., Wang, Y. and Tao, R. (2023) The Role of Gold Nanorods in Detecting Circulating Micrornas as Biomarkers in Liver Diseases. Journal of Biomedical Nanotechnology, 19, 1721-1729. https://doi.org/10.1166/jbn.2023.3676
|
[14]
|
D’Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P.G., et al. (2010) Circulating MicroRNAs Are New and Sensitive Biomarkers of Myocardial Infarction. European Heart Journal, 31, 2765-2773. https://doi.org/10.1093/eurheartj/ehq167
|
[15]
|
Jung, S.E., Kim, S.W. and Choi, J. (2024) Exploring Cardiac Exosomal RNAs of Acute Myocardial Infarction. Biomedicines, 12, Article 430. https://doi.org/10.3390/biomedicines12020430
|
[16]
|
You, F. (2024) Exosomal miRNA-Let-7i-5p from Bone Marrow Mesenchymal Stem Cells Protects against Myocardial Infarction by Inhibiting Myocardial Apoptosis. American Journal of Translational Research, 16, 6528-6539. https://doi.org/10.62347/vxnd1945
|
[17]
|
Mao, S., Liang, Y., Yu, L., et al. (2021) Exosomal Hsa_Circ_0007047 Attenuates Pos-Myocardial Infarction Remodeling by Promoting Angiogenesis via miR-1178-3p/PDPK1 Axis. https://doi.org/10.21203/rs.3.rs-827822/v1
|
[18]
|
Zhang, H., Chen, X., Hu, P., Liang, Q., Liang, X., Wang, Y., et al. (2009) Metabolomic Profiling of Rat Serum Associated with Isoproterenol-Induced Myocardial Infarction Using Ultra-Performance Liquid Chromatography/Time-of-Flight Mass Spectrometry and Multivariate Analysis. Talanta, 79, 254-259. https://doi.org/10.1016/j.talanta.2009.03.045
|
[19]
|
Kim, M., Long, T.I., Arakawa, K., Wang, R., Yu, M.C. and Laird, P.W. (2010) DNA Methylation as a Biomarker for Cardiovascular Disease Risk. PLOS ONE, 5, e9692. https://doi.org/10.1371/journal.pone.0009692
|
[20]
|
Talens, R.P., Jukema, J.W., Trompet, S., Kremer, D., Westendorp, R.G.J., Lumey, L.H., et al. (2011) Hypermethylation at Loci Sensitive to the Prenatal Environment Is Associated with Increased Incidence of Myocardial Infarction. International Journal of Epidemiology, 41, 106-115. https://doi.org/10.1093/ije/dyr153
|
[21]
|
Kim, S.Y., Lee, J., Shin, W., Oh, I., Ahn, J. and Kim, Y. (2023) Correction: Cardiac Biomarkers and Detection Methods for Myocardial Infarction. Molecular & Cellular Toxicology, 19, 221-221. https://doi.org/10.1007/s13273-022-00325-y
|
[22]
|
Li, M., Chen, F., Zhang, Y., Xiong, Y., Li, Q. and Huang, H. (2020) Identification of Post-Myocardial Infarction Blood Expression Signatures Using Multiple Feature Selection Strategies. Frontiers in Physiology, 11, Article 483. https://doi.org/10.3389/fphys.2020.00483
|
[23]
|
Wen, X., Ou, Y., Zarick, H.F., Zhang, X., Hmelo, A.B., Victor, Q.J., et al. (2020) PRADA: Portable Reusable Accurate Diagnostics with Nanostar Antennas for Multiplexed Biomarker Screening. Bioengineering & Translational Medicine, 5, e10165. https://doi.org/10.1002/btm2.10165
|
[24]
|
Chowdhury, M., Alzoubi, K., Khandakar, A., Khallifa, R., Abouhasera, R., Koubaa, S., et al. (2019) Wearable Real-Time Heart Attack Detection and Warning System to Reduce Road Accidents. Sensors, 19, Article 2780. https://doi.org/10.3390/s19122780
|
[25]
|
Kitte, S.A., Tafese, T., Xu, C., Saqib, M., Li, H. and Jin, Y. (2021) Plasmon-Enhanced Quantum Dots Electrochemiluminescence Aptasensor for Selective and Sensitive Detection of Cardiac Troponin I. Talanta, 221, Article 121674. https://doi.org/10.1016/j.talanta.2020.121674
|
[26]
|
Kitte, S.A., Bushira, F.A. and Soreta, T.R. (2022) An Impedimetric Aptamer-Based Sensor for Sensitive and Selective Determination of Cardiac Troponin I. Journal of the Iranian Chemical Society, 19, 505-511. https://doi.org/10.1007/s13738-021-02324-7
|
[27]
|
Azar, A., Andrew, B., Ralf, L., et al. (2018) A Wearable Patch for Continuous Monitoring of Sweat Electrolytes during Exertion. Lab on a Chip, 18, 2632-2641.
|
[28]
|
Niu, P., Jiang, J., Liu, K., Wang, S., Jing, J., Xu, T., et al. (2022) Fiber-Integrated WGM Optofluidic Chip Enhanced by Microwave Photonic Analyzer for Cardiac Biomarker Detection with Ultra-High Resolution. Biosensors and Bioelectronics, 208, Article 114238. https://doi.org/10.1016/j.bios.2022.114238
|
[29]
|
Chen, Z., Yan, Y., Wu, J., Qi, C., Liu, J. and Wang, J. (2020) Expression Level and Diagnostic Value of Exosomal NEAT1/miR-204/MMP-9 in Acute ST-Segment Elevation Myocardial Infarction. IUBMB Life, 72, 2499-2507. https://doi.org/10.1002/iub.2376
|
[30]
|
European Society of Cardiology (2023) 2023 ESC Guidelines on Acute Coronary Syndromes: Incorporation of Exosomal miRNA-208b. https://www.escardio.org/guidelines
|
[31]
|
Boovarahan, S.R., AlAsmari, A.F., Ali, N., Khan, R. and Kurian, G.A. (2022) Targeting DNA Methylation Can Reduce Cardiac Injury Associated with Ischemia Reperfusion: One Step Closer to Clinical Translation with Blood-Borne Assessment. Frontiers in Cardiovascular Medicine, 9, Article 1021909. https://doi.org/10.3389/fcvm.2022.1021909
|
[32]
|
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. and Au, K.F. (2021) Nanopore Sequencing Technology, Bioinformatics and Applications. Nature Biotechnology, 39, 1348-1365. https://doi.org/10.1038/s41587-021-01108-x
|
[33]
|
Hu, X., Li, J., Li, Y., Zhang, Y., Xiao, M., Zhang, Z., et al. (2024) Plug-and-Play Smart Transistor Bio-Chips Implementing Point-of-Care Diagnosis of AMI with Modified CRISPR/Cas12a System. Biosensors and Bioelectronics, 246, Article 115909. https://doi.org/10.1016/j.bios.2023.115909
|
[34]
|
Scharf, G.M., Kilian, K., Cordero, J., Wang, Y., Grund, A., Hofmann, M., et al. (2019) Inactivation of Sox9 in Fibroblasts Reduces Cardiac Fibrosis and Inflammation. JCI Insight, 4, e126721. https://doi.org/10.1172/jci.insight.126721
|
[35]
|
Ma, H., Cassedy, A. and O’Kennedy, R. (2021) The Role of Antibody-Based Troponin Detection in Cardiovascular Disease: A Critical Assessment. Journal of Immunological Methods, 497, Article 113108. https://doi.org/10.1016/j.jim.2021.113108
|
[36]
|
He, B., Ge, H., Yang, F., Sun, Y., Li, Z., Jiang, M., et al. (2015) A Novel Method in the Stratification of Post-Myocardial-Infarction Patients Based on Pathophysiology. PLOS ONE, 10, e0130158. https://doi.org/10.1371/journal.pone.0130158
|
[37]
|
Jaltotage, B., Sukudom, S., Ihdayhid, A.R. and Dwivedi, G. (2023) Enhancing Risk Stratification on Coronary Computed Tomography Angiography: The Role of Artificial Intelligence. Clinical Therapeutics, 45, 1023-1028. https://doi.org/10.1016/j.clinthera.2023.09.019
|
[38]
|
Giampieri, P. (2025) Ai-Powered Contracts: A Critical Analysis. International Journal for the Semiotics of Law-Revue Internationale de Sémiotique Juridique, 38, 403-420. https://doi.org/10.1007/s11196-024-10137-z
|
[39]
|
Kim, Y., Johnson, T.W., Akasaka, T. and Jeong, M.H. (2018) The Role of Optical Coherence Tomography in the Setting of Acute Myocardial Infarction. Journal of Cardiology, 72, 186-192. https://doi.org/10.1016/j.jjcc.2018.03.004
|
[40]
|
Jang, J., et al. (2023) Real-Time AI-Guided OCT Imaging for Coronary Thrombosis Detection. European Heart Journal, 24, 13-17.
|