|
[1]
|
Xu, X., Nie, S., Liu, Z., Chen, C., Xu, G., Zha, Y., et al. (2015) Epidemiology and Clinical Correlates of AKI in Chinese Hospitalized Adults. Clinical Journal of the American Society of Nephrology, 10, 1510-1518. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Martin-Loeches, I., Guia, M.C., Vallecoccia, M.S., Suarez, D., Ibarz, M., Irazabal, M., et al. (2019) Risk Factors for Mortality in Elderly and Very Elderly Critically Ill Patients with Sepsis: A Prospective, Observational, Multicenter Cohort Study. Annals of Intensive Care, 9, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Murugan, R., Karajala-Subramanyam, V., Lee, M., Yende, S., Kong, L., Carter, M., et al. (2010) Acute Kidney Injury in Non-Severe Pneumonia Is Associated with an Increased Immune Response and Lower Survival. Kidney International, 77, 527-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Langenberg, C., Wan, L., Egi, M., May, C.N. and Bellomo, R. (2006) Renal Blood Flow in Experimental Septic Acute Renal Failure. Kidney International, 69, 1996-2002. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Prowle, J.R., Molan, M.P., Hornsey, E. and Bellomo, R. (2012) Measurement of Renal Blood Flow by Phase-Contrast Magnetic Resonance Imaging during Septic Acute Kidney Injury: A Pilot Investigation. Critical Care Medicine, 40, 1768-1776. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Di Giantomasso, D., May, C.N. and Bellomo, R. (2003) Norepinephrine and Vital Organ Blood Flow during Experimental Hyperdynamic Sepsis. Intensive Care Medicine, 29, 1774-1781. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Di Giantomasso, D., Bellomo, R. and May, C.N. (2005) The Haemodynamic and Metabolic Effects of Epinephrine in Experimental Hyperdynamic Septic Shock. Intensive Care Medicine, 31, 454-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Di Giantomasso, D., May, C.N. and Bellomo, R. (2003) Vital Organ Blood Flow during Hyperdynamic Sepsis. Chest, 124, 1053-1059. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ma, S., Evans, R.G., Iguchi, N., Tare, M., Parkington, H.C., Bellomo, R., et al. (2018) Sepsis‐Induced Acute Kidney Injury: A Disease of the Microcirculation. Microcirculation, 26, e12483. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lankadeva, Y.R., Okazaki, N., Evans, R.G., Bellomo, R. and May, C.N. (2019) Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury? Seminars in Nephrology, 39, 543-553. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Calzavacca, P., Evans, R.G., Bailey, M., Bellomo, R. and May, C.N. (2015) Cortical and Medullary Tissue Perfusion and Oxygenation in Experimental Septic Acute Kidney Injury. Critical Care Medicine, 43, e431-e439. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hotchkiss, R.S. and Karl, I.E. (2003) The Pathophysiology and Treatment of Sepsis. New England Journal of Medicine, 348, 138-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kalakeche, R., Hato, T., Rhodes, G., Dunn, K.W., El-Achkar, T.M., Plotkin, Z., et al. (2011) Endotoxin Uptake by S1 Proximal Tubular Segment Causes Oxidative Stress in the Downstream S2 Segment. Journal of the American Society of Nephrology, 22, 1505-1516. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dellepiane, S., Marengo, M. and Cantaluppi, V. (2016) Detrimental Cross-Talk between Sepsis and Acute Kidney Injury: New Pathogenic Mechanisms, Early Biomarkers and Targeted Therapies. Critical Care, 20, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jacobs, R., Honore, P.M., Joannes-Boyau, O., Boer, W., De Regt, J., De Waele, E., et al. (2011) Septic Acute Kidney Injury: The Culprit Is Inflammatory Apoptosis Rather than Ischemic Necrosis. Blood Purification, 32, 262-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ostermann, M. and Liu, K. (2017) Pathophysiology of Aki. Best Practice & Research Clinical Anaesthesiology, 31, 305-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, W.R., Garg, A.X., Coca, S.G., Devereaux, P.J., Eikelboom, J., Kavsak, P., et al. (2015) Plasma IL-6 and IL-10 Concentrations Predict AKI and Long-Term Mortality in Adults after Cardiac Surgery. Journal of the American Society of Nephrology, 26, 3123-3132. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Leentjens, J., Kox, M., van der Hoeven, J.G., Netea, M.G. and Pickkers, P. (2013) Immunotherapy for the Adjunctive Treatment of Sepsis: From Immunosuppression to Immunostimulation. Time for a Paradigm Change? American Journal of Respiratory and Critical Care Medicine, 187, 1287-1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Boomer, J.S., To, K., Chang, K.C., Takasu, O., Osborne, D.F., Walton, A.H., et al. (2011) Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure. JAMA, 306, 2594-2605. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hotchkiss, R.S., Monneret, G. and Payen, D. (2013) Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nature Reviews Immunology, 13, 862-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chawla, L.S., Busse, L., Brasha-Mitchell, E., Davison, D., Honiq, J., Alotaibi, Z., et al. (2014) Intravenous Angiotensin II for the Treatment of High-Output Shock (ATHOS Trial): A Pilot Study. Critical Care, 18, Article No. 534. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Evans, L., Rhodes, A., Alhazzani, W., Antonelli, M., Coopersmith, C.M., French, C., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Skytte Larsson, J., Bragadottir, G., Redfors, B. and Ricksten, S.‐. (2018) Renal Effects of Norepinephrine‐Induced Variations in Mean Arterial Pressure after Liver Transplantation: A Randomized Cross‐Over Trial. Acta Anaesthesiologica Scandinavica, 62, 1229-1236. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Redfors, B., Bragadottir, G., Sellgren, J., Swärd, K. and Ricksten, S. (2010) Effects of Norepinephrine on Renal Perfusion, Filtration and Oxygenation in Vasodilatory Shock and Acute Kidney Injury. Intensive Care Medicine, 37, 60-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Avni, T., Lador, A., Lev, S., Leibovici, L., Paul, M. and Grossman, A. (2015) Vasopressors for the Treatment of Septic Shock: Systematic Review and Meta-analysis. PLOS ONE, 10, e0129305. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Vasu, T.S., Cavallazzi, R., Hirani, A., Kaplan, G., Leiby, B. and Marik, P.E. (2011) Norepinephrine or Dopamine for Septic Shock: Systematic Review of Randomized Clinical Trials. Journal of Intensive Care Medicine, 27, 172-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Roberts, R.J., Miano, T.A., Hammond, D.A., Patel, G.P., Chen, J., Phillips, K.M., et al. (2020) Evaluation of Vasopressor Exposure and Mortality in Patients with Septic Shock. Critical Care Medicine, 48, 1445-1453. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Permpikul, C., Tongyoo, S., Viarasilpa, T., Trainarongsakul, T., Chakorn, T. and Udompanturak, S. (2019) Early Use of Norepinephrine in Septic Shock Resuscitation (CENSER). A Randomized Trial. American Journal of Respiratory and Critical Care Medicine, 199, 1097-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bai, X., Yu, W., Ji, W., Lin, Z., Tan, S., Duan, K., et al. (2014) Early versus Delayed Administration of Norepinephrine in Patients with Septic Shock. Critical Care, 18, Article No. 532. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bellomo, R., Wan, L. and May, C. (2008) Vasoactive Drugs and Acute Kidney Injury. Critical Care Medicine, 36, S179-S186. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hollenberg, S.M. (2007) Vasopressor Support in Septic Shock. Chest, 132, 1678-1687. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lankadeva, Y.R., Kosaka, J., Evans, R.G., Bailey, S.R., Bellomo, R. and May, C.N. (2016) Intrarenal and Urinary Oxygenation during Norepinephrine Resuscitation in Ovine Septic Acute Kidney Injury. Kidney International, 90, 100-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
De Backer, D., Donadello, K., Sakr, Y., Ospina-Tascon, G., Salgado, D., Scolletta, S., et al. (2013) Microcirculatory Alterations in Patients with Severe Sepsis: Impact of Time of Assessment and Relationship with Outcome. Critical Care Medicine, 41, 791-799. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Dubin, A., Pozo, M.O., Casabella, C.A., Pálizas, F., Murias, G., Moseinco, M.C., et al. (2009) Increasing Arterial Blood Pressure with Norepinephrine Does Not Improve Microcirculatory Blood Flow: A Prospective Study. Critical Care, 13, Article No. R92. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jhanji, S., Stirling, S., Patel, N., Hinds, C.J. and Pearse, R.M. (2009) The Effect of Increasing Doses of Norepinephrine on Tissue Oxygenation and Microvascular Flow in Patients with Septic Shock. Critical Care Medicine, 37, 1961-1966. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Finnell, J.E., Moffitt, C.M., Hesser, L.A., Harrington, E., Melson, M.N., Wood, C.S., et al. (2019) The Contribution of the Locus Coeruleus-Norepinephrine System in the Emergence of Defeat-Induced Inflammatory Priming. Brain, Behavior, and Immunity, 79, 102-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Stolk, R.F., van der Pasch, E., Naumann, F., Schouwstra, J., Bressers, S., van Herwaarden, A.E., et al. (2020) Norepinephrine Dysregulates the Immune Response and Compromises Host Defense during Sepsis. American Journal of Respiratory and Critical Care Medicine, 202, 830-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Gordon, A.C., Wang, N., Walley, K.R., Ashby, D. and Russell, J.A. (2012) The Cardiopulmonary Effects of Vasopressin Compared with Norepinephrine in Septic Shock. Chest, 142, 593-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Okazaki, N., Iguchi, N., Evans, R.G., Hood, S.G., Bellomo, R., May, C.N., et al. (2020) Beneficial Effects of Vasopressin Compared with Norepinephrine on Renal Perfusion, Oxygenation, and Function in Experimental Septic Acute Kidney Injury. Critical Care Medicine, 48, e951-e958. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lauzier, F., Lévy, B., Lamarre, P. and Lesur, O. (2006) Vasopressin or Norepinephrine in Early Hyperdynamic Septic Shock: A Randomized Clinical Trial. Intensive Care Medicine, 32, 1782-1789. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Russell, J.A., Walley, K.R., Singer, J., Gordon, A.C., Hébert, P.C., Cooper, D.J., et al. (2008) Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. New England Journal of Medicine, 358, 877-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gordon, A.C., Mason, A.J., Thirunavukkarasu, N., Perkins, G.D., Cecconi, M., Cepkova, M., et al. (2016) Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients with Septic Shock: The VANISH Randomized Clinical Trial. JAMA, 316, 509-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wakefield, B.J., Busse, L.W. and Khanna, A.K. (2019) Angiotensin II in Vasodilatory Shock. Critical Care Clinics, 35, 229-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Heavner, M.S., McCurdy, M.T., Mazzeffi, M.A., Galvagno, S.M., Tanaka, K.A. and Chow, J.H. (2020) Angiotensin II and Vasopressin for Vasodilatory Shock: A Critical Appraisal of Catecholamine-Sparing Strategies. Journal of Intensive Care Medicine, 36, 635-645. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bucher, M., Ittner, K., Hobbhahn, J., Taeger, K. and Kurtz, A. (2001) Downregulation of Angiotensin II Type 1 Receptors during Sepsis. Hypertension, 38, 177-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Smith, S.E., Newsome, A.S., Guo, Y., Hecht, J., McCurdy, M.T., Mazzeffi, M.A., et al. (2020) A Multicenter Observational Cohort Study of Angiotensin II in Shock. Journal of Intensive Care Medicine, 37, 75-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Khanna, A., English, S.W., Wang, X.S., Ham, K., Tumlin, J., Szerlip, H., et al. (2017) Angiotensin II for the Treatment of Vasodilatory Shock. New England Journal of Medicine, 377, 419-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lankadeva, Y.R., Ma, S., Iguchi, N., Evans, R.G., Hood, S.G., Farmer, D.G.S., et al. (2019) Dexmedetomidine Reduces Norepinephrine Requirements and Preserves Renal Oxygenation and Function in Ovine Septic Acute Kidney Injury. Kidney International, 96, 1150-1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Qiu, R., Yao, W., Ji, H., Yuan, D., Gao, X., Sha, W., et al. (2018) Dexmedetomidine Restores Septic Renal Function via Promoting Inflammation Resolution in a Rat Sepsis Model. Life Sciences, 204, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kiyonaga, N., Moriyama, T. and Kanmura, Y. (2020) Effects of Dexmedetomidine on Lipopolysaccharide-Induced Acute Kidney Injury in Rats and Mitochondrial Function in Cell Culture. Biomedicine & Pharmacotherapy, 125, Article 109912. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Nakashima, T., Miyamoto, K., Shima, N., Kato, S., Kawazoe, Y., Ohta, Y., et al. (2020) Dexmedetomidine Improved Renal Function in Patients with Severe Sepsis: An Exploratory Analysis of a Randomized Controlled Trial. Journal of Intensive Care, 8, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|