EGFR突变肺腺癌耐药后双靶治疗致急性间质性肺炎1例并文献复习
Acute Interstitial Pneumonia Caused by Dual-Target Therapy in Resistant EGFR-Mutated Lung Adenocarcinoma: A Case Report and Literature Review
摘要: 目的:探究双靶治疗在晚期EGFR突变阳性的非小细胞肺癌患者中的疗效及安全性,不良反应的处理及下一步治疗方案。方法:收集并整理1例携带EGFR敏感突变的晚期肺腺癌患者在TKI耐药后接受双靶向药物联合治疗过程中出现急性间质性肺炎的临床资料,包括患者的基本信息、病史、临床表现、辅助检查、治疗经过及转归;同时,利用PubMed检索国内外相关文献对类似病例的报道及研究进展进行系统分析。结果:患者在应用伏美替尼联合克唑替尼靶向治疗3个月后发生急性间质性肺炎,及时停用靶向药物并给予全身糖皮质激素治疗1周后病情好转,后线加用全身化疗及小分子多靶点药物,取得生存获益,OS为60个月。结论:针对晚期EGFR突变阳性的NSCLC患者,在二线靶向治疗耐药后选择双靶治疗方案可能会引发严重的药物相关间质性肺疾病。因此,我们需要及时识别、调整靶向药物种类或剂量并进行积极对症支持,这对于提高患者后续生存质量至关重要。
Abstract: Objective: To investigate the efficacy and safety of dual-targeted therapy in patients with advanced EGFR mutation-positive non-small cell lung cancer (NSCLC), as well as the management of adverse reactions and next-step treatment strategies. Methods: We collect and organize the clinical data of a case of advanced lung adenocarcinoma harboring an EGFR-sensitive mutation who developed drug-induced interstitial lung disease (DI-ILD) during dual-targeted combination therapy following TKI resistance, including demographic characteristics, medical history, clinical manifestations, auxiliary examinations, treatment course, and outcomes; concurrently, conduct a systematic analysis of domestic and international literature on similar reported cases and research advances using PubMed. Results: The patient developed acute interstitial pneumonia three months after initiation of furmonertinib combined with crizotinib targeted therapy. Immediate discontinuation of targeted agents and administration of systemic glucocorticoids for one week resulted in clinical improvement. Subsequent-line therapy integrating systemic chemotherapy and a small-molecule multi-target agent provided survival benefits, achieving an overall survival (OS) of 60 months. Conclusion: For patients with advanced EGFR mutation-positive NSCLC, the selection of dual-targeted therapeutic regimens after resistance to second-line targeted therapy may precipitate severe DI-ILD. Therefore, prompt recognition, adjustment of targeted agent types or dosages, and implementation of aggressive supportive measures are required to optimize post-treatment quality of life, which is critical for long-term clinical outcomes.
文章引用:张彩, 肖玉婷, 毕焕焕, 易冰倩, 周银雪, 李鑫慧, 杨子艺, 徐博文, 余西, 孙家兴. EGFR突变肺腺癌耐药后双靶治疗致急性间质性肺炎1例并文献复习[J]. 临床医学进展, 2025, 15(4): 2504-2512. https://doi.org/10.12677/acm.2025.1541206

1. 背景

近年来,非小细胞肺癌(Non-small cell lung cancer, NSCLC)精准靶向治疗取得了显著进展,显著延长了驱动基因阳性的非小细胞肺癌患者的生存期[1]。表皮生长因子受体酪氨酸激酶抑制剂(Epidermal growth factor receptor-Tyrosine kinase inhibitor, EGFR-TKI)是NSCLC靶向治疗的一个重要里程碑,然而,耐药性是不可避免的。一线靶向治疗耐药后可根据基因检测结果选择合适的二线靶向治疗,EGFR-T790M突变是第一代EGFR-TKI治疗后出现的最主要的耐药形式,在AURA系列研究[2]-[4]的支持下,奥希替尼成为出现EGFR-T790M突变后标准的二线治疗方案。然而,二线靶向治疗耐药后的标准治疗方案相关临床资料亟待补充,双药靶向联合治疗仍处于摸索阶段,其疗效与安全性仍需进一步验证。多份病例报告[5]-[7]显示吉非替尼/厄洛替尼联合奥希替尼对携带T790 M和C797 S反式突变的EGFR突变NSCLC患者有效。一项回顾性研究[8]报告了克唑替尼联合奥希替尼在MET扩增的肺腺癌患者中,ORR为100%,中位PFS为6.2个月。另一项回顾性研究[9]显示6例接受克唑替尼联合EGFR-TKI治疗的患者中2例出现了3级转氨酶升高。多数患者发生的EGFR-TKI相关的不良反应可以通过药物减量来建立耐受,但仍有5.7%的患者会发生EGFR-TKI相关间质性肺疾病(Interstitial lung disease, ILD) [10]。药物相关间质性肺疾病(Drug-induced Interstitial lung disease, DI-ILD)的临床表现具有异质性,可以从轻微的气促、咳嗽等呼吸道症状急剧进展为致命性的急性呼吸衰竭[11]。DI-ILD缺乏特异性的临床、实验室、影像学或病理学特征,疾病诊断为排除性诊断,存在明确致肺毒性药物的接触史,并排除ILD的其他潜在致病因素[12]。及时识别并停用致病药物是临床诊疗的关键,疾病表现为重症或进展性时则应用全身性糖皮质激素治疗。据统计,约58% EGFR-TKI治疗相关的死亡病例是因为发生了急性间质性肺炎(acute interstitial pneumonia, AIP) [13]。ILD很少变现为AIP,然而,AIP一旦发生,90%患者即可出现进行性呼吸困难,大部分在数日内需行气管插管和机械通气。我们本次报道的患者在联合应用伏美替尼和克唑替尼后出现了严重AIP,该病例进一步补充完善了有关双靶治疗相关不良反应的证据。同时,我们还对NSCLC患者联合应用靶向治疗的临床疗效和安全性进行了文献综述,旨在进一步丰富临床证据。

2. 病例回顾

患者女性,45岁,2018年12月因“胸背部疼痛2月余”入院。胸部增强CT示右肺上叶前段胸膜下结节,大小约13 mm × 10 mm;右侧胸腔积液。随后患者完善右肺穿刺活检,病理示中分化腺癌,免疫组化PD-L1 (SP263) (+,约5%),基因检测示EGFR-19-Del (19外显子)阳性(突变)。骨扫描示胸骨转移。初步诊断为右肺腺癌并多处转移(T4N2M1b,IV期),EGFR-19-Del突变。ECOG体能状态(performance status, PS)评分1分。给予埃克替尼靶向治疗,疾病进展(progressive disease, PD)后,行NGS检测提示新增EGFR-20-T790M耐药突变(突变频率14.98%),换用奥希替尼行二线靶向治疗。21个月后疾病再次进展,基因检测提示EGFR-19-del突变、EGFR-20-T790M-C797S顺式突变、ROS1突变、TP53突变阳性,给予患者伏美替尼联合克唑替尼双靶向治疗。

Figure 1. Chest CT findings at different time points during the diagnosis and treatment of the case. (a) (b) Prior to combination therapy, massive left pleural effusion is observed ((a) lung window; (b) mediastinal window). (c) (d) Three months post-combination therapy, diffuse pulmonary lesions with interlobular septal thickening in the right lung and persistent left pleural effusion are noted ((c) lung window; (d) mediastinal window). (e) (f) One week after treatment, near-complete resolution of right lung patchy consolidations and ground-glass opacities, along with marked reduction of left pleural effusion ((e) lung window; (f) mediastinal window)

1. 病例在诊断和治疗中不同时间节点的胸部CT表现。(a) (b) 患者联合治疗前,左侧大量胸腔积液((a) 肺窗;(b) 纵隔窗);(c) (d) 联合治疗3个月后,右肺弥漫性病变伴小叶间隔增厚、左侧大量胸腔积液((c) 肺窗;(d) 纵隔窗);(e) (f) 治疗1周后,右肺片状高密度影及磨玻璃影基本吸收,左侧胸腔积液明显减少((e) 肺窗;(f) 纵隔窗)

双靶向治疗3个月后患者因“呼吸困难进行性加重”入院,胸部CT (见图1)示原发灶较前相仿(7 mm × 5 mm)、右肺弥漫性病变伴小叶间隔增厚、左侧大量胸腔积液;血气分析示PH:7.43,氧分压:40.00 mmHg,二氧化碳分压:30.00 mmHg,氧饱和度:78.8%;血常规示:WBC:17.05 × 109/L,中性粒细胞:15.24 × 109/L,淋巴细胞:1.10 × 109/L,单核细胞:0.66 × 109/L;C反应蛋白:33.06 mg/L,降钙素原:1.22 ng/ml;细菌培养及鉴定、抗酸菌检测、X-pert未见明显异常;支气管肺泡灌洗液(BAL)检测出94%淋巴细胞,2%的单核细胞,提示非感染性炎症反应;胸腔积液较前增加可能与原发病有关,实验室检查和影像学(见表1)均没有证据支持肿瘤进展或肺部感染等其他加重症状的原因,考虑患者出现DI-ILD,根据CTCAE 5.0评估为4级不良反应。立即停用靶向治疗,给予患者高流量湿化氧疗、应用全身糖皮质激素抗炎(甲泼尼龙:2 mg/kg)及营养支持等对症支持治疗。1周后复查胸部CT示肺间质性病变较前好转,改鼻导管吸氧可维持血氧饱和度98%左右,尽管缺乏病理证据,但双靶治疗后患者进行性呼吸困难加重,CT示新发弥漫性磨玻璃影,并且激素治疗1周后病变明显吸收,在排除了其他可能的原因后可临床诊断DI-ILD。激素逐渐停用后改为奥希替尼联合安罗替尼靶向治疗,患者疾病进展缓慢,行积极抗肿瘤治疗未再发生AIP。于2023年12月患者原发病进展去世,0S为60个月,见图2

Figure 2. The genetic testing results and treatment regimens at different time points during diagnosis and therapy in the case

2. 病例在诊断和治疗中不同时间节点的基因检测结果及治疗方案等

Table 1. Clinical manifestations, laboratory findings, imaging studies, and primary treatment regimens before and after the onset of AIP and post-treatment in the case

1. 病例在发生AIP前后及AIP治疗后的临床表现、实验室检查、影像学检查及主要治疗方案

发生AIP前

发生AIP后

AIP治疗后

临床表现

胸闷

呼吸困难进行性加重

呼吸困难明显缓解

血气分析

PH:7.40,PaO2:97.20 mmHg, PaCO2:42.20 mmHg,SaO2:96.8%

PH:7.42,PaO2:40.00 mmHg, PaCO2:30.00 mmHg,SaO2:78.8%

PH:7.43,PaO2:96.40 mmHg,PaCO2:40.70 mmHg,SaO2:97.2%

血常规

白细胞:4.27 × 109/L,中性粒细胞:2.17 × 109/L,淋巴细胞:1.58 × 109/L,单核细胞:0.39 × 109/L

白细胞:17.05 × 109/L,中性粒细胞:15.24 × 109/L,淋巴细胞:1.10 × 109/L,单核细胞:0.66 × 109/L

白细胞:4.27 × 109/L,中性粒细胞:1.92 × 109/L,淋巴细胞:0.79 × 109/L,单核细胞:0.46 × 109/L

风湿四项

ASO < 50 IU/ml,RF < 11.30 IU/ml,CRP 76.06 mg/L,A-CCP < 8.00 U/ml

降钙素原

<0.05 ng/ml

1.22 ng/ml

<0.05 ng/ml

影像学

2022-08-23胸部CT:原发灶7 mm × 5 mm,左侧大量胸腔积液

2022-09-29胸部CT:原发灶7 mm × 5 mm,右肺弥漫性病变伴小叶间隔增厚,左侧大量胸腔积液

2022-10-04胸部CT:原发灶7 mm × 5 mm,右肺片状高密度影及磨玻璃影基本吸收,左侧胸腔积液明显减少

支气管肺泡灌洗液

淋巴细胞94%,单核细胞2%

细菌培养及鉴定、抗酸菌检测、X-pert

阴性

阴性

治疗

伏美替尼联合克唑替尼

高流量湿化氧疗、糖皮质激素、营养支持

鼻导管吸氧、糖皮质激素

3. 讨论

EGFR突变肺癌患者应用EGFR TKI的中位无进展生存期(progression-free survival, PFS)为10到14个月[14]。我们报道的病例无论一线治疗还是在一线耐药后的奥希替尼治疗中,PFS均超过了14个月。然而,DI-ILD阻碍了疗效。关于DI-ILD的发生、治疗与预后,尚且需要进一步讨论。

耐药后旁路突变的治疗尚缺乏大型的临床研究,特别是针对EGFR突变后合并ALK等突变。我们收集了既往报道过的18例联合应用不同TKI药物治疗NSCLC的案例报道(见表2)。18例患者均未出现DI-ILD,无论EGFR-TKI联合ALK-TKI或其他类型TKI均未增加治疗相关的不良反应,其中11例在联合治疗后能够达到部分缓解,多数不良反应在靶向药物减量后可得到缓解,1例因出现严重口腔炎而停药。在伏美替尼联合克唑替尼治疗的病例中,PFS为6个月到12个月,且没有观察到不良事件的发生率和严重程度增加[9] [15]。不排除大多数联合应用靶向治疗的患者暂未出现严重不良反应,但我们报道的患者在联合治疗3个月后出现了危及生命的严重不良反应,TKIs联合应用治疗NSCLC患者安全性仍需要更多的临床数据,我们在选择TKI耐药后出现可治疗的新靶点时的后续治疗方案仍需谨慎。

Table 2. Case analysis of combined TKIs therapies in NSCLC. NA denotes “not mentioned”, adverse reactions not documented in this study were considered absent

2. 联合应用不同TKI药物治疗NSCLC的案例分析。NA指未提及,本文认为未提及的不良反应为无

序号

年龄

性别

吸烟史

首次基因检测

新增突变

治疗阶段

联合 治疗方案

疗效 评价

PFS (月)

不良反应

OS (月)

1 [16]

52

NA

EGFR 19del

EGFR T790、C797S

三线

奥希替尼、吉非替尼

PR

8

腮腺炎、 皮疹

39

2 [17]

56

BRAF V600E、TP53、PD-L1

NA

一线

达拉非尼、曲美替尼

PR

3

NA

NA

3 [18]

65

EGFR 19del

EGFR T790M、EGFR L858R、TP53、BRAF V600E

三线

奥希替尼、维罗非尼

PR

NA

NA

14.3

4 [18]

51

EGFR 19del、EGFR T790M、BRAF V600E

三线

奥希替尼、维罗非尼

NA

4.5

NA

21.3

5 [19]

69

EGFR T790M

EGFR 19del、EML4-ALK融合

四线

奥希替尼、阿来替尼

PR

NA

NA

6 [20]

81

NA

EGFR 19del、TP53

三线

卡博替尼、奥希替尼

PR

NA

2~3级腹泻

25

7 [21]

48

EGFR 19del

T790M、C797S、G724S

六线

阿美替尼、阿法替尼

PR

NA

NA

NA

8 [22]

54

EGFR L861Q

Met

三线

阿法替尼、克唑替尼

PR

10

NA

9 [23]

64

NA

EGFR 19del

BRAF V600E

四线

奥希替尼、达拉非尼、曲美替尼

NA

NA

1~2级皮疹、食欲下降、发热

NA

10 [24]

55

EGFR L858R、MET

二线

奥希替尼、克唑替尼

PR

7

NA

NA

11 [25]

39

EGFR 19del、ALK-EML4

四线

奥希替尼、色瑞替尼

PR

NA

NA

NA

12 [26]

63

EGFR L861Q、G719D

CUX1-Met融合

四线

伊科替尼、克唑替尼

PR

NA

NA

NA

13 [27]

61

EGFR 19del

EGFR T790M、MET

三线

克唑替尼、奥希替尼

NA

19

2级乏力、呕吐和食欲下降、贫血、下肢水肿

NA

14 [28]

69

EGFR 19del

EGFR T790M、cis-C797S、ERBB2

七线

阿法替尼、阿帕替尼

PR

10

NA

80

15 [29]

65

NA

野生型

三线

阿帕替尼、厄洛替尼

NA

15.4

NA

NA

16 [30]

63

EGFR 19del

EGFR T790M、BRAF V600E

三线

奥希替尼、达拉非尼、曲美替尼

SD

9

低热、 甲沟炎

NA

17 [31]

62

NA

EGFR L858R

EGFR T790M

三线

奥希替尼、吉非替尼

NA

NA

3级口腔炎(停药)

NA

18 [32]

50

EGFR 19del

EGFR T790M、LMNA-NTRK1融合

三线

奥希替尼、恩曲替尼

NA

5

NA

92

DI-ILD的发病率在不同情况下差异显著,这取决于药物种类、剂量以及病例报告的准确性等。严重的DI-ILD在单药靶向治疗时发生率相对较低。EGFR-TKI引起的DI-ILD的发病率为1.1%~1.6%,3级以上不良反应的发病率为0.49%~0.9% [10]。三代EGFR-TKI药物研究中,对19例在应用EGFR-TKI耐药后出现EGFR-T790M突变阳性的NSCLC患者进行奥希替尼靶向治疗,4例发生1~3级DI-ILD [33]。仅有相关个案报道了克唑替尼治疗后发生的4级药物性间质性肺炎[34] [35]。国内曾有过晚期NSCLC患者接受克唑替尼联合奥希替尼治疗后发生早发性间质性肺炎的案例报道,该病例在及时停药并应用全身性糖皮质激素等对症支持治疗后症状得到缓解[36]。EGFR-TKI药物的肺毒性机制尚不清楚。表皮生长因子受体(Epidermal growth factor receptor, EGFR)在II型肺泡上皮细胞中表达,并参与肺泡壁损伤修复过程。有观点[36]认为EGFR-TKI的应用可能通过抑制EGFR信号通路,破坏肺泡上皮细胞损伤修复,从而诱发肺损伤。也有研究[37]表明EGFR-TKI诱导上皮细胞的慢性炎症从而修复气道,同时可能会促进肺损伤。在一项临床研究[38]中认为肺纤维化与TGF-β信号传导通路有关,TGF-β信号通路激活下游产生的IL-6可能导致急性肺损伤。此外,有体外实验[39]表明EGFR-TKI上调了肿瘤细胞IL-6的表达,增加了肺成纤维细胞中胶原蛋白和α-肌动蛋白的表达,可能诱导间质性肺炎的发生。日本一项回顾性研究表明遗传易感性被认为是DI-ILD发病的独立风险因素[11]。此外,有研究表明吸烟史、既往肺纤维化或慢性阻塞性肺病病史、合并肺部疾病感染等因素都会增加EGFR-TKI治疗相关ILD发生的风险[14]。总之,DI-ILD的发病机制尚不完全清楚。我们报道的这例患者既往无吸烟史及肺部其他基础疾病,联合伏美替尼联合克唑替尼双靶向治疗可能是ILD发生的主要原因。一般来说,早期发现并停用致病药物通常与良好的预后相关,延迟诊断可能导致快速进展性急性呼吸窘迫综合征(Acute respiratory distress syndrome, ARDS)或肺纤维化[11]。然而,对于肺癌患者停药后肿瘤不可避免会出现进展,是否继续应用相同药物或换用其他靶向治疗需要仔细考虑风险和获益比。值得注意的是,仍有部分重度DI-ILD缓解后再次应用靶向治疗获益的临床报告[40] [41]

小分子多靶点药物被认为在靶向治疗耐药后续治疗具有重要作用,安罗替尼是一种新型多靶点的TKI,对血管内皮生长因子受体、血小板衍生生长因子受体、成纤维细胞生长因子受体、c-Kit 等多个通路均有封闭作用,显著提高晚期NSCLC患者的生存期[42]。而抗纤维化药物尼达尼布同样是一种多靶点TKI,通过抑制多种受体酪氨酸激酶,包括血管内皮生长因子受体、血小板衍生生长因子受体和成纤维细胞生长因子受体,阻滞胞内信号传导,抑制成纤维细胞的增殖、迁移和转化[43]。在作用靶点方面,二者具有共同的作用通路。因此,我们在患者出现严重ILD后,及时停药并给予全身糖皮质激素治疗后AIP得到控制。后续逐渐停用激素,加用安罗替尼后抗肿瘤的同时,患者肺间质纤维化同样得到进一步控制,患者进一步获得了生存获益。因此,DI-ILD出现后停用靶向药物是确定的,应用全身糖皮质激素治疗对病情缓解有重要作用。但是,根据患者病情变化,适时减量激素、及时加用小分子多靶点药物继续抗纤维化和抗肿瘤靶向治疗,对患者的整体预后有重要意义。

4. 结论

疾病进展时的基因检测、了解药物的安全性对指导非小细胞肺癌患者在联合应用两种靶向药物时至关重要。而我们报道的1例联合应用靶向药物后出现间质性肺炎的病例表明并非所有患者都适合应用联合治疗,我们应谨慎对待靶向治疗耐药突变后患者的治疗方案并警惕不良反应的发生,在不良反应发生后应该及时调整相应治疗方案。探索晚期非小细胞肺癌联合应用两种靶向治疗出现不良反应人群的临床特点,找到能够预测可能出现不良反应的临床指标,找出最适合联合应用靶向治疗的人群特点,都是指导药物联合应用必不可少的探索过程。

基金项目

山东省医药卫生科技发展计划项目(202203020560);青岛市医疗卫生优秀人才培养项目(2025-2027-65)。

NOTES

*通讯作者。

参考文献

[1] Gridelli, C., Rossi, A., Carbone, D.P., Guarize, J., Karachaliou, N., Mok, T., et al. (2015) Non-Small-Cell Lung Cancer. Nature Reviews Disease Primers, 1, Article No. 15009.
https://doi.org/10.1038/nrdp.2015.9
[2] Goss, G., Tsai, C., Shepherd, F.A., Bazhenova, L., Lee, J.S., Chang, G., et al. (2016) Osimertinib for Pretreated EGFR Thr790met-Positive Advanced Non-Small-Cell Lung Cancer (AURA2): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 17, 1643-1652.
https://doi.org/10.1016/s1470-2045(16)30508-3
[3] Yang, J.C., Ahn, M., Kim, D., Ramalingam, S.S., Sequist, L.V., Su, W., et al. (2017) Osimertinib in Pretreated T790m-Positive Advanced Non-Small-Cell Lung Cancer: AURA Study Phase II Extension Component. Journal of Clinical Oncology, 35, 1288-1296.
https://doi.org/10.1200/jco.2016.70.3223
[4] Greig, S.L. (2016) Osimertinib: First Global Approval. Drugs, 76, 263-273.
https://doi.org/10.1007/s40265-015-0533-4
[5] Arulananda, S., Do, H., Musafer, A., Mitchell, P., Dobrovic, A. and John, T. (2017) Combination Osimertinib and Gefitinib in C797S and T790M EGFR-Mutated Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 12, 1728-1732.
https://doi.org/10.1016/j.jtho.2017.08.006
[6] Wang, Z., Yang, J., Huang, J., Ye, J., Zhang, X., Tu, H., et al. (2017) Lung Adenocarcinoma Harboring EGFR T790M and in Trans C797S Responds to Combination Therapy of First-and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. Journal of Thoracic Oncology, 12, 1723-1727.
https://doi.org/10.1016/j.jtho.2017.06.017
[7] Zhou, Z., Zhao, Y., Shen, S., Gu, L., Niu, X., Xu, Y., et al. (2019) Durable Clinical Response of Lung Adenocarcinoma Harboring EGFR 19Del/T790M/in Trans-C797S to Combination Therapy of First-and Third-Generation EGFR Tyrosine Kinase Inhibitors. Journal of Thoracic Oncology, 14, e157-e159.
https://doi.org/10.1016/j.jtho.2019.04.020
[8] Wang, Y., Tian, P., Xia, L., Li, L., Han, R., Zhu, M., et al. (2020) The Clinical Efficacy of Combinatorial Therapy of EGFR-TKI and Crizotinib in Overcoming MET Amplification-Mediated Resistance from Prior EGFR-TKI Therapy. Lung Cancer, 146, 165-173.
https://doi.org/10.1016/j.lungcan.2020.06.003
[9] Wang, W., Wang, H., Lu, P., Yu, Z., Xu, C., Zhuang, W., et al. (2019) Crizotinib with or without an EGFR-TKI in Treating EGFR-Mutant NSCLC Patients with Acquired MET Amplification after Failure of EGFR-TKI Therapy: A Multicenter Retrospective Study. Journal of Translational Medicine, 17, Article No. 52.
https://doi.org/10.1186/s12967-019-1803-9
[10] Qi, W., Sun, Y., Shen, Z. and Yao, Y. (2014) Risk of Interstitial Lung Disease Associated with EGFR-TKIs in Advanced Non-Small-Cell Lung Cancer: A Meta-Analysis of 24 Phase III Clinical Trials. Journal of Chemotherapy, 27, 40-51.
https://doi.org/10.1179/1973947814y.0000000189
[11] Spagnolo, P., Bonniaud, P., Rossi, G., Sverzellati, N. and Cottin, V. (2022) Drug-Induced Interstitial Lung Disease. European Respiratory Journal, 60, Article ID: 2102776.
https://doi.org/10.1183/13993003.02776-2021
[12] Travis, W.D., Costabel, U., Hansell, D.M., King, T.E., Lynch, D.A., Nicholson, A.G., et al. (2013) An Official American Thoracic Society/European Respiratory Society Statement: Update of the International Multidisciplinary Classification of the Idiopathic Interstitial Pneumonias. American Journal of Respiratory and Critical Care Medicine, 188, 733-748.
https://doi.org/10.1164/rccm.201308-1483st
[13] Long, K. and Suresh, K. (2020) Pulmonary Toxicity of Systemic Lung Cancer Therapy. Respirology, 25, 72-79.
https://doi.org/10.1111/resp.13915
[14] Wu, S. and Shih, J. (2018) Management of Acquired Resistance to EGFR TKI-Targeted Therapy in Advanced Non-Small Cell Lung Cancer. Molecular Cancer, 17, Article No. 38.
https://doi.org/10.1186/s12943-018-0777-1
[15] Zhao, Y., Su, C., Shi, L., Luo, W., Liu, Z., Liang, C., et al. (2023) Case Report: The Effective Treatment of Patients in Advanced No-Small Cell Lung Cancer Patients with EGFR G719X/S768I/L861Q and Acquired MET Amplification: A Case Series and Literature Review. Frontiers in Oncology, 13, Article 1126325.
https://doi.org/10.3389/fonc.2023.1126325
[16] Zhou, R., Song, L., Zhang, W., Shao, L., Li, X. and Li, X. (2021) Combination of Osimertinib and Anlotinib May Overcome the Resistance Mediated by in Cis EGFR T790M-C797S in NSCLC: A Case Report. OncoTargets and Therapy, 14, 2847-2851.
https://doi.org/10.2147/ott.s298655
[17] Liu, C., Lu, M., Yang, Y., Wang, X., Ma, F. and Liu, X. (2022) Case Report: Major Pathologic Response Induced by Neoadjuvant Treatment Using BRAF and MEK Inhibitors in a Patient with Stage IIIA Lung Adenocarcinoma Harboring BRAF V600e-Mutation. Frontiers in Oncology, 12, Article 961539.
https://doi.org/10.3389/fonc.2022.961539
[18] Xie, Z., Gu, Y., Xie, X., Lin, X., Ouyang, M., Qin, Y., et al. (2021) Lung Adenocarcinoma Harboring Concomitant EGFR Mutations and BRAF V600E Responds to a Combination of Osimertinib and Vemurafenib to Overcome Osimertinib Resistance. Clinical Lung Cancer, 22, e390-e394.
https://doi.org/10.1016/j.cllc.2020.06.008
[19] Batra, U., Sharma, M., Amrith, B.P., Mehta, A. and Jain, P. (2021) EML4-ALK Fusion as a Resistance Mechanism to Osimertinib and Its Successful Management with Osimertinib and Alectinib. Clinical Lung Cancer, 22, e357-e361.
[20] Kuang, Y., Wang, J., Xu, P., Zheng, Y., Bai, L., Sun, X., et al. (2022) A Rapid and Durable Response to Cabozantinib in an Osimertinib-Resistant Lung Cancer Patient with MET D1228N Mutation: A Case Report. Annals of Translational Medicine, 10, Article 238.
[21] Jiang, Y., Zhang, J., Jiang, X., Cheng, L., Liao, X., Li, Y., et al. (2020) Sequential Use of EGFR-Tyrosine Kinase Inhibitors Achieves Long-Term Control in a Non-Small Cell Lung Cancer Patient. Translational Cancer Research, 9, 7727-7733.
[22] Long, Y., Zhang, K., Li, Y., Yu, M., Zhu, J. and Huang, M. (2022) Durable Complete Response after Afatinib and Crizotinib in an Advanced NSCLC Patient with EGFR L861Q Mutation and Acquired MET Amplification. Translational Cancer Research, 11, 730-736.
[23] Zeng, R., Luo, L., Sun, X., Bao, Z., Du, W., Dai, R., et al. (2021) EGFR/BRAF/MEK Co-Inhibition for EGFR-Mutated Lung Adenocarcinoma Patients with an Acquired BRAFV600E Mutation: A Case Report and Review of Literature. Cancer Drug Resistance, 14, 2361-2368.
https://doi.org/10.20517/cdr.2021.98
[24] Zhu, V.W., Schrock, A.B., Ali, S.M. and Ou, S.I. (2018) Differential Response to a Combination of Full-Dose Osimertinib and Crizotinib in a Patient with EGFR-Mutant NSCLC and Emergent MET Amplification. Lung Cancer, 9, 65-69.
[25] Nguyen, T.H.T., Pham, X.D., Dao, K.L. and Vo, T.T. (2022) Response to a Combination of Full-Dose Osimertinib and Ceritinib in a NSCLC Patient with EML4-ALK Rearrangement and EGFR Co-Mutation. Case Reports in Oncology, 15, 280-286.
[26] Ou, L., Tang, Y., Deng, Y., Guo, L., He, Q., He, T., et al. (2022) Case Report: Durable Partial Response to Icotinib Plus Crizotinib in a Lung Adenocarcinoma Patient with Double Uncommon EGFR G719D/L861Q Mutations and an Acquired Novel CUX1-MET Fusion. Frontiers in Oncology, 12, Article 911362.
https://doi.org/10.3389/fonc.2022.911362
[27] Blasi, M., Kazdal, D., Thomas, M., Christopoulos, P., Kriegsmann, M., Brandt, R., et al. (2021) Combination of Crizotinib and Osimertinib in T790M+ EGFR-Mutant Non-Small Cell Lung Cancer with Emerging MET Amplification Post-Osimertinib Progression in a 10-Year Survivor: A Case Report. Case Reports in Oncology, 14, 477-482.
https://doi.org/10.1159/000513904
[28] Zhao, Y.A.O., Chen, Y.A.O., Huang, H.A.O., Li, X., Shao, L. and Ding, H.A.O. (2020) Significant Benefits of Afatinib and Apatinib in a Refractory Advanced NSCLC Patient Resistant to Osimertinib. OncoTargets and Therapy, 13, 11925-11930.
[29] Wu, Y.P., Wu, J.J., Tian, S.M., Jin, T., Li, C. and Xie, K. (2020) Apatinib with EGFR-TKIs in Advanced Wild-Type NSCLC: A Case Report. Medicine (Baltimore), 99, e21230.
[30] Ding, H., Zhuang, Z., Xie, J., Huang, H., Tao, Z. and Liu, Z. (2020) Durable Clinical Response of Advanced Lung Adenocarcinoma Harboring EGFR-19del/T790M/BRAFV600E Mutations after Treating with Osimertinib and Dabrafenib Plus Trametinib: A Case Report. OncoTargets and Therapy, 13, 7933-7939.
https://doi.org/10.2147/ott.s240775
[31] Zhu, Y., Li, L., Zhang, P., Zuo, Y., Lei, Y., Bai, J., et al. (2022) Severe Stomatitis Caused by Osimertinib Combined with Gefitinib: A Case Report. Clinical Case Reports, 10, e05396.
https://doi.org/10.1002/ccr3.5396
[32] Wang, J., Wang, L., Zhu, J., Ren, J., Wang, D. and Luo, M. (2022) Survival Benefit of Combinatorial Osimertinib Rechallenge and Entrectinib in an EGFR‐Mutant NSCLC Patient with Acquired lmna‐ntrk1 Fusion Following Osimertinib Resistance. Respirology Case Reports, 10.
https://doi.org/10.1002/rcr2.1054
[33] Kotake, M., Murakami, H., Kenmotsu, H., Naito, T. and Takahashi, T. (2017) High Incidence of Interstitial Lung Disease Following Practical Use of Osimertinib in Patients Who Had Undergone Immediate Prior Nivolumab Therapy. Annals of Oncology, 28, 669-670.
https://doi.org/10.1093/annonc/mdw647
[34] Gou, X., Yuan, C., Bai, Y., Shi, L., Xing, S. and Ma, H. (2021) Pneumonia Caused by Crizotinib: Case Report and Review of Literature. Annals of Palliative Medicine, 10, 4932-4937.
https://doi.org/10.21037/apm-19-420
[35] Maka, V.V., Krishnaswamy, U.M., Anil Kumar, N., Chitrapur, R. and Kilara, N. (2014) Acute Interstitial Lung Disease in a Patient with Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer after Crizotinib Therapy. Oxford Medical Case Reports, 2014, 11-12.
https://doi.org/10.1093/omcr/omu004
[36] Cheng, Y.A.O., Yu, Q., Xiong, Y.A.O., Guo, C. and Nie, L. (2020) Early-Onset Interstitial Pneumonitis in a Patient Treated with Crizotinib and Osimertinib. Lung Cancer, 146, 367-369.
[37] Harada, C., Kawaguchi, T., Ogata-Suetsugu, S., Yamada, M., Hamada, N., Maeyama, T., et al. (2011) EGFR Tyrosine Kinase Inhibition Worsens Acute Lung Injury in Mice with Repairing Airway Epithelium. American Journal of Respiratory and Critical Care Medicine, 183, 743-751.
https://doi.org/10.1164/rccm.201002-0188oc
[38] Moodley, Y.P., Misso, N.L.A., Scaffidi, A.K., Fogel-Petrovic, M., McAnulty, R.J., Laurent, G.J., et al. (2003) Inverse Effects of Interleukin-6 on Apoptosis of Fibroblasts from Pulmonary Fibrosis and Normal Lungs. American Journal of Respiratory Cell and Molecular Biology, 29, 490-498.
https://doi.org/10.1165/rcmb.2002-0262oc
[39] Ishiguro, Y., Ishiguro, H., Fau-Miyamoto, H. and Miyamoto, H. (2017) Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition Up-Regulates Interleukin-6 in Cancer Cells. Oncotarget, 8, 56587-56597.
[40] Gadotti, L.L., Nogueira Amorim Canedo, F.S., Ribeiro, M., Sacardo, K.P., Saddi, R., Machado Alessi, J.V., et al. (2022) Successful Drug Rechallenge Following Severe Acute Alectinib-Induced Interstitial Lung Disease. Clinical Lung Cancer, 23, e354-e357.
[41] Huang, J.A.O., Chou, C.A.O. and Chao, H.A.O. (2022) Successful Rechallenge of Alectinib after Remission of Severe Alectinib-Induced Interstitial Lung Disease. Lung Cancer, 163, 33-35.
[42] Jing, W., Yizhuo, Z., Qiming, W., Li, Z., Jianhua, S., Zhehai, W., et al. (2018) Prognostic Factors of Refractory NSCLC Patients Receiving Anlotinib Hydrochloride as the Third-Or Further-Line Treatment. Cancer Biology & Medicine, 15, 443-451.
https://doi.org/10.20892/j.issn.2095-3941.2018.0158
[43] Lamb, Y.N. (2021) Nintedanib: A Review in Fibrotic Interstitial Lung Diseases. Drugs, 81, 575-586.
https://doi.org/10.1007/s40265-021-01487-0