[1]
|
Kumar, V.B., Ozguney, B., Vlachou, A., Chen, Y., Gazit, E. and Tamamis, P. (2023) Peptide Self-Assembled Nanocarriers for Cancer Drug Delivery. The Journal of Physical Chemistry B, 127, 1857-1871. https://doi.org/10.1021/acs.jpcb.2c06751
|
[2]
|
Li, H., Shi, X. and Li, J. (2022) Self-Assembled Peptide Hydrogel for Biomedical Applications. Progress in Chemistry, 34, 568-579.
|
[3]
|
Li, Q., Wang, Y., Zhang, G., Su, R. and Qi, W. (2023) Biomimetic Mineralization Based on Self-Assembling Peptides. Chemical Society Reviews, 52, 1549-1590. https://doi.org/10.1039/d2cs00725h
|
[4]
|
Ghosh, C., Ali, L.M.A., Bessin, Y., Clément, S., Richeter, S., Bettache, N., et al. (2024) Self-Assembled Porphyrin-Peptide Cages for Photodynamic Therapy. Organic & Biomolecular Chemistry, 22, 1484-1494. https://doi.org/10.1039/d3ob01887c
|
[5]
|
Dodd-o, J., Roy, A., Siddiqui, Z., Jafari, R., Coppola, F., Ramasamy, S., et al. (2024) Antiviral Fibrils of Self-Assembled Peptides with Tunable Compositions. Nature Communications, 15, Article No. 1142. https://doi.org/10.1038/s41467-024-45193-3
|
[6]
|
Gomes, V., Veloso, S.R.S., Carvalho, A., Hilliou, L., Coutinho, P.J.G., Moura, C., et al. (2024) Multifunctional Magneto‐plasmonic Lipogel Based on Peptide Hydrogel for Application in Combined Cancer Therapy. Journal of Peptide Science, 31, e3650. https://doi.org/10.1002/psc.3650
|
[7]
|
Medini, K., Mansel, B.W., Williams, M.A.K., Brimble, M.A., Williams, D.E. and Gerrard, J.A. (2016) Controlling Gelation with Sequence: Towards Programmable Peptide Hydrogels. Acta Biomaterialia, 43, 30-37. https://doi.org/10.1016/j.actbio.2016.07.021
|
[8]
|
Lu, L., Morrison, D. and Unsworth, L.D. (2020) A Controlled Nucleation and Formation Rate of Self-Assembled Peptide Nanofibers. Nanoscale, 12, 8133-8138. https://doi.org/10.1039/d0nr02006k
|
[9]
|
Smith, A.M., Williams, R.J., Tang, C., Coppo, P., Collins, R.F., Turner, M.L., et al. (2007) Fmoc‐Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on π-π Interlocked β‐Sheets. Advanced Materials, 20, 37-41. https://doi.org/10.1002/adma.200701221
|
[10]
|
Nguyen, P.K., Gao, W., Patel, S.D., Siddiqui, Z., Weiner, S., Shimizu, E., et al. (2018) Self-Assembly of a Dentinogenic Peptide Hydrogel. ACS Omega, 3, 5980-5987. https://doi.org/10.1021/acsomega.8b00347
|
[11]
|
Zarzhitsky, S. and Rapaport, H. (2011) The Interactions between Doxorubicin and Amphiphilic and Acidic β-Sheet Peptides Towards Drug Delivery Hydrogels. Journal of Colloid and Interface Science, 360, 525-531. https://doi.org/10.1016/j.jcis.2011.04.091
|
[12]
|
Mahler, A., Reches, M., Rechter, M., Cohen, S. and Gazit, E. (2006) Rigid, Self‐Assembled Hydrogel Composed of a Modified Aromatic Dipeptide. Advanced Materials, 18, 1365-1370. https://doi.org/10.1002/adma.200501765
|
[13]
|
Worthington, P., Langhans, S. and Pochan, D. (2017) β-Hairpin Peptide Hydrogels for Package Delivery. Advanced Drug Delivery Reviews, 110, 127-136. https://doi.org/10.1016/j.addr.2017.02.002
|
[14]
|
Wen, Y., Roudebush, S.L., Buckholtz, G.A., Goehring, T.R., Giannoukakis, N., Gawalt, E.S., et al. (2014) Coassembly of Amphiphilic Peptide EAK16-II with Histidinylated Analogues and Implications for Functionalization of β-Sheet Fibrils in vivo. Biomaterials, 35, 5196-5205. https://doi.org/10.1016/j.biomaterials.2014.03.009
|
[15]
|
Braun, G.A., Ary, B.E., Dear, A.J., Rohn, M.C.H., Payson, A.M., Lee, D.S.M., et al. (2020) On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules, 21, 4781-4794. https://doi.org/10.1021/acs.biomac.0c00989
|
[16]
|
Brown, N., Lei, J., Zhan, C., Shimon, L.J.W., Adler-Abramovich, L., Wei, G., et al. (2018) Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. ACS Nano, 12, 3253-3262. https://doi.org/10.1021/acsnano.7b07723
|
[17]
|
Cao, H., Wang, Y., Gao, Y., Deng, X., Cong, Y., Liu, Y., et al. (2019) Molecular Design of β‐Sheet Peptide for the Multi‐Modal Analysis of Disease. Angewandte Chemie International Edition, 58, 1626-1631. https://doi.org/10.1002/anie.201809716
|
[18]
|
Zhao, F., Liu, M., Guo, H., Wang, Y., Zhang, Y., He, M., et al. (2025) Stimuli-Responsive Hydrogels Based on Protein/Peptide and Their Sensing Applications. Progress in Materials Science, 148, Article 101355. https://doi.org/10.1016/j.pmatsci.2024.101355
|
[19]
|
Wang, X., Yang, Y., Yang, H. and Dong, H. (2024) The Intrinsic Fluorescence of Peptide Self‐Assemblies across pH Levels. Angewandte Chemie International Edition, 64, e202420567. https://doi.org/10.1002/anie.202420567
|
[20]
|
Xu, H., Wang, Y., Ge, X., Han, S., Wang, S., Zhou, P., et al. (2010) Twisted Nanotubes Formed from Ultrashort Amphiphilic Peptide I3K and Their Templating for the Fabrication of Silica Nanotubes. Chemistry of Materials, 22, 5165-5173. https://doi.org/10.1021/cm101019p
|
[21]
|
Han, S., Cao, S., Wang, Y., Wang, J., Xia, D., Xu, H., et al. (2011) Self‐Assembly of Short Peptide Amphiphiles: The Cooperative Effect of Hydrophobic Interaction and Hydrogen Bonding. Chemistry—A European Journal, 17, 13095-13102. https://doi.org/10.1002/chem.201101970
|
[22]
|
Gelain, F., Luo, Z. and Zhang, S. (2020) Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chemical Reviews, 120, 13434-13460. https://doi.org/10.1021/acs.chemrev.0c00690
|
[23]
|
Lv, X., Sun, C., Hu, B., Chen, S., Wang, Z., Wu, Q., et al. (2020) Simultaneous Recruitment of Stem Cells and Chondrocytes Induced by a Functionalized Self-Assembling Peptide Hydrogel Improves Endogenous Cartilage Regeneration. Frontiers in Cell and Developmental Biology, 8, Article 864. https://doi.org/10.3389/fcell.2020.00864
|
[24]
|
Hong, Y., Legge, R.L., Zhang, S. and Chen, P. (2003) Effect of Amino Acid Sequence and pH on Nanofiber Formation of Self-Assembling Peptides EAK16-II and EAK16-IV. Biomacromolecules, 4, 1433-1442. https://doi.org/10.1021/bm0341374
|
[25]
|
McGaughey, G.B., Gagné, M. and Rappé, A.K. (1998) Π-Stacking Interactions. Journal of Biological Chemistry, 273, 15458-15463. https://doi.org/10.1074/jbc.273.25.15458
|
[26]
|
Hoffmann, W., Folmert, K., Moschner, J., Huang, X., von Berlepsch, H., Koksch, B., et al. (2017) NFGAIL Amyloid Oligomers: The Onset of Beta-Sheet Formation and the Mechanism for Fibril Formation. Journal of the American Chemical Society, 140, 244-249. https://doi.org/10.1021/jacs.7b09510
|
[27]
|
Yang, X., Wang, Y., Qi, W., Zhang, J., Zhang, L., Huang, R., et al. (2018) Photo‐Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferrocene‐Tyrosine. Small, 14, Article ID: 1800772. https://doi.org/10.1002/smll.201800772
|
[28]
|
Yan, X., Zhu, P. and Li, J. (2010) Self-Assembly and Application of Diphenylalanine-Based Nanostructures. Chemical Society Reviews, 39, 1877-1890. https://doi.org/10.1039/b915765b
|
[29]
|
Jayawarna, V., Ali, M., Jowitt, T.A., Miller, A.F., Saiani, A., Gough, J.E., et al. (2006) Nanostructured Hydrogels for Three‐Dimensional Cell Culture through Self‐Assembly of Fluorenylmethoxycarbonyl-Dipeptides. Advanced Materials, 18, 611-614. https://doi.org/10.1002/adma.200501522
|
[30]
|
Chen, Y., Zhang, W., Ding, Y., Liang, C., Shi, Y., Hu, Z., et al. (2021) Preorganization Boosts the Artificial Esterase Activity of a Self-Assembling Peptide. Science China Chemistry, 64, 1554-1559. https://doi.org/10.1007/s11426-021-1029-x
|
[31]
|
Morris, A.L., MacArthur, M.W., Hutchinson, E.G. and Thornton, J.M. (1992) Stereochemical Quality of Protein Structure Coordinates. Proteins: Structure, Function, and Bioinformatics, 12, 345-364. https://doi.org/10.1002/prot.340120407
|
[32]
|
Duan, J., Chen, L., Tu, J., Cao, L. and Xiao, X. (2022) Folate-Grafted Glycyl-Glycine-Melphalan Conjugate Self-Assembled Amphilphilc Nanomicelles Augmented Drug Delivery, Cytotoxicity and Cellular Uptake in Human Ovarian Cancer Cells. Journal of Microencapsulation, 39, 197-209. https://doi.org/10.1080/02652048.2020.1714764
|
[33]
|
Bowerman, C.J. and Nilsson, B.L. (2010) A Reductive Trigger for Peptide Self-Assembly and Hydrogelation. Journal of the American Chemical Society, 132, 9526-9527. https://doi.org/10.1021/ja1025535
|
[34]
|
Wang, J., Liu, Z., Zhao, S., Xu, T., Wang, H., Li, S.Z., et al. (2023) Deep Learning Empowers the Discovery of Self‐Assembling Peptides with over 10 Trillion Sequences. Advanced Science, 10, Article ID: 2301544. https://doi.org/10.1002/advs.202301544
|
[35]
|
Tang, J.D., Mura, C. and Lampe, K.J. (2019) Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering. Journal of the American Chemical Society, 141, 4886-4899. https://doi.org/10.1021/jacs.8b13363
|
[36]
|
Frederix, P.W.J.M., Scott, G.G., Abul-Haija, Y.M., Kalafatovic, D., Pappas, C.G., Javid, N., et al. (2014) Exploring the Sequence Space for (tri-)Peptide Self-Assembly to Design and Discover New Hydrogels. Nature Chemistry, 7, 30-37. https://doi.org/10.1038/nchem.2122
|
[37]
|
Lampel, A., McPhee, S.A., Park, H., Scott, G.G., Humagain, S., Hekstra, D.R., et al. (2017) Polymeric Peptide Pigments with Sequence-Encoded Properties. Science, 356, 1064-1068. https://doi.org/10.1126/science.aal5005
|
[38]
|
Deng, L., Zhou, P., Zhao, Y., Wang, Y. and Xu, H. (2014) Molecular Origin of the Self-Assembled Morphological Difference Caused by Varying the Order of Charged Residues in Short Peptides. The Journal of Physical Chemistry B, 118, 12501-12510. https://doi.org/10.1021/jp506385j
|
[39]
|
Gao, J., Zhan, J. and Yang, Z. (2019) Enzyme‐Instructed Self‐Assembly (EISA) and Hydrogelation of Peptides. Advanced Materials, 32, Article ID: 1805798. https://doi.org/10.1002/adma.201805798
|
[40]
|
Zhou, J. and Xu, B. (2015) Enzyme-Instructed Self-Assembly: A Multistep Process for Potential Cancer Therapy. Bioconjugate Chemistry, 26, 987-999. https://doi.org/10.1021/acs.bioconjchem.5b00196
|
[41]
|
Cheng, W. and Li, Y. (2016) Peptide Hydrogelation Triggered by Enzymatic Induced pH Switch. Science China Physics, Mechanics & Astronomy, 59, Article No. 678711. https://doi.org/10.1007/s11433-016-0083-4
|
[42]
|
Gao, G., Jiang, Y., Zhan, W., Liu, X., Tang, R., Sun, X., et al. (2022) Trident Molecule with Nanobrush-Nanoparticle-Nanofiber Transition Property Spatially Suppresses Tumor Metastasis. Journal of the American Chemical Society, 144, 11897-11910. https://doi.org/10.1021/jacs.2c05743
|
[43]
|
Yin, H., Hua, Y., Feng, S., Xu, Y., Ding, Y., Liu, S., et al. (2024) In Situ Nanofiber Formation Blocks AXL and GAS6 Binding to Suppress Ovarian Cancer Development. Advanced Materials, 36, Article ID: 2308504. https://doi.org/10.1002/adma.202308504
|
[44]
|
Farsheed, A.C., Thomas, A.J., Pogostin, B.H. and Hartgerink, J.D. (2023) 3D Printing of Self‐Assembling Nanofibrous Multidomain Peptide Hydrogels. Advanced Materials, 35, Article ID: 2210378. https://doi.org/10.1002/adma.202210378
|
[45]
|
Clarke, D.E., Parmenter, C.D.J. and Scherman, O.A. (2018) Tunable Pentapeptide Self‐Assembled β‐Sheet Hydrogels. Angewandte Chemie International Edition, 57, 7709-7713. https://doi.org/10.1002/anie.201801001
|
[46]
|
Gelain, F., Luo, Z. and Zhang, S. (2020) Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chemical Reviews, 120, 13434-13460. https://doi.org/10.1021/acs.chemrev.0c00690
|
[47]
|
Mason, T.O., Chirgadze, D.Y., Levin, A., Adler-Abramovich, L., Gazit, E., Knowles, T.P.J., et al. (2014) Expanding the Solvent Chemical Space for Self-Assembly of Dipeptide Nanostructures. ACS Nano, 8, 1243-1253. https://doi.org/10.1021/nn404237f
|
[48]
|
Bardelang, D., Camerel, F., Margeson, J.C., Leek, D.M., Schmutz, M., Zaman, M.B., et al. (2008) Unusual Sculpting of Dipeptide Particles by Ultrasound Induces Gelation. Journal of the American Chemical Society, 130, 3313-3315. https://doi.org/10.1021/ja711342y
|
[49]
|
Zhang, F., Lv, M., Wang, S., Li, M., Wang, Y., Hu, C., et al. (2024) Ultrasound-Triggered Biomimetic Ultrashort Peptide Nanofiber Hydrogels Promote Bone Regeneration by Modulating Macrophage and the Osteogenic Immune Microenvironment. Bioactive Materials, 31, 231-246. https://doi.org/10.1016/j.bioactmat.2023.08.008
|