|
[1]
|
Naseer, A., Hussain, M., Shakir, I., Abbas, Q., Yilmaz, D., Zahra, M., et al. (2020) The Robust Catalysts (Ni1-x-Mox/Doped Ceria and Zn1-x-Mox/Doped Ceria, x = 0.1 and 0.3) for Efficient Natural Gas Reforming in Solid Oxide Fuel Cells. Electrochimica Acta, 361, Article 137033. [Google Scholar] [CrossRef]
|
|
[2]
|
Shabbir, I., Mirzaeian, M. and Sher, F. (2022) Energy Efficiency Improvement Potentials through Energy Benchmarking in Pulp and Paper Industry. Cleaner Chemical Engineering, 3, Article 100058. [Google Scholar] [CrossRef]
|
|
[3]
|
Erdiwansyah, Mahidin, Husin, H., Nasaruddin, Zaki, M. and Muhibbuddin, (2021) A Critical Review of the Integration of Renewable Energy Sources with Various Technologies. Protection and Control of Modern Power Systems, 6, Article Article Article No. 3. [Google Scholar] [CrossRef]
|
|
[4]
|
Wei, Z., Zhao, J., He, H., Ding, G., Cui, H. and Liu, L. (2021) Future Smart Battery and Management: Advanced Sensing from External to Embedded Multi-Dimensional Measurement. Journal of Power Sources, 489, Article 229462. [Google Scholar] [CrossRef]
|
|
[5]
|
Wei, Z., Hu, J., He, H., Yu, Y. and Marco, J. (2023) Embedded Distributed Temperature Sensing Enabled Multistate Joint Observation of Smart Lithium-Ion Battery. IEEE Transactions on Industrial Electronics, 70, 555-565. [Google Scholar] [CrossRef]
|
|
[6]
|
Liu, K., Wei, Z., Zhang, C., Shang, Y., Teodorescu, R. and Han, Q. (2022) Towards Long Lifetime Battery: AI-Based Manufacturing and Management. IEEE/CAA Journal of Automatica Sinica, 9, 1139-1165. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhang, Q., Yan, B., Feng, L., Zheng, J., You, B., Chen, J., et al. (2022) Progress in the Use of Organic Potassium Salts for the Synthesis of Porous Carbon Nanomaterials: Microstructure Engineering for Advanced Supercapacitors. Nanoscale, 14, 8216-8244. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yan, B., Feng, L., Zheng, J., Zhang, Q., Jiang, S., Zhang, C., et al. (2022) High Performance Supercapacitors Based on Wood-Derived Thick Carbon Electrodes Synthesized via Green Activation Process. Inorganic Chemistry Frontiers, 9, 6108-6123. [Google Scholar] [CrossRef]
|
|
[9]
|
Chaparro-Garnica, J., Salinas-Torres, D., Mostazo-López, M.J., Morallón, E. and Cazorla-Amorós, D. (2021) Biomass Waste Conversion into Low-Cost Carbon-Based Materials for Supercapacitors: A Sustainable Approach for the Energy Scenario. Journal of Electroanalytical Chemistry, 880, Article 114899. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhao, C., Zhao, C., Liu, Q., Liu, X., Lu, X., Pang, C., et al. (2021) Investigation of the Mechanism of Small Size Effect in Carbon-Based Supercapacitors. Nanoscale, 13, 12697-12710. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, R., Li, X., Nie, Z., Zhao, Y. and Wang, H. (2021) Metal/Metal Oxide Nanoparticles-Composited Porous Carbon for High-Performance Supercapacitors. Journal of Energy Storage, 38, Article 102479. [Google Scholar] [CrossRef]
|
|
[12]
|
Ruiz-Montoya, J.G., Quispe-Garrido, L.V., Calderón Gómez, J.C., Baena-Moncada, A.M. and Gonçalves, J.M. (2021) Recent Progress in and Prospects for Supercapacitor Materials Based on Metal Oxide or Hydroxide/Biomass-Derived Carbon Composites. Sustainable Energy & Fuels, 5, 5332-5365. [Google Scholar] [CrossRef]
|
|
[13]
|
Forouzandeh, P., Kumaravel, V. and Pillai, S.C. (2020) Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 10, Article 969. [Google Scholar] [CrossRef]
|
|
[14]
|
Liang, R., Du, Y., Xiao, P., Cheng, J., Yuan, S., Chen, Y., et al. (2021) Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials, 11, Article 1248. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kumar, S., Saeed, G., Zhu, L., Hui, K.N., Kim, N.H. and Lee, J.H. (2021) 0D to 3D Carbon-Based Networks Combined with Pseudocapacitive Electrode Material for High Energy Density Supercapacitor: A Review. Chemical Engineering Journal, 403, Article 126352. [Google Scholar] [CrossRef]
|
|
[16]
|
Qu, G., Wang, Z., Zhang, X., Zhao, S., Wang, C., Zhao, G., et al. (2022) Designing Flexible Asymmetric Supercapacitor with High Energy Density by Electrode Engineering and Charge Matching Mechanism. Chemical Engineering Journal, 429, Article 132406. [Google Scholar] [CrossRef]
|
|
[17]
|
Manasa, P., Sambasivam, S. and Ran, F. (2022) Recent Progress on Biomass Waste Derived Activated Carbon Electrode Materials for Supercapacitors Applications—A Review. Journal of Energy Storage, 54, Article 105290. [Google Scholar] [CrossRef]
|
|
[18]
|
Suriyakumar, S., Bhardwaj, P., Grace, A.N. and Stephan, A.M. (2021) Role of Polymers in Enhancing the Performance of Electrochemical Supercapacitors: A Review. Batteries & Supercaps, 4, 571-584. [Google Scholar] [CrossRef]
|
|
[19]
|
Kumar, R., Joanni, E., Sahoo, S., Shim, J., Tan, W.K., Matsuda, A., et al. (2022) An Overview of Recent Progress in Nanostructured Carbon-Based Supercapacitor Electrodes: From Zero to Bi-Dimensional Materials. Carbon, 193, 298-338. [Google Scholar] [CrossRef]
|
|
[20]
|
Abbas, Q., Mirzaeian, M., Abdelkareem, M.A., Al Makky, A., Yadav, A. and Olabi, A.G. (2022) Structural Tuneability and Electrochemical Energy Storage Applications of Resorcinol‐Formaldehyde‐Based Carbon Aerogels. International Journal of Energy Research, 46, 5478-5502. [Google Scholar] [CrossRef]
|
|
[21]
|
Abdelkareem, M.A., Abbas, Q., Mouselly, M., Alawadhi, H. and Olabi, A.G. (2022) High-Performance Effective Metal-Organic Frameworks for Electrochemical Applications. Journal of Science: Advanced Materials and Devices, 7, Article 100465. [Google Scholar] [CrossRef]
|
|
[22]
|
Saini, S., Chand, P. and Joshi, A. (2021) Biomass Derived Carbon for Supercapacitor Applications: Review. Journal of Energy Storage, 39, Article 102646. [Google Scholar] [CrossRef]
|
|
[23]
|
Jiang, G., Senthil, R.A., Sun, Y., Kumar, T.R. and Pan, J. (2022) Recent Progress on Porous Carbon and Its Derivatives from Plants as Advanced Electrode Materials for Supercapacitors. Journal of Power Sources, 520, Article 230886. [Google Scholar] [CrossRef]
|
|
[24]
|
Shao, Y., El-Kady, M.F., Sun, J., Li, Y., Zhang, Q., Zhu, M., et al. (2018) Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 118, 9233-9280. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Miller, E.E., Hua, Y. and Tezel, F.H. (2018) Materials for Energy Storage: Review of Electrode Materials and Methods of Increasing Capacitance for Supercapacitors. Journal of Energy Storage, 20, 30-40. [Google Scholar] [CrossRef]
|
|
[26]
|
Wei, L., Deng, W., Li, S., Wu, Z., Cai, J. and Luo, J. (2022) Sandwich-Like Chitosan Porous Carbon Spheres/MXene Composite with High Specific Capacitance and Rate Performance for Supercapacitors. Journal of Bioresources and Bioproducts, 7, 63-72. [Google Scholar] [CrossRef]
|
|
[27]
|
Groß, A. and Sakong, S. (2019) Modelling the Electric Double Layer at Electrode/Electrolyte Interfaces. Current Opinion in Electrochemistry, 14, 1-6. [Google Scholar] [CrossRef]
|
|
[28]
|
Wu, J. (2022) Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chemical Reviews, 122, 10821-10859. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, L.L. and Zhao, X.S. (2009) Carbon-Based Materials as Supercapacitor Electrodes. Chemical Society Reviews, 38, 2520-2531. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhao, X., Sánchez, B.M., Dobson, P.J. and Grant, P.S. (2011) The Role of Nanomaterials in Redox-Based Supercapacitors for Next Generation Energy Storage Devices. Nanoscale, 3, 839-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Augustyn, V., Simon, P. and Dunn, B. (2014) Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy & Environmental Science, 7, 1597-1614. [Google Scholar] [CrossRef]
|
|
[32]
|
Permatasari, F.A., Irham, M.A., Bisri, S.Z. and Iskandar, F. (2021) Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. Nanomaterials, 11, Article 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Brousse, T., Bélanger, D. and Long, J.W. (2015) To Be or Not to Be Pseudocapacitive? Journal of The Electrochemical Society, 162, A5185-A5189. [Google Scholar] [CrossRef]
|
|
[34]
|
Winter, M. and Brodd, R.J. (2005) What Are Batteries, Fuel Cells, and Supercapacitors? (Chem. Rev.2003, 104, 4245-4269. Published on the Web 09/28/2004.). Chemical Reviews, 105, 1021. [Google Scholar] [CrossRef]
|
|
[35]
|
Bi, R., Wu, X., Cao, F., Jiang, L., Guo, Y. and Wan, L. (2010) Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance. The Journal of Physical Chemistry C, 114, 2448-2451. [Google Scholar] [CrossRef]
|
|
[36]
|
Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P., Tolbert, S.H., et al. (2013) High-Rate Electrochemical Energy Storage through Li+ Intercalation Pseudocapacitance. Nature Materials, 12, 518-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Akinwolemiwa, B., Peng, C. and Chen, G.Z. (2015) Redox Electrolytes in Supercapacitors. Journal of The Electrochemical Society, 162, A5054-A5059. [Google Scholar] [CrossRef]
|
|
[38]
|
Shakil, R., Shaikh, M.N., Shah, S.S., Reaz, A.H., Roy, C.K., Chowdhury, A., et al. (2021) Development of a Novel Bio‐Based Redox Electrolyte Using Pivalic Acid and Ascorbic Acid for the Activated Carbon‐Based Supercapacitor Fabrication. Asian Journal of Organic Chemistry, 10, 2220-2230. [Google Scholar] [CrossRef]
|
|
[39]
|
Kumar, R., Sahoo, S., Joanni, E. and Singh, R.K. (2022) A Review on the Current Research on Microwave Processing Techniques Applied to Graphene-Based Supercapacitor Electrodes: An Emerging Approach Beyond Conventional Heating. Journal of Energy Chemistry, 74, 252-282. [Google Scholar] [CrossRef]
|
|
[40]
|
Jiang, K. and Gerhardt, R.A. (2021) Fabrication and Supercapacitor Applications of Multiwall Carbon Nanotube Thin Films. C, 7, Article 70. [Google Scholar] [CrossRef]
|
|
[41]
|
Tiwari, A., Mukhiya, T., Muthurasu, A., Chhetri, K., Lee, M., Dahal, B., et al. (2021) A Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials for Supercapacitors. Electrochem, 2, 236-250. [Google Scholar] [CrossRef]
|
|
[42]
|
Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I. and Sillanpää, M. (2020) Methods for Preparation and Activation of Activated Carbon: A Review. Environmental Chemistry Letters, 18, 393-415. [Google Scholar] [CrossRef]
|
|
[43]
|
Farma, R., Putri, A., Taer, E., Awitdrus, A. and Apriwandi, A. (2021) Synthesis of Highly Porous Activated Carbon Nanofibers Derived from Bamboo Waste Materials for Application in Supercapacitor. Journal of Materials Science: Materials in Electronics, 32, 7681-7691. [Google Scholar] [CrossRef]
|
|
[44]
|
Dı́az-Terán, J., Nevskaia, D.M., Fierro, J.L.G., López-Peinado, A.J. and Jerez, A. (2003) Study of Chemical Activation Process of a Lignocellulosic Material with KOH by XPS and XRD. Microporous and Mesoporous Materials, 60, 173-181. [Google Scholar] [CrossRef]
|
|
[45]
|
Gao, Y., Yue, Q., Gao, B. and Li, A. (2020) Insight into Activated Carbon from Different Kinds of Chemical Activating Agents: A Review. Science of The Total Environment, 746, Article 141094. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, L., Gu, H., Sun, H., Cao, F., Chen, Y. and Chen, G.Z. (2018) Molecular Level One-Step Activation of Agar to Activated Carbon for High Performance Supercapacitors. Carbon, 132, 573-579. [Google Scholar] [CrossRef]
|
|
[47]
|
Feng, X., Bai, Y., Liu, M., Li, Y., Yang, H., Wang, X., et al. (2021) Untangling the Respective Effects of Heteroatom-Doped Carbon Materials in Batteries, Supercapacitors and the ORR to Design High Performance Materials. Energy & Environmental Science, 14, 2036-2089. [Google Scholar] [CrossRef]
|
|
[48]
|
Mirzaeian, M., Abbas, Q., Gibson, D. and Mazur, M. (2019) Effect of Nitrogen Doping on the Electrochemical Performance of Resorcinol-Formaldehyde Based Carbon Aerogels as Electrode Material for Supercapacitor Applications. Energy, 173, 809-819. [Google Scholar] [CrossRef]
|
|
[49]
|
Dujearic-Stephane, K., Gupta, M., Kumar, A., Sharma, V., Pandit, S., Bocchetta, P., et al. (2022) The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability. Journal of Composites Science, 5, Article 66. [Google Scholar] [CrossRef]
|
|
[50]
|
Wang, K., Chen, Y., Liu, Y., Zhang, H., Shen, Y., Pu, Z., et al. (2022) Plasma Boosted N, P, O Co-Doped Carbon Microspheres for High Performance Zn Ion Hybrid Supercapacitors. Journal of Alloys and Compounds, 901, Article 163588. [Google Scholar] [CrossRef]
|
|
[51]
|
Rehman, Z.U., Bilal, M., Hou, J., Ahmad, J., Ullah, S., Wang, X., et al. (2022) Metal Oxide-Carbon Composites for Supercapacitor Applications. In: Chaudhry, M.A., Hussain, R. and Butt, F.K., Eds., Metal Oxide-Carbon Hybrid Materials, Elsevier, 133-177. [Google Scholar] [CrossRef]
|
|
[52]
|
Sohouli, E., Adib, K., Maddah, B. and Najafi, M. (2022) Preparation of a Supercapacitor Electrode Based on Carbon Nano-Onions/Manganese Dioxide/Iron Oxide Nanocomposite. Journal of Energy Storage, 52, Article 104987. [Google Scholar] [CrossRef]
|
|
[53]
|
Shinde, P.A., Chodankar, N.R., Abdelkareem, M.A., Patil, S.J., Han, Y., Elsaid, K., et al. (2022) All Transition Metal Selenide Composed High‐Energy Solid‐State Hybrid Supercapacitor. Small, 18, Article 2200248. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Allado, K., Liu, M., Jayapalan, A., Arvapalli, D., Nowlin, K. and Wei, J. (2021) Binary MnO2/Co3O4 Metal Oxides Wrapped on Superaligned Electrospun Carbon Nanofibers as Binder Free Supercapacitor Electrodes. Energy & Fuels, 35, 8396-8405. [Google Scholar] [CrossRef]
|