[1]
|
Evered, L., Silbert, B., Knopman, D.S., Scott, D.A., DeKosky, S.T., Rasmussen, L.S., et al. (2018) Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery—2018. Anesthesiology, 129, 872-879. https://doi.org/10.1097/aln.0000000000002334
|
[2]
|
Glumac, S., Kardum, G., Sodic, L., Supe-Domic, D. and Karanovic, N. (2017) Effects of Dexamethasone on Early Cognitive Decline after Cardiac Surgery. European Journal of Anaesthesiology, 34, 776-784. https://doi.org/10.1097/eja.0000000000000647
|
[3]
|
Knipp, S.C., Weimar, C., Schlamann, M., Schweter, S., Wendt, D., Thielmann, M., et al. (2017) Early and Long-Term Cognitive Outcome after Conventional Cardiac Valve Surgery. Interactive CardioVascular and Thoracic Surgery, 24, ivw421. https://doi.org/10.1093/icvts/ivw421
|
[4]
|
Nemeth, E., Vig, K., Racz, K., Koritsanszky, K.B., Ronkay, K.I., Hamvas, F.P., et al. (2017) Influence of the Postoperative Inflammatory Response on Cognitive Decline in Elderly Patients Undergoing On-Pump Cardiac Surgery: A Controlled, Prospective Observational Study. BMC Anesthesiology, 17, Article No. 113. https://doi.org/10.1186/s12871-017-0408-1
|
[5]
|
Ghaffary, S., Ghaeli, P., Talasaz, A.H., Karimi, A., Noroozian, M., Salehiomran, A., et al. (2017) Effect of Memantine on Post-Operative Cognitive Dysfunction after Cardiac Surgeries: A Randomized Clinical Trial. DARU Journal of Pharmaceutical Sciences, 25, Article No. 24. https://doi.org/10.1186/s40199-017-0190-0
|
[6]
|
Subramaniyan, S. and Terrando, N. (2019) Neuroinflammation and Perioperative Neurocognitive Disorders. Anesthesia & Analgesia, 128, 781-788. https://doi.org/10.1213/ane.0000000000004053
|
[7]
|
Wang, P., Velagapudi, R., Kong, C., Rodriguiz, R.M., Wetsel, W.C., Yang, T., et al. (2020) Neurovascular and Immune Mechanisms That Regulate Postoperative Delirium Superimposed on Dementia. Alzheimer’s & Dementia, 16, 734-749. https://doi.org/10.1002/alz.12064
|
[8]
|
Bhushan, S., Li, Y., Huang, X., Cheng, H., Gao, K. and Xiao, Z. (2021) Progress of Research in Postoperative Cognitive Dysfunction in Cardiac Surgery Patients: A Review Article. International Journal of Surgery, 95, Article 106163. https://doi.org/10.1016/j.ijsu.2021.106163
|
[9]
|
Kahl, U., Callsen, S., Beck, S., Pinnschmidt, H., von Breunig, F., Haese, A., et al. (2021) Health-Related Quality of Life and Self-Reported Cognitive Function in Patients with Delayed Neurocognitive Recovery after Radical Prostatectomy: A Prospective Follow-Up Study. Health and Quality of Life Outcomes, 19, Article No. 64. https://doi.org/10.1186/s12955-021-01705-z
|
[10]
|
Glumac, S., Kardum, G. and Karanovic, N. (2019) Postoperative Cognitive Decline after Cardiac Surgery: A Narrative Review of Current Knowledge in 2019. Medical Science Monitor, 25, 3262-3270. https://doi.org/10.12659/msm.914435
|
[11]
|
Glumac, S. and Kardum, G. (2021) Is It Time to Redefine Cognitive Dysfunction after Cardiac Surgery? The Importance of Methodological Consistency. Acta Clinica Croatica, 60, 127-130. https://doi.org/10.20471/acc.2021.60.01.18
|
[12]
|
Moller, J., Cluitmans, P., Rasmussen, L., Houx, P., Rasmussen, H., Canet, J., et al. (1998) Long-Term Postoperative Cognitive Dysfunction in the Elderly: ISPOCD1 Study. The Lancet, 351, 857-861. https://doi.org/10.1016/s0140-6736(97)07382-0
|
[13]
|
Hayashi, Y., Sawa, Y., Nishimura, M., Satoh, H., Ohtake, S. and Matsuda, H. (2003) Avoidance of Full-Sternotomy: Effect on Inflammatory Cytokine Production During Cardiopulmonary Bypass in Rats. Journal of Cardiac Surgery, 18, 390-395. https://doi.org/10.1046/j.1540-8191.2003.02046.x
|
[14]
|
Steinberg, B.M., Grossi, E.A., Schwartz, D.S., McLoughlin, D.E., Aguinaga, M., Bizekis, C., et al. (1995) Heparin Bonding of Bypass Circuits Reduces Cytokine Release during Cardiopulmonary Bypass. The Annals of Thoracic Surgery, 60, 525-529. https://doi.org/10.1016/0003-4975(95)00482-z
|
[15]
|
Liu, J., Wang, H. and Li, J. (2016) Inflammation and Inflammatory Cells in Myocardial Infarction and Reperfusion Injury: A Double-Edged Sword. Clinical Medicine Insights: Cardiology, 10, CMC.S33164. https://doi.org/10.4137/cmc.s33164
|
[16]
|
Fatehi Hassanabad, A., Bahrami, N., Novick, R.J. and Ali, I.S. (2021) Delirium and Depression in Cardiac Surgery: A Comprehensive Review of Risk Factors, Pathophysiology, and Management. Journal of Cardiac Surgery, 36, 2876-2889. https://doi.org/10.1111/jocs.15610
|
[17]
|
Seo, C.L., Park, J.Y., Park, J., Kim, H.E., Cho, J., Seok, J., et al. (2021) Neutrophil-Lymphocyte Ratio as a Potential Biomarker for Delirium in the Intensive Care Unit. Frontiers in Psychiatry, 12, Article 729421. https://doi.org/10.3389/fpsyt.2021.729421
|
[18]
|
Hollinger, A., Rüst, C.A., Riegger, H., Gysi, B., Tran, F., Brügger, J., et al. (2021) Ketamine vs. Haloperidol for Prevention of Cognitive Dysfunction and Postoperative Delirium: A Phase IV Multicentre Randomised Placebo-Controlled Double-Blind Clinical Trial. Journal of Clinical Anesthesia, 68, Article 110099. https://doi.org/10.1016/j.jclinane.2020.110099
|
[19]
|
Zhao, J., Dai, T., Ding, L., Liang, Y., Yuan, W., Jiang, Y., et al. (2023) Correlation between Neutrophil/Lymphocyte Ratio, Platelet/Lymphocyte Ratio and Postoperative Cognitive Dysfunction in Elderly Patients with Esophageal Cancer. Medicine, 102, e33233. https://doi.org/10.1097/md.0000000000033233
|
[20]
|
Li, Y., Huang, H. and Le, Y. (2021) Risk Factors and Predictive Value of Perioperative Neurocognitive Disorders in Elderly Patients with Gastrointestinal Tumors. BMC Anesthesiology, 21, Article No. 193. https://doi.org/10.1186/s12871-021-01405-7
|
[21]
|
Wang, L., Chen, B., Liu, T., Luo, T., Kang, W. and Liu, W. (2023) Risk Factors for Delayed Neurocognitive Recovery in Elderly Patients Undergoing Thoracic Surgery. BMC Anesthesiology, 23, Article No. 102. https://doi.org/10.1186/s12871-023-02056-6
|
[22]
|
Yong, R. and Meng, Y. (2020) Preoperative Neutrophil-Lymphocyte Ratio, an Independent Risk Factor for Postoperative Cognitive Dysfunction in Elderly Patients with Gastric Cancer. Geriatrics & Gerontology International, 20, 927-931. https://doi.org/10.1111/ggi.14016
|
[23]
|
Tan, X., Wang, J., Yao, J., Yuan, J., Dai, Y., Sun, M., et al. (2023) Microglia Participate in Postoperative Cognitive Dysfunction by Mediating the Loss of Inhibitory Synapse through the Complement Pathway. Neuroscience Letters, 796, Article 137049. https://doi.org/10.1016/j.neulet.2023.137049
|
[24]
|
Zhou, Y., Zhang, Y., Wang, H., Zhang, X., Chen, Y. and Chen, G. (2023) Microglial Pyroptosis in Hippocampus Mediates Sevolfurane-Induced Cognitive Impairment in Aged Mice via ROS-NLRP3 Inflammasome Pathway. International Immunopharmacology, 116, Article 109725. https://doi.org/10.1016/j.intimp.2023.109725
|
[25]
|
Chen, M., Han, Y., Que, B., Zhou, R., Gan, J. and Dong, X. (2022) Prophylactic Effects of Sub-Anesthesia Ketamine on Cognitive Decline, Neuroinflammation, and Oxidative Stress in Elderly Mice. American Journal of Alzheimer’s Disease & Other Dementias, 37. https://doi.org/10.1177/15333175221141531
|
[26]
|
Xie, L., Yu, S., Yang, K., Li, C. and Liang, Y. (2017) Hydrogen Sulfide Inhibits Autophagic Neuronal Cell Death by Reducing Oxidative Stress in Spinal Cord Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 8640284. https://doi.org/10.1155/2017/8640284
|
[27]
|
Li, R., Chen, N., Wang, E., et al. (2021) Correlation between Preoperative Sleep Disorders and Postoperative Delayed Neurocognitive Recovery in Elderly Patients. Journal of Central South University (Medical Sciences), 46, 1251-1259.
|
[28]
|
Sessler, D.I., Bloomstone, J.A., Aronson, S., Berry, C., Gan, T.J., Kellum, J.A., et al. (2019) Perioperative Quality Initiative Consensus Statement on Intraoperative Blood Pressure, Risk and Outcomes for Elective Surgery. British Journal of Anaesthesia, 122, 563-574. https://doi.org/10.1016/j.bja.2019.01.013
|
[29]
|
Duan, W., Zhou, C., Yang, J., Zhang, Y., Li, Z., Ma, D., et al. (2023) A Long Duration of Intraoperative Hypotension Is Associated with Postoperative Delirium Occurrence Following Thoracic and Orthopedic Surgery in Elderly. Journal of Clinical Anesthesia, 88, Article 111125. https://doi.org/10.1016/j.jclinane.2023.111125
|
[30]
|
Friedrich, I., Simm, A., Kötting, J., Thölen, F., Fischer, B. and Silber, R. (2009) Cardiac Surgery in the Elderly Patient. Deutsches Ärzteblatt international, 106, 416-422. https://doi.org/10.3238/arztebl.2009.0416
|
[31]
|
Vedel, A.G., Rasmussen, L.S., Holmgaard, F. and Nilsson, J.C. (2018) Response by Vedel et al to Letters Regarding Article, “High-Target versus Low-Target Blood Pressure Management during Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial”. Circulation, 138, 2447-2448. https://doi.org/10.1161/circulationaha.118.036490
|
[32]
|
Zhou, N., Liang, X., Gong, J., Li, H., Liu, W., Zhou, S., et al. (2022) S-Ketamine Used during Anesthesia Induction Increases the Perfusion Index and Mean Arterial Pressure after Induction: A Randomized, Double-Blind, Placebo-Controlled Trial. European Journal of Pharmaceutical Sciences, 179, Article 106312. https://doi.org/10.1016/j.ejps.2022.106312
|
[33]
|
Gold, J.P., Charlson, M.E., Williams-Russo, P., et al. (1995) Improvement of Outcomes after Coronary Artery Bypass. A Randomized Trial Comparing Intraoperative High versus Low Mean Arterial Pressure. The Journal of Thoracic and Cardiovascular Surgery, 110, 1302-1311.
|
[34]
|
Charlson, M.E., Peterson, J.C., Krieger, K.H., Hartman, G.S., Hollenberg, J.P., Briggs, W.M., et al. (2007) Improvement of Outcomes after Coronary Artery Bypass II: A Randomized Trial Comparing Intraoperative High versus Customized Mean Arterial Pressure. Journal of Cardiac Surgery, 22, 465-472. https://doi.org/10.1111/j.1540-8191.2007.00471.x
|
[35]
|
Larsen, M.H., Draegert, C., Vedel, A.G., Holmgaard, F., Siersma, V., Nilsson, J.C., et al. (2020) Long‐Term Survival and Cognitive Function According to Blood Pressure Management during Cardiac Surgery. A Follow‐Up. Acta Anaesthesiologica Scandinavica, 64, 936-944. https://doi.org/10.1111/aas.13595
|