[1]
|
Sweeting, A., Wong, J., Murphy, H.R. and Ross, G.P. (2022) A Clinical Update on Gestational Diabetes Mellitus. Endocrine Reviews, 43, 763-793. https://doi.org/10.1210/endrev/bnac003
|
[2]
|
Szmuilowicz, E.D., Josefson, J.L. and Metzger, B.E. (2019) Gestational Diabetes Mellitus. Endocrinology and Metabolism Clinics of North America, 48, 479-493. https://doi.org/10.1016/j.ecl.2019.05.001
|
[3]
|
Juan, J. and Yang, H. (2020) Prevalence, Prevention, and Lifestyle Intervention of Gestational Diabetes Mellitus in China. International Journal of Environmental Research and Public Health, 17, Article 9517. https://doi.org/10.3390/ijerph17249517
|
[4]
|
Ye, W., Luo, C., Huang, J., Li, C., Liu, Z. and Liu, F. (2022) Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. BMJ, 377, e067946. https://doi.org/10.1136/bmj-2021-067946
|
[5]
|
Zhao, Y. and Yue, R. (2023) Aging Adipose Tissue, Insulin Resistance, and Type 2 Diabetes. Biogerontology, 25, 53-69. https://doi.org/10.1007/s10522-023-10067-6
|
[6]
|
Hivert, M., White, F., Allard, C., James, K., Majid, S., Aguet, F., et al. (2024) Placental IGFBP1 Levels during Early Pregnancy and the Risk of Insulin Resistance and Gestational Diabetes. Nature Medicine, 30, 1689-1695. https://doi.org/10.1038/s41591-024-02936-5
|
[7]
|
Hivert, M., Backman, H., Benhalima, K., Catalano, P., Desoye, G., Immanuel, J., et al. (2024) Pathophysiology from Preconception, during Pregnancy, and Beyond. The Lancet, 404, 158-174. https://doi.org/10.1016/s0140-6736(24)00827-4
|
[8]
|
Zhao, X., Zhang, W., Jiang, F., Chen, X., Chen, C., Wang, M., et al. (2024) Excessive Palmitic Acid Disturbs Macrophage α-Ketoglutarate/Succinate Metabolism and Causes Adipose Tissue Insulin Resistance Associated with Gestational Diabetes Mellitus. Free Radical Biology and Medicine, 222, 424-436. https://doi.org/10.1016/j.freeradbiomed.2024.06.029
|
[9]
|
Luo, Y., Qin, Y., Kong, L., Long, J., Lukacs-Kornek, V., Li, J., et al. (2024) Clinical and Pathological Characteristics of Gestational Diabetes Mellitus with Different Insulin Resistance. Journal of Diabetes and its Complications, 38, Article ID: 108796. https://doi.org/10.1016/j.jdiacomp.2024.108796
|
[10]
|
Pavelec, C.M., Young, A.P., Luviano, H.L., Orrell, E.E., Szagdaj, A., Poudel, N., et al. (2024) Cardiomyocyte PANX1 Controls Glycolysis and Neutrophil Recruitment in Hypertrophy. Circulation Research, 135, 503-517. https://doi.org/10.1161/circresaha.124.324650
|
[11]
|
Hu, C., Hou, T., Xiang, R., Li, X., Li, J., Wang, T., et al. (2024) PANX1-Mediated ATP Release Confers FAM3A’s Suppression Effects on Hepatic Gluconeogenesis and Lipogenesis. Military Medical Research, 11, Article No. 41. https://doi.org/10.1186/s40779-024-00543-6
|
[12]
|
Gómez, G.I., Alvear, T.F., Roa, D.A., Farias-Pasten, A., Vergara, S.A., Mellado, L.A., et al. (2024) CX43 Hemichannels and PANX1 Channels Contribute to Ethanol-Induced Astrocyte Dysfunction and Damage. Biological Research, 57, Article No. 15. https://doi.org/10.1186/s40659-024-00493-2
|
[13]
|
Fierro-Arenas, A., Landskron, G., Camhi-Vainroj, I., Basterrechea, B., Parada-Venegas, D., Lobos-González, L., et al. (2024) Pannexin-1 Expression in Tumor Cells Correlates with Colon Cancer Progression and Survival. Life Sciences, 351, Article ID: 122851. https://doi.org/10.1016/j.lfs.2024.122851
|
[14]
|
Santavanond, J.P., Chiu, Y., Tixeira, R., Liu, Z., Yap, J.K.Y., Chen, K.W., et al. (2024) The Small Molecule Raptinal Can Simultaneously Induce Apoptosis and Inhibit PANX1 Activity. Cell Death & Disease, 15, Article No. 123. https://doi.org/10.1038/s41419-024-06513-z
|
[15]
|
Jorquera, G., Meneses-Valdés, R., Rosales-Soto, G., Valladares-Ide, D., Campos, C., Silva-Monasterio, M., et al. (2021) High Extracellular ATP Levels Released through Pannexin-1 Channels Mediate Inflammation and Insulin Resistance in Skeletal Muscle Fibres of Diet-Induced Obese Mice. Diabetologia, 64, 1389-1401. https://doi.org/10.1007/s00125-021-05418-2
|
[16]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
|
[17]
|
Adamson, S.E., Meher, A.K., Chiu, Y., Sandilos, J.K., Oberholtzer, N.P., Walker, N.N., et al. (2015) Pannexin 1 Is Required for Full Activation of Insulin-Stimulated Glucose Uptake in Adipocytes. Molecular Metabolism, 4, 610-618. https://doi.org/10.1016/j.molmet.2015.06.009
|
[18]
|
Bartley, C., Brun, T., Oberhauser, L., Grimaldi, M., Molica, F., Kwak, B.R., et al. (2019) Chronic Fructose Renders Pancreatic β-Cells Hyper-Responsive to Glucose-Stimulated Insulin Secretion through Extracellular ATP Signaling. American Journal of Physiology-Endocrinology and Metabolism, 317, E25-E41. https://doi.org/10.1152/ajpendo.00456.2018
|
[19]
|
Liong, S. and Lappas, M. (2015) Endoplasmic Reticulum Stress Is Increased in Adipose Tissue of Women with Gestational Diabetes. PLOS ONE, 10, e0122633. https://doi.org/10.1371/journal.pone.0122633
|
[20]
|
Huang, G., Bao, J., Shao, X., Zhou, W., Wu, B., Ni, Z., et al. (2020) Inhibiting Pannexin-1 Alleviates Sepsis-Induced Acute Kidney Injury via Decreasing NLRP3 Inflammasome Activation and Cell Apoptosis. Life Sciences, 254, Article ID: 117791. https://doi.org/10.1016/j.lfs.2020.117791
|
[21]
|
Huang, Y., Bai, Z. and Sui, S. (2024) Mir-224-5p Alleviates Preeclampsia-Like Mouse Symptoms by Targeting PANX1 to Inhibit Ferroptosis in Trophoblast Cells. Placenta, 158, 113-125. https://doi.org/10.1016/j.placenta.2024.10.009
|
[22]
|
El-Khalik, S.R.A., Ibrahim, R.R., Ghafar, M.T.A., Shatat, D. and El-Deeb, O.S. (2022) Novel Insights into the SLC7A11-Mediated Ferroptosis Signaling Pathways in Preeclampsia Patients: Identifying Pannexin 1 and Toll-Like Receptor 4 as Innovative Prospective Diagnostic Biomarkers. Journal of Assisted Reproduction and Genetics, 39, 1115-1124. https://doi.org/10.1007/s10815-022-02443-x
|