[1]
|
Salari, N., Darvishi, N., Bartina, Y., Larti, M., Kiaei, A., Hemmati, M., et al. (2021) Global Prevalence of Osteoporosis among the World Older Adults: A Comprehensive Systematic Review and Meta-Analysis. Journal of Orthopaedic Surgery and Research, 16, Article No. 669. https://doi.org/10.1186/s13018-021-02821-8
|
[2]
|
Black, D.M. and Rosen, C.J. (2016) Postmenopausal Osteoporosis. The New England Journal of Medicine, 374, 2096-2097.
|
[3]
|
Cheng, C., Chen, L. and Chen, K. (2022) Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. International Journal of Molecular Sciences, 23, Article No. 1376. https://doi.org/10.3390/ijms23031376
|
[4]
|
Ma, Z., Liu, Y., Shen, W., Yang, J., Wang, T., Li, Y., et al. (2024) Osteoporosis in Postmenopausal Women Is Associated with Disturbances in Gut Microbiota and Migration of Peripheral Immune Cells. BMC Musculoskeletal Disorders, 25, Article No. 791. https://doi.org/10.1186/s12891-024-07904-1
|
[5]
|
Cao, Y., Tan, X., Shen, J., et al. (2024) Morinda Officinalis-Derived Extracellular Vesicle-Like Particles: Anti-Osteoporosis Effect by Regulating MAPK Signaling Pathway. Phytomedicine, 129, Article ID: 155628. https://doi.org/10.1016/j.phymed.2024.155628
|
[6]
|
Lee, J.Y., Park, C.S., Seo, K.J., Kim, I.Y., Han, S., Youn, I., et al. (2023) IL-6/JAK2/STAT3 Axis Mediates Neuropathic Pain by Regulating Astrocyte and Microglia Activation after Spinal Cord Injury. Experimental Neurology, 370, Article ID: 114576. https://doi.org/10.1016/j.expneurol.2023.114576
|
[7]
|
He, J., Wang, Y., Zhan, J., Li, S., Ni, Y., Huang, W., et al. (2023) Icariin Attenuates the Calcification of Vascular Smooth Muscle Cells through ERα-p38MAPK Pathway. Aging Medicine, 6, 379-385. https://doi.org/10.1002/agm2.12267
|
[8]
|
Rossa, C., Ehmann, K., Liu, M., Patil, C. and Kirkwood, K.L. (2006) MKK3/6-p38 MAPK Signaling Is Required for IL-1β and TNF-α-Induced RANKL Expression in Bone Marrow Stromal Cells. Journal of Interferon & Cytokine Research, 26, 719-729. https://doi.org/10.1089/jir.2006.26.719
|
[9]
|
Braicu, C., Buse, M., Busuioc, C., Drula, R., Gulei, D., Raduly, L., et al. (2019) A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers, 11, Article No. 1618. https://doi.org/10.3390/cancers11101618
|
[10]
|
Roskoski, R. (2012) ERK1/2 MAP Kinases: Structure, Function, and Regulation. Pharmacological Research, 66, 105-143. https://doi.org/10.1016/j.phrs.2012.04.005
|
[11]
|
Shaul, Y.D. and Seger, R. (2007) The MEK/ERK Cascade: From Signaling Specificity to Diverse Functions. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1773, 1213-1226. https://doi.org/10.1016/j.bbamcr.2006.10.005
|
[12]
|
Rushworth, L.K., Hindley, A.D., O’Neill, E. and Kolch, W. (2006) Regulation and Role of Raf-1/B-Raf Heterodimerization. Molecular and Cellular Biology, 26, 2262-2272. https://doi.org/10.1128/mcb.26.6.2262-2272.2006
|
[13]
|
Murphy, L.O., MacKeigan, J.P. and Blenis, J. (2004) A Network of Immediate Early Gene Products Propagates Subtle Differences in Mitogen-Activated Protein Kinase Signal Amplitude and Duration. Molecular and Cellular Biology, 24, 144-153. https://doi.org/10.1128/mcb.24.1.144-153.2004
|
[14]
|
Abdelrahman, K.S., Hassan, H.A., Abdel-Aziz, S.A., Marzouk, A.A., Narumi, A., Konno, H., et al. (2021) JNK Signaling as a Target for Anticancer Therapy. Pharmacological Reports, 73, 405-434. https://doi.org/10.1007/s43440-021-00238-y
|
[15]
|
Machado, C.R.L., Dias, F.F., Resende, G.G., Oliveira, P.G.d., Xavier, R.M., Andrade, M.V.M.d., et al. (2023) Morphofunctional Analysis of Fibroblast-Like Synoviocytes in Human Rheumatoid Arthritis and Mouse Collagen-Induced Arthritis. Advances in Rheumatology, 63, Article No. 1. https://doi.org/10.1186/s42358-022-00281-0
|
[16]
|
Sondarva, G., Kundu, C.N., Mehrotra, S., Mishra, R., Rangasamy, V., Sathyanarayana, P., et al. (2009) TRAF2-MLK3 Interaction Is Essential for TNF-α-Induced MLK3 Activation. Cell Research, 20, 89-98. https://doi.org/10.1038/cr.2009.125
|
[17]
|
Yang, J.H., Na, C., Cho, S.S., Kim, K.M., Lee, J.H., Chen, X., et al. (2020) Hepatoprotective Effect of Neoagarooligosaccharide via Activation of Nrf2 and Enhanced Antioxidant Efficacy. Biological and Pharmaceutical Bulletin, 43, 619-628. https://doi.org/10.1248/bpb.b19-00697
|
[18]
|
Coulthard, L.R., White, D.E., Jones, D.L., McDermott, M.F. and Burchill, S.A. (2009) p38 (MAPK): Stress Responses from Molecular Mechanisms to Therapeutics. Trends in Molecular Medicine, 15, 369-379. https://doi.org/10.1016/j.molmed.2009.06.005
|
[19]
|
Hotamisligil, G.S. and Davis, R.J. (2016) Cell Signaling and Stress Responses. Cold Spring Harbor Perspectives in Biology, 8, a006072. https://doi.org/10.1101/cshperspect.a006072
|
[20]
|
Barros‐Miñones, L., Orejana, L., Goñi‐Allo, B., Suquía, V., Hervías, I., Aguirre, N., et al. (2013) Modulation of the ASK1-MKK3/6-p38/MAPK Signalling Pathway Mediates Sildenafil Protection against Chemical Hypoxia Caused by Malonate. British Journal of Pharmacology, 168, 1820-1834. https://doi.org/10.1111/bph.12071
|
[21]
|
Udompong, S., Mankhong, S., Jaratjaroonphong, J. and Srisook, K. (2017) Involvement of P38 MAPK and ATF-2 Signaling Pathway in Anti-Inflammatory Effect of a Novel Compound Bis[(5-Methyl)2-Furyl](4-Nitrophenyl)methane on Lipopolysaccharide-Stimulated Macrophages. International Immunopharmacology, 50, 6-13. https://doi.org/10.1016/j.intimp.2017.05.015
|
[22]
|
Wang, X. and Tournier, C. (2006) Regulation of Cellular Functions by the ERK5 Signalling Pathway. Cellular Signalling, 18, 753-760. https://doi.org/10.1016/j.cellsig.2005.11.003
|
[23]
|
Takeda, A., Oberoi‐Khanuja, T.K., Glatz, G., Schulenburg, K., Scholz, R., Carpy, A., et al. (2014) Ubiquitin‐Dependent Regulation of MEKK2/3-MEK5-ERK5 Signaling Module by XIAP and cIAP1. The EMBO Journal, 33, 1784-1801. https://doi.org/10.15252/embj.201487808
|
[24]
|
de Mattos, K., Dumas, F., Campolina-Silva, G.H., Belleannée, C., Viger, R.S. and Tremblay, J.J. (2023) ERK5 Cooperates with MEF2C to Regulate nr4a1 Transcription in MA-10 and MLTC-1 Leydig Cells. Endocrinology, 164, bqad120. https://doi.org/10.1210/endocr/bqad120
|
[25]
|
Yang, M. and Huang, C.Z. (2015) Mitogen-Activated Protein Kinase Signaling Pathway and Invasion and Metastasis of Gastric Cancer. World Journal of Gastroenterology, 21, 11673-11679. https://doi.org/10.3748/wjg.v21.i41.11673
|
[26]
|
Mathien, S., Tesnière, C. and Meloche, S. (2021) Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacological Reviews, 73, 1434-1467. https://doi.org/10.1124/pharmrev.120.000170
|
[27]
|
Mebratu, Y. and Tesfaigzi, Y. (2009) How ERK1/2 Activation Controls Cell Proliferation and Cell Death: Is Subcellular Localization the Answer? Cell Cycle, 8, 1168-1175. https://doi.org/10.4161/cc.8.8.8147
|
[28]
|
Ma, Y. and Nicolet, J. (2023) Specificity Models in MAPK Cascade Signaling. FEBS Open Bio, 13, 1177-1192. https://doi.org/10.1002/2211-5463.13619
|
[29]
|
Cargnello, M. and Roux, P.P. (2011) Activation and Function of the Mapks and Their Substrates, the MAPK-Activated Protein Kinases. Microbiology and Molecular Biology Reviews, 75, 50-83. https://doi.org/10.1128/mmbr.00031-10
|
[30]
|
Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y. and Hu, L. (2020) ERK/MAPK Signalling Pathway and Tumorigenesis (Review). Experimental and Therapeutic Medicine, 19, 1997-2007. https://doi.org/10.3892/etm.2020.8454
|
[31]
|
Lake, D., Corrêa, S.A.L. and Müller, J. (2016) Negative Feedback Regulation of the ERK1/2 MAPK Pathway. Cellular and Molecular Life Sciences, 73, 4397-4413. https://doi.org/10.1007/s00018-016-2297-8
|
[32]
|
Greenblatt, M.B., Shim, J., Bok, S. and Kim, J. (2022) The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. Journal of Bone Metabolism, 29, 1-15. https://doi.org/10.11005/jbm.2022.29.1.1
|
[33]
|
Lee, S.E., Chung, W.J., Kwak, H.B., Chung, C., Kwack, K., Lee, Z.H., et al. (2001) Tumor Necrosis Factor-Α Supports the Survival of Osteoclasts through the Activation of Akt and ERK. Journal of Biological Chemistry, 276, 49343-49349. https://doi.org/10.1074/jbc.m103642200
|
[34]
|
Ye, N. and Jiang, D. (2015) Ghrelin Accelerates the Growth and Osteogenic Differentiation of Rabbit Mesenchymal Stem Cells through the ERK1/2 Pathway. BMC Biotechnology, 15, Article No. 51. https://doi.org/10.1186/s12896-015-0176-2
|
[35]
|
Matsushita, T., Chan, Y.Y., Kawanami, A., Balmes, G., Landreth, G.E. and Murakami, S. (2009) Extracellular Signal-Regulated Kinase 1 (ERK1) and ERK2 Play Essential Roles in Osteoblast Differentiation and in Supporting Osteoclastogenesis. Molecular and Cellular Biology, 29, 5843-5857. https://doi.org/10.1128/mcb.01549-08
|
[36]
|
Meng, H., Zhang, W., Liu, F. and Yang, M. (2015) Advanced Glycation End Products Affect Osteoblast Proliferation and Function by Modulating Autophagy via the Receptor of Advanced Glycation End Products/Raf Protein/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase (RAGE/ Raf/MEK/ERK) Pathway. Journal of Biological Chemistry, 290, 28189-28199. https://doi.org/10.1074/jbc.m115.669499
|
[37]
|
Rodríguez-Carballo, E., Gámez, B. and Ventura, F. (2016) P38 MAPK Signaling in Osteoblast Differentiation. Frontiers in Cell and Developmental Biology, 4, Article No. 40. https://doi.org/10.3389/fcell.2016.00040
|
[38]
|
Zhang, Y., Feng, X., Zheng, B. and Liu, Y. (2024) Regulation and Mechanistic Insights into Tensile Strain in Mesenchymal Stem Cell Osteogenic Differentiation. Bone, 187, Article ID: 117197. https://doi.org/10.1016/j.bone.2024.117197
|
[39]
|
Qi, J., Zhang, Z., Dong, Z., Shan, T. and Yin, Z. (2024) Mir-150-5p Inhibits the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Irisin to Regulate the p38/MAPK Signaling Pathway. Journal of Orthopaedic Surgery and Research, 19, Article No. 190. https://doi.org/10.1186/s13018-024-04671-6
|
[40]
|
Zhao, H., Liu, W., Wang, Y., Dai, N., Gu, J., Yuan, Y., et al. (2015) Cadmium Induces Apoptosis in Primary Rat Osteoblasts through Caspase and Mitogen-Activated Protein Kinase Pathways. Journal of Veterinary Science, 16, 297-306. https://doi.org/10.4142/jvs.2015.16.3.297
|
[41]
|
Xu, R., Zhang, C., Shin, D.Y., Kim, J., Lalani, S., Li, N., et al. (2017) C-Jun N-Terminal Kinases (JNKs) Are Critical Mediators of Osteoblast Activity in Vivo. Journal of Bone and Mineral Research, 32, 1811-1815. https://doi.org/10.1002/jbmr.3184
|
[42]
|
Hao, Q., Liu, Z., Lu, L., Zhang, L. and Zuo, L. (2020) Both JNK1 and JNK2 Are Indispensable for Sensitized Extracellular Matrix Mineralization in IKKβ-Deficient Osteoblasts. Frontiers in Endocrinology, 11, Article No. 13. https://doi.org/10.3389/fendo.2020.00013
|
[43]
|
Miao, Y., Zhao, L., Lei, S., Zhao, C., Wang, Q., Tan, C., et al. (2024) Caffeine Regulates both Osteoclast and Osteoblast Differentiation via the AKT, NF-κB, and MAPK Pathways. Frontiers in Pharmacology, 15, Article ID: 1405173. https://doi.org/10.3389/fphar.2024.1405173
|
[44]
|
Sun, Y., Liang, Y., Li, Z. and Xia, N. (2020) Liraglutide Promotes Osteoblastic Differentiation in MC3T3-E1 Cells by ERK5 Pathway. International Journal of Endocrinology, 2020, Article ID: 8821077. https://doi.org/10.1155/2020/8821077
|
[45]
|
Ding, N., Geng, B., Li, Z., Yang, Q., Yan, L., Wan, L., et al. (2018) Fluid Shear Stress Promotes Osteoblast Proliferation through the NFATc1-ERK5 Pathway. Connective Tissue Research, 60, 107-116. https://doi.org/10.1080/03008207.2018.1459588
|
[46]
|
Ma, C., Geng, B., Zhang, X., Li, R., Yang, X. and Xia, Y. (2020) Fluid Shear Stress Suppresses Osteoclast Differentiation in RAW264.7 Cells through Extracellular Signal-Regulated Kinase 5 (ERK5) Signaling Pathway. Medical Science Monitor, 26, e918370. https://doi.org/10.12659/msm.918370
|
[47]
|
Wang, C., Meng, H., Wang, X., Zhao, C., Peng, J. and Wang, Y. (2016) Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and Its Role in Treatment of Osteoporosis. Medical Science Monitor, 22, 226-233. https://doi.org/10.12659/msm.897044
|
[48]
|
Zhao, Q., Lu, Y., Gan, X. and Yu, H. (2017) Correction: Low Magnitude High Frequency Vibration Promotes Adipogenic Differentiation of Bone Marrow Stem Cells via P38 MAPK Signal. PLOS ONE, 12, e0189547. https://doi.org/10.1371/journal.pone.0189547
|
[49]
|
Liu, G.X., Zhu, J.C., Chen, X.Y., Zhu, A.Z., Liu, C.C., Lai, Q., et al. (2015) Inhibition of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Erythropoietin via Activating ERK and P38 MAPK. Genetics and Molecular Research, 14, 6968-6977. https://doi.org/10.4238/2015.june.26.5
|
[50]
|
Hyväri, L., Ojansivu, M., Juntunen, M., Kartasalo, K., Miettinen, S. and Vanhatupa, S. (2018) Focal Adhesion Kinase and ROCK Signaling Are Switch-Like Regulators of Human Adipose Stem Cell Differentiation Towards Osteogenic and Adipogenic Lineages. Stem Cells International, 2018, Article ID: 2190657. https://doi.org/10.1155/2018/2190657
|
[51]
|
Li, Y., Zhuang, Q., Tao, L., Zheng, K., Chen, S., Yang, Y., et al. (2022) Urolithin B Suppressed Osteoclast Activation and Reduced Bone Loss of Osteoporosis via Inhibiting ERK/NF-κB Pathway. Cell Proliferation, 55, e13291. https://doi.org/10.1111/cpr.13291
|
[52]
|
Udagawa, N., Koide, M., Nakamura, M., Nakamichi, Y., Yamashita, T., Uehara, S., et al. (2020) Osteoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. https://doi.org/10.1007/s00774-020-01162-6
|
[53]
|
Lee, K., Seo, I., Choi, M.H. and Jeong, D. (2018) Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology. International Journal of Molecular Sciences, 19, Article No. 3004. https://doi.org/10.3390/ijms19103004
|
[54]
|
Wang, K., Kou, Y., Rong, X., Wei, L., Li, J., Liu, H., et al. (2024) ED-71 Improves Bone Mass in Ovariectomized Rats by Inhibiting Osteoclastogenesis through EphrinB2-EphB4-RANKL/OPG Axis. Drug Design, Development and Therapy, 18, 1515-1528. https://doi.org/10.2147/dddt.s454116
|
[55]
|
Pennanen, P., Kallionpää, R.A., Peltonen, S., Nissinen, L., Kähäri, V., Heervä, E., et al. (2021) Signaling Pathways in Human Osteoclasts Differentiation: ERK1/2 as a Key Player. Molecular Biology Reports, 48, 1243-1254. https://doi.org/10.1007/s11033-020-06128-5
|
[56]
|
Xiao, L., Zhong, M., Huang, Y., Zhu, J., Tang, W., Li, D., et al. (2020) Puerarin Alleviates Osteoporosis in the Ovariectomy-Induced Mice by Suppressing Osteoclastogenesis via Inhibition of TRAF6/ROS-Dependent MAPK/NF-κB Signaling Pathways. Aging, 12, 21706-21729. https://doi.org/10.18632/aging.103976
|
[57]
|
Thouverey, C. and Caverzasio, J. (2015) Ablation of P38α MAPK Signaling in Osteoblast Lineage Cells Protects Mice from Bone Loss Induced by Estrogen Deficiency. Endocrinology, 156, 4377-4387. https://doi.org/10.1210/en.2015-1669
|
[58]
|
Lu, L. and Tian, L. (2023) Postmenopausal Osteoporosis Coexisting with Sarcopenia: The Role and Mechanisms of Estrogen. Journal of Endocrinology, 259, e230116. https://doi.org/10.1530/joe-23-0116
|
[59]
|
Guardavaccaro, D. and Clevers, H. (2012) Wnt/β-Catenin and MAPK Signaling: Allies and Enemies in Different Battlefields. Science Signaling, 5, pe15. https://doi.org/10.1126/scisignal.2002921
|
[60]
|
Aksamitiene, E., Kiyatkin, A. and Kholodenko, B.N. (2012) Cross-Talk between Mitogenic Ras/MAPK and Survival PI3K/Akt Pathways: A Fine Balance. Biochemical Society Transactions, 40, 139-146. https://doi.org/10.1042/bst20110609
|
[61]
|
Xu, C., Wei, Z., Dong, X., Xing, J., Meng, X., Qiu, Y., et al. (2024) A P38 MAP Kinase Inhibitor Suppresses Osteoclastogenesis and Alleviates Ovariectomy-Induced Bone Loss through the Inhibition of Bone Turnover. Biochemical Pharmacology, 226, Article ID: 116391. https://doi.org/10.1016/j.bcp.2024.116391
|
[62]
|
Xu, T., Gu, J., Li, C., Guo, X., Tu, J., Zhang, D., et al. (2018) Low-Intensity Pulsed Ultrasound Suppresses Proliferation and Promotes Apoptosis via p38 MAPK Signaling in Rat Visceral Preadipocytes. American Journal of Translational Research, 10, 948-956.
|
[63]
|
Thouverey, C. and Caverzasio, J. (2015) Focus on the p38 MAPK Signaling Pathway in Bone Development and Maintenance. BoneKEy Reports, 4, Article No. 711. https://doi.org/10.1038/bonekey.2015.80
|
[64]
|
Zhang, Y., Cao, M., Li, Y., Chen, X., Yu, Q. and Rui, Y. (2022) A Narrative Review of the Moderating Effects and Repercussion of Exercise Intervention on Osteoporosis: Ingenious Involvement of Gut Microbiota and Its Metabolites. Journal of Translational Medicine, 20, Article No. 490. https://doi.org/10.1186/s12967-022-03700-4
|
[65]
|
Zhu, M., Yin, P., Hu, F., Jiang, J., Yin, L., Li, Y., et al. (2021) Integrating Genome-Wide Association and Transcriptome Prediction Model Identifies Novel Target Genes for Osteoporosis. Osteoporosis International, 32, 2493-2503. https://doi.org/10.1007/s00198-021-06024-z
|
[66]
|
Chermside-Scabbo, C.J., Shuster, J.T., Erdmann-Gilmore, P., Tycksen, E., Zhang, Q., Townsend, R.R., et al. (2024) A Proteomics Approach to Study Mouse Long Bones: Examining Baseline Differences and Mechanical Loading-Induced Bone Formation in Young-Adult and Old Mice. Aging, 16, 12726-12768. https://doi.org/10.18632/aging.206131
|
[67]
|
Li, J., Zou, Z., Su, X., Xu, P., Du, H., Li, Y., et al. (2024) Cistanche Deserticola Improves Ovariectomized-Induced Osteoporosis Mainly by Regulating Lipid Metabolism: Insights from Serum Metabolomics Using UPLC/Q-TOF-MS. Journal of Ethnopharmacology, 322, Article ID: 117570. https://doi.org/10.1016/j.jep.2023.117570
|
[68]
|
Xu, J., Huang, D. and Zhang, X. (2024) Scmformer Integrates Large‐Scale Single‐Cell Proteomics and Transcriptomics Data by Multi‐Task Transformer. Advanced Science, 11, e2307835. https://doi.org/10.1002/advs.202307835
|
[69]
|
Li, C., Lin, X., Lin, Q., Lin, Y. and Lin, H. (2024) Jiangu Granules Ameliorate Postmenopausal Osteoporosis via Rectifying Bone Homeostasis Imbalance: A Network Pharmacology Analysis Based on Multi-Omics Validation. Phytomedicine, 122, Article ID: 155137. https://doi.org/10.1016/j.phymed.2023.155137
|
[70]
|
Reginster, J.Y., Neuprez, A., Lecart, M.P., et al. (2015) Osteoporosis and Personalized Medicine. Revue Médicale de Liège, 70, 321-324.
|