|
[1]
|
Tao, X., Zhao, J.Z. and Xu, K. (1996) The Ball-Bearing Effect of Diamond Nanoparticles as an Oil Additive. Journal of Physics D: Applied Physics, 29, 2932-2937. [Google Scholar] [CrossRef]
|
|
[2]
|
Sgroi, M.F., Asti, M., Gili, F., Deorsola, F.A., Bensaid, S., Fino, D., et al. (2017) Engine Bench and Road Testing of an Engine Oil Containing MoS2 Particles as Nano-Additive for Friction Reduction. Tribology International, 105, 317-325. [Google Scholar] [CrossRef]
|
|
[3]
|
Kole, M. and Dey, T.K. (2013) Enhanced Thermophysical Properties of Copper Nanoparticles Dispersed in Gear Oil. Applied Thermal Engineering, 56, 45-53. [Google Scholar] [CrossRef]
|
|
[4]
|
Mobasher, A., Khalil, A., Khashaba, M. and Osman, T. (2019) Effect of MWCNTs/Talc Powder Nanoparticles on the Tribological and Thermal Conductivity Performance of Calcium Grease. Industrial Lubrication and Tribology, 72, 9-14. [Google Scholar] [CrossRef]
|
|
[5]
|
Hemmat Esfe, M., Abbasian Arani, A.A., Esfandeh, S. and Afrand, M. (2019) Proposing New Hybrid Nano-Engine Oil for Lubrication of Internal Combustion Engines: Preventing Cold Start Engine Damages and Saving Energy. Energy, 170, 228-238. [Google Scholar] [CrossRef]
|
|
[6]
|
Viesca, J.L., Hernández Battez, A., González, R., Chou, R. and Cabello, J.J. (2011) Antiwear Properties of Carbon-Coated Copper Nanoparticles Used as an Additive to a Polyalphaolefin. Tribology International, 44, 829-833. [Google Scholar] [CrossRef]
|
|
[7]
|
Reeves, C.J., Menezes, P.L., Lovell, M.R. and Jen, T. (2013) The Size Effect of Boron Nitride Particles on the Tribological Performance of Biolubricants for Energy Conservation and Sustainability. Tribology Letters, 51, 437-452. [Google Scholar] [CrossRef]
|
|
[8]
|
Tarasov, S., Kolubaev, A., Belyaev, S., Lerner, M. and Tepper, F. (2002) Study of Friction Reduction by Nanocopper Additives to Motor Oil. Wear, 252, 63-69. [Google Scholar] [CrossRef]
|
|
[9]
|
Laad, M. and Jatti, V.K.S. (2018) Titanium Oxide Nanoparticles as Additives in Engine Oil. Journal of King Saud University—Engineering Sciences, 30, 116-122. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhao, J., Huang, Y., He, Y. and Shi, Y. (2020) Nanolubricant Additives: A Review. Friction, 9, 891-917. [Google Scholar] [CrossRef]
|
|
[11]
|
Rajendhran, N., Palanisamy, S., Periyasamy, P. and Venkatachalam, R. (2018) Enhancing of the Tribological Characteristics of the Lubricant Oils Using Ni-Promoted MoS2 Nanosheets as Nano-additives. Tribology International, 118, 314-328. [Google Scholar] [CrossRef]
|
|
[12]
|
Hernández Battez, A., Viesca, J.L., González, R., Blanco, D., Asedegbega, E. and Osorio, A. (2010) Friction Reduction Properties of a CuO Nanolubricant Used as Lubricant for a NiCrBSi Coating. Wear, 268, 325-328. [Google Scholar] [CrossRef]
|
|
[13]
|
Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., et al. (2003) Tribological Properties of WS2 Nanoparticles under Mixed Lubrication. Wear, 255, 785-793. [Google Scholar] [CrossRef]
|
|
[14]
|
Lee, J., Cho, S., Hwang, Y., Lee, C. and Kim, S.H. (2007) Enhancement of Lubrication Properties of Nano-Oil by Controlling the Amount of Fullerene Nanoparticle Additives. Tribology Letters, 28, 203-208. [Google Scholar] [CrossRef]
|
|
[15]
|
Wu, Y.Y., Tsui, W.C. and Liu, T.C. (2007) Experimental Analysis of Tribological Properties of Lubricating Oils with Nanoparticle Additives. Wear, 262, 819-825. [Google Scholar] [CrossRef]
|
|
[16]
|
Jiao, D., Zheng, S., Wang, Y., Guan, R. and Cao, B. (2011) The Tribology Properties of Alumina/Silica Composite Nanoparticles as Lubricant Additives. Applied Surface Science, 257, 5720-5725. [Google Scholar] [CrossRef]
|
|
[17]
|
Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q. and Cao, B. (2012) Synthesis of Monodispersed ZnAl2O4 Nanoparticles and Their Tribology Properties as Lubricant Additives. Materials Research Bulletin, 47, 4305-4310. [Google Scholar] [CrossRef]
|
|
[18]
|
Hernández Battez, A., González, R., Viesca, J.L., Fernández, J.E., Díaz Fernández, J.M., Machado, A., et al. (2008) CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants. Wear, 265, 422-428. [Google Scholar] [CrossRef]
|
|
[19]
|
Kogovšek, J., Remškar, M., Mrzel, A. and Kalin, M. (2013) Influence of Surface Roughness and Running-In on the Lubrication of Steel Surfaces with Oil Containing MoS2 Nanotubes in All Lubrication Regimes. Tribology International, 61, 40-47. [Google Scholar] [CrossRef]
|
|
[20]
|
Qiu, S., Zhou, Z., Dong, J. and Chen, G. (1999) Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils. Journal of Tribology, 123, 441-443. [Google Scholar] [CrossRef]
|
|
[21]
|
Gao, Y.J., et al. (2002) Study on Tribological Properties of Oleic Acid-Modified TiO2 Nanoparticle in Water. Wear, 252, 454-458.
|
|
[22]
|
Yu, H., Xu, Y., Shi, P., Xu, B., Wang, X. and Liu, Q. (2008) Tribological Properties and Lubricating Mechanisms of Cu Nanoparticles in Lubricant. Transactions of Nonferrous Metals Society of China, 18, 636-641. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhang, B., Xu, B., Xu, Y., Gao, F., Shi, P. and Wu, Y. (2011) CU Nanoparticles Effect on the Tribological Properties of Hydrosilicate Powders as Lubricant Additive for Steel-Steel Contacts. Tribology International, 44, 878-886. [Google Scholar] [CrossRef]
|
|
[24]
|
Cho, D., Kim, J., Kwon, S., Lee, C. and Lee, Y. (2013) Evaluation of Hexagonal Boron Nitride Nano-Sheets as a Lubricant Additive in Water. Wear, 302, 981-986. [Google Scholar] [CrossRef]
|
|
[25]
|
Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., et al. (2009) Tribological Behavior of Copper Nanoparticles as Additives in Oil. Current Applied Physics, 9, e124-e127. [Google Scholar] [CrossRef]
|
|
[26]
|
Mosleh, M., Atnafu, N.D., Belk, J.H. and Nobles, O.M. (2009) Modification of Sheet Metal Forming Fluids with Dispersed Nanoparticles for Improved Lubrication. Wear, 267, 1220-1225. [Google Scholar] [CrossRef]
|
|
[27]
|
Ma, S., Zheng, S., Cao, D. and Guo, H. (2010) Anti-wear and Friction Performance of ZrO2 Nanoparticles as Lubricant Additive. Particuology, 8, 468-472. [Google Scholar] [CrossRef]
|
|
[28]
|
Radice, S. and Mischler, S. (2006) Effect of Electrochemical and Mechanical Parameters on the Lubrication Behaviour of Al2O3 Nanoparticles in Aqueous Suspensions. Wear, 261, 1032-1041. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhong, J., Adams, J.B. and Hector, L.G. (2003) Molecular Dynamics Simulations of Asperity Shear in Aluminum. Journal of Applied Physics, 94, 4306-4314. [Google Scholar] [CrossRef]
|
|
[30]
|
Kolodziejczyk, L., Martínez-Martínez, D., Rojas, T.C., Fernández, A. and Sánchez-López, J.C. (2006) Surface-Modified Pd Nanoparticles as a Superior Additive for Lubrication. Journal of Nanoparticle Research, 9, 639-645. [Google Scholar] [CrossRef]
|
|
[31]
|
Sánchez-López, J.C., Abad, M.D., Kolodziejczyk, L., Guerrero, E. and Fernández, A. (2011) Surface-Modified Pd and Au Nanoparticles for Anti-Wear Applications. Tribology International, 44, 720-726. [Google Scholar] [CrossRef]
|
|
[32]
|
Chou, R., Battez, A.H., Cabello, J.J., Viesca, J.L., Osorio, A. and Sagastume, A. (2010) Tribological Behavior of Polyalphaolefin with the Addition of Nickel Nanoparticles. Tribology International, 43, 2327-2332. [Google Scholar] [CrossRef]
|
|
[33]
|
Padgurskas, J., Rukuiza, R., Prosyčevas, I. and Kreivaitis, R. (2013) Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles. Tribology International, 60, 224-232. [Google Scholar] [CrossRef]
|
|
[34]
|
Spijker, P., Anciaux, G. and Molinari, J. (2011) Dry Sliding Contact between Rough Surfaces at the Atomistic Scale. Tribology Letters, 44, 279-285. [Google Scholar] [CrossRef]
|
|
[35]
|
Lee, W.G., Cho, K.H. and Jang, H. (2008) Molecular Dynamics Simulation of Rolling Friction Using Nanosize Spheres. Tribology Letters, 33, 37-43. [Google Scholar] [CrossRef]
|
|
[36]
|
Karthikeyan, S., Agrawal, A. and Rigney, D.A. (2009) Molecular Dynamics Simulations of Sliding in an Fe-Cu Tribopair System. Wear, 267, 1166-1176. [Google Scholar] [CrossRef]
|
|
[37]
|
Lin, E., Niu, L., Shi, H. and Duan, Z. (2012) Molecular Dynamics Simulation of Nano-Scale Interfacial Friction Characteristic for Different Tribopair Systems. Applied Surface Science, 258, 2022-2028. [Google Scholar] [CrossRef]
|
|
[38]
|
Zheng, X., Zhu, H., Kosasih, B. and Kiet Tieu, A. (2013) A Molecular Dynamics Simulation of Boundary Lubrication: The Effect of N-Alkanes Chain Length and Normal Load. Wear, 301, 62-69. [Google Scholar] [CrossRef]
|
|
[39]
|
Tamura, H., Yoshida, M., Kusakabe, K., Chung,, Miura, R., Kubo, M., et al. (1999) Molecular Dynamics Simulation of Friction of Hydrocarbon Thin Films. Langmuir, 15, 7816-7821. [Google Scholar] [CrossRef]
|
|
[40]
|
Jabbarzadeh, A., Atkinson, J.D. and Tanner, R.I. (2000) Effect of the Wall Roughness on Slip and Rheological Properties of Hexadecane in Molecular Dynamics Simulation of Couette Shear Flow between Two Sinusoidal Walls. Physical Review E, 61, 690-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Berro, H., Fillot, N. and Vergne, P. (2010) Molecular Dynamics Simulation of Surface Energy and ZDDP Effects on Friction in Nano-Scale Lubricated Contacts. Tribology International, 43, 1811-1822. [Google Scholar] [CrossRef]
|
|
[42]
|
Lv, J., Bai, M., Cui, W. and Li, X. (2011) The Molecular Dynamic Simulation on Impact and Friction Characters of Nanofluids with Many Nanoparticles System. Nanoscale Research Letters, 6, Article No. 200. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19. [Google Scholar] [CrossRef]
|
|
[44]
|
Sun, C., Lu, W., Liu, J. and Bai, B. (2011) Molecular Dynamics Simulation of Nanofluid’s Effective Thermal Conductivity in High-Shear-Rate Couette Flow. International Journal of Heat and Mass Transfer, 54, 2560-2567. [Google Scholar] [CrossRef]
|
|
[45]
|
Tildesley, D.J. and Allen, M.P. (1987) Computer Simulation of Liquids. Clarendon Oxford.
|
|
[46]
|
Erkoç, Ş. (2001) Empirical Potential Energy Functions Used in the Simulations of Materials Properties. In: Stauffer, D., Ed., Annual Reviews of Computational PhysicsIX, World Scientific, 1-103. [Google Scholar] [CrossRef]
|
|
[47]
|
Bonny, G., Pasianot, R.C., Castin, N. and Malerba, L. (2009) Ternary Fe-Cu-Ni Many-Body Potential to Model Reactor Pressure Vessel Steels: First Validation by Simulated Thermal Annealing. Philosophical Magazine, 89, 3531-3546. [Google Scholar] [CrossRef]
|
|
[48]
|
Fusco, C. and Fasolino, A. (2005) Velocity Dependence of Atomic-Scale Friction: A Comparative Study of the One-and Two-Dimensional Tomlinson Model. Physical Review B, 71, Article ID: 045413.
|