有机发光自由基研究进展
Research Progress of Organic Luminescent Free Radicals
DOI: 10.12677/aac.2025.152014, PDF, HTML, XML,   
作者: 潘文媛:浙江师范大学化学与材料科学学院,浙江 金华
关键词: 有机自由基发光化学稳定性Organic Radical Luminescence Chemical Stability
摘要: 有机自由基分子因其独特的开壳性质,具有很好的反应活性,但也因此容易发生如抽氢、二聚化等反应,使自由基分子活性丧失。而1900年,三苯甲基自由基的首次报道证实了三苯甲基自由基分子可以稳定存在于室温中,拉开了研究自由基分子的序幕。在研究者持续的努力下,通过合理的分子设计使自由基分子能在室温下稳定存在,并且具有良好的荧光量子效率。发光自由基分子因为其独特的光、电和磁学等性质在诸多领域存在广泛的潜在方面。回顾总结关于有机发光自由基的研究发展现状。
Abstract: Organic free radical molecules have good reactivity because of their unique shell-opening properties, but they are also prone to reactions such as hydrogen extraction and dimerization, which makes the activity of free radical molecules lose. In 1900, the first report of trityl radical confirmed that trityl radical molecules can exist stably at room temperature, which opened the prelude to the study of free radical molecules. With the continuous efforts of researchers, free radical molecules can exist stably at room temperature with good fluorescence quantum efficiency through reasonable molecular design. Luminescent radical molecules have a wide range of potential aspects in many fields because of their unique optical, electrical and magnetic properties. Review and summarize the research and development status of organic luminescent free radicals.
文章引用:潘文媛. 有机发光自由基研究进展[J]. 分析化学进展, 2025, 15(2): 134-148. https://doi.org/10.12677/aac.2025.152014

1. 引言

通常情况下,有机化合物中的电子以成对形式存在于分子轨道中。然而,当分子中存在未成对的电子时,这种有机化合物被称为“自由基”。有机自由基主要由轻元素(如H、C、N和S)构成,其电子结构呈现开壳特征。由于未成对电子的存在,自由基通常表现出较高的反应活性,其最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)之间的能隙较小,这使得它们易于参与诸如抽氢、二聚化或重组等反应,从而导致开壳性质的丧失[1]。尽管如此,通过合理的分子设计和电子结构调控,可以有效地抑制自由基的反应活性,从而获得具有良好化学稳定性的自由基体系。1990年,Gemberg通过三苯氯甲烷与金属银或锌的反应,首次成功制备了相对稳定的有机自由基——三苯甲基自由基[2]-[10] (图1(a))。然而,由于三苯甲基自由基对氧气高度敏感,易被氧化生成过氧化物,因此未能从实验中分离得到纯净样品。这一现象也引发了对三价碳稳定性的广泛争议。直到1910年,Schlenk通过阴极射线高温轰击三联苯基氯甲烷,成功分离出深紫色固体三(4-联苯基)甲基自由基(图1(b))。该自由基以单分子形式稳定存在,其电子自旋共振(ESR)光谱和分子轨道理论分析证实了三苯甲基自由基的稳定性[11]。这一发现不仅解决了长期以来的争议,还为后续有机自由基化学和光物理性质的研究奠定了基础。

Figure 1. (a) Trityl radical; (b) Tris (4- biphenyl) methyl radical

1. (a) 三苯甲基自由基;(b) 三(4-联苯基)甲基自由基

自由基分子独特的单电子构型使得材料具有很高的反应活性,在光学、电磁学等方面具有迷人的性质。这使得自由基分子在多个领域具有良好的应用前景,如自旋电子学[12] [13]、非线性光学[14] [15]、能量储存[16]、电极活性材料[17]、分子磁体[18]-[20]、电子顺磁共振(EPR)成像[21]-[23]、自选标记[24] [25]、自旋捕获[26]、有机电致发光二极管(OLED) [27]-[29]、化学传感器[30]-[32]、反应催化[33] [34]以及自由基聚合[35]-[38]等。为了能够得到应用价值高的自由基材料,更好的实现其在上述多种领域内的应用,合成足够稳定的自由基材料一直是该领域研究的重点。经过多年的努力,科学家们总结出提升有机自由基稳定性的两个重要因素:第一是空间位阻效应。通过在自由基中心的周围引入较大空间位阻性基团是获得动力学稳定性的一种通用可靠的方法。第二是自旋离域效应。自旋离域化对自由基的稳定性也起着很重要的作用,因为它能够稀释自由基的自旋密度从而降低分子的反应活性。现如今通过以上两种方法,合理的设计可以得到能够在室温下稳定存在的自由基材料,包括以下几种:以三苯甲基类自由基、库尔希自由基、非那烯自由基为代表的碳自由基[39]-[42];以偕腙肼自由基、布拉特自由基、氨基自由基为代表的氮自由基[43];以及以烷基氮氧自由基、加尔万氧自由基、苯基亚胺氧基为代表的氧自由基[44] (如图2)。

Figure 2. Classification of free radical molecules

2. 自由基分子分类

2. 有机自由基发光机理

自由基分子与传统有机闭壳发光分子相比,最大的区别在于两者的电子结构不同。如图3所示,传统有机闭壳发光分子的分子轨道电子都是成对存在的,其中填充成对电子的最高能量轨道称为最高占据轨道(HOMO),而未填充电子的最低能量轨道称为最低未占据轨道(LUMO),通常情况下,发光来源于电子在LUMO与HOMO之间的辐射跃迁过程。由于传统有机闭壳发光分子的最低激发态拥有两个未成对电子,其激发态按照自旋多重态又可以分为单线态激发态与能量稍低的三线态激发态(图3(a))。在Jablonski能级图中,基态的电子受到激发后跃迁至激发态,其中单线态激子与三线态激子所占比例为1:3。根据自选统计规则,只有25%单线态激子从激发态跃迁回基态是完全自旋允许的;而75%三线态激子从三重激发态直接跃迁后基态是自旋禁阻的,这也就造成了能量的大幅损耗[45] [46]。但也因此提出像磷光、热致延迟荧光和三重态湮灭等机理,尽可能的利用这75%的三重态激子。对于自由基分子而言,如若同样用HOMO、LUMO概念来描述其分子轨道,则需要引入单电子占据轨道(SOMO) (图3(b))。自由基分子基态便拥有一个未成对电子,其基态为双线态基态。而自由基的激发态,理论上也可形成双线态激发态以及四线态激发态等[47] [48]。但从能量角度而言,四线态将拥有更高的能量,因此自由基的最低激发态应为双线态激发态,根据Kasha规则,其发光应当来源于双线态基态与激发态之间的电子跃迁过程。相应的,可以用与Jablonski能级图相似的图来描述双线态间发生的跃迁过程。自由基分子由于基态和激发态均为双线态,所以从激发态跃迁回基态是完全自旋允许的,且理论激子利用率理论上可以达到100%。

Figure 3. (a) Luminescence mechanism of organic closed shell molecules; (b) Luminescence mechanism of organic free radical molecules

3. (a) 有机闭壳分子发光机理;(b) 有机自由基分子发光机理

3. 稳定自由基分子的种类及研究现状

有机自由基的稳定性主要依赖于三个关键因素:位阻效应共轭效应和配位效应。这些因素共同作用,决定了自由基的动力学和热力学稳定性。位阻效应主要通过引入大体积取代基(如叔丁基、异丙基等)来实现,这些基团能够有效屏蔽自由基中心,阻止其与氧气、水分子等活性物质的接触,从而提高自由基的动力学稳定性。然而,仅依赖位阻效应是不够的,因为大多数烷基自由基即使受到位阻保护,仍然表现出较高的反应活性。共轭效应通过将未成对电子从自由基中心离域到共轭体系中,显著降低单占据分子轨道(SOMO)的能级,从而减少自由基的反应活性。这种离域作用不仅增强了自由基的热力学稳定性,还使其电子结构更加稳定。在大多数稳定的自由基体系中,位阻保护和共轭离域往往是相辅相成的,二者共同作用以实现自由基的长期稳定。与金属配位是稳定自由基的另一种有效策略。通过将自由基与金属离子配位,可以进一步稳定未成对电子,并调节自由基的电子结构和反应活性。这种方法在分子磁体、催化材料和自旋电子学等领域具有重要应用价值[49]

一直以来,科学界普遍认为稳定的自由基不具备发光特性,甚至可能抑制其他发光材料的荧光发射。例如,稳定的氮氧自由基(如TEMPO)被广泛认为是芳香烃类荧光团的高效荧光淬灭剂。这种现象可能源于氮氧自由基的双线态基态与荧光团的单线态激发态之间的电子交换相互作用,这种相互作用促进了非辐射能量转移,从而导致荧光淬灭[50]-[58]。然而,近年来的研究表明,某些稳定的自由基在室温下受激发后,能够实现双线态发光。这种发光源于自由基的双线态基态与双线态激发态之间的辐射跃迁过程。由于自由基的基态和激发态均为双线态,其跃迁过程是完全自旋允许的,理论上可以实现100%的激子利用率。尽管如此,能够在室温下稳定存在并表现出双线态发光的自由基仍然非常稀少。目前,已报道的发光自由基主要集中在以碳原子为中心的自由基体系,其中三苯甲基类自由基的研究最为广泛。这类自由基因其独特的电子结构和稳定性,成为研究双线态发光的理想模型体系。

3.1. 碳自由基

自三苯甲基自由基的发现及其独特电子结构的揭示以来,越来越多的研究者投身于自由基化学与光物理性质的研究,推动了这一领域的快速发展。1970年,M. Ballester课题组通过将甲苯用BMC试剂全氯代脱氢后与Sn2+反应,成功制备了PTM自由基。该自由基在室温下的四氯化碳溶液中表现出橙红色发光,最大发射波长为605 nm,荧光量子效率(PLQY)为1.5%,且半衰期长达2个月。这是首个在室温下稳定发光的自由基分子,为后续自由基发光材料的研究奠定了基础[59]。1987年,Armet课题组通过理论计算发现,PTM自由基的螺旋桨构象主要由邻位氯原子的空间位阻效应决定,这种构象使得苯基环与氯原子键发生扭转,而间位氯原子的支撑作用可以忽略不计。基于这一发现,他们设计并合成了含氯原子更少的TTM自由基[60]。2006年,Luis课题组将咔唑基团引入TTM自由基骨架中,成功合成了TTM-1Cz自由基[61]。咔唑基团的引入显著提高了材料的光导率和电荷传输效率。该自由基在环己烷溶液中表现出红光发射,最大发射波长为628 nm,荧光量子效率高达53% [62]。2008年,该课题组进一步将吲哚基团引入TTM自由基中,实验证实了吲哚基团与三苯甲基自由基之间存在较强的相互作用。该自由基在正己烷溶液中的最大发射波长为610 nm,荧光量子效率为52% [63]

2014年,日本科学家Nishihara课题组通过将TTM自由基中的一个苯环替换为吡啶环,成功合成了PyBTM自由基。由于氮原子比碳原子具有更高的有效核电荷(电负性),吡啶环的引入降低了TTM骨架前沿分子轨道(如SOMO和LUMO)的能量,从而显著提高了自由基的光稳定性。PyBTM在二氯甲烷溶液中的最大发射波长为585 nm (激发波长370 nm)。值得注意的是,在丙酮溶液中,PyBTM的荧光衰减强度比TTM低115倍,这一结果进一步证实了吡啶基团的引入对光稳定性的提升作用[64]。2015年,Nishihara课题组进一步设计合成了首个以发光自由基为配体的金属配合物。他们选择与吡啶衍生物具有强配位能力的Au(I)作为金属中心,制备了基于PyBTM的自由基金属配合物。该配合物在二氯甲烷溶液中的最大发射波长为653 nm,光致发光量子效率(PLQY)为8%,是PyBTM自由基的4倍,同时光稳定性也得到了显著提升[65]。同年,Hattori课题组研究了吡啶环上卤素原子对PyBTM自由基光物理性质的影响,首次制备了非氯三苯甲基自由基。其中,F2PyBTM自由基表现出较高的光致发光量子效率,而Br2PyBTM自由基则展现出优异的光稳定性[66]。2018年,艾心课题组通过将TTM自由基中的一个苯环替换为咔唑基团,成功合成了首个二苯甲基自由基——CzBTM。CzBTM在环己烷溶液中表现出红光发射,量子效率为2%。将其掺杂到薄膜中后,荧光光谱相较于溶液相发生轻微蓝移,量子效率提高至5% [67]。同年,Sato课题组在PyBTM的基础上设计合成了含有两个吡啶环的bisPyTM自由基。该自由基在77 K温度下能够在固态下发光,最大发射波长为712 nm,成为首个实现固态发光的自由基分子。随着吡啶环数量的增加,bisPyTM自由基的半衰期分别是PyBTM和TTM的47倍和300倍,其光稳定性也得到了显著提升[68]。2020年,Dmitri课题组通过将PTM自由基上的一个氯原子替换为碘原子,合成了3I-PTMR自由基[69]。该自由基在固态下表现出显著的荧光特性,量子效率高达91%。在连续光照条件下,其半衰期可达12个月,展现出优异的光稳定性。通过TD-DFT理论计算发现,碘原子的供电子效应加速了辐射跃迁过程,而刚性的卤素键则有效抑制了非辐射衰变(如图4)。

Figure 4. Common luminescent carbon free radicals

4. 常见的发光碳自由基

3.2. 氮氧自由基

氮氧自由基是一类含有碳(C)、氮(N)和氧(O)的自旋单电子有机化合物,其自旋密度主要分布在氮和氧原子上。由于其未成对电子的自旋特性以及对环境因素的独特响应,氮氧自由基在生命科学、物理科学以及材料科学中具有广泛的应用。例如,它们可作为合成工具(如催化剂或有机聚合反应中的构建模块),也可作为显像剂和探针应用于生物医药、抗氧化剂开发以及能量存储等领域[70]-[74]。在磁性材料领域,氮氧自由基因其组成、结构和组装方式的多样性,以及官能团的可调性,能够通过调控自旋载体在三维晶体结构中的排列和相互作用方式,设计出具有不同磁性能的分子铁磁体。在光学领域,氮氧自由基因其能够猝灭荧光基团的激发态以及其可逆的氧化还原特性,被广泛应用于氧化还原开关的设计。

2003年,Beaule课题组以氮氧自由基为配体,设计合成了三种自由基配合物:NITCN、NITBzlmH和NITPy。其中,NITBzlmH和NITPy在近红外区域表现出明显的发光特性,其发光光谱的起始能量分别为14820 cm−1和15290 cm−1,半峰宽分别为1100 cm−1和2100 cm−1。然而,NITCN配合物未观察到发光现象,这可能是由于C=N振动模式引起的非辐射跃迁或分子间能量转移导致的[75] (如图5)。

Figure 5. Common nitroxide radicals

5. 常见的氮氧自由基

2005年,Reber课题组设计并合成了非配位亚硝基自由基——2-(2-咪唑基)-4,4,5,5-四甲基咪唑-1-氧基自由基,该自由基在固态下表现出发光特性,其发光最大值位于16300 cm−1,半峰宽为3140 cm−1 [76]。这一发现为固态自由基发光材料的研究提供了新的思路。2013年,将氮氧自由基与镧系元素Eu结合,成功合成了自由基配合物Eu(hafc)3(NITPh-3-Br-4-OMe)₂。该配合物采用单核三自旋结构,其中硝基氮氧化物自由基通过N-O基团的氧原子与Eu(III)配位,形成单金属自由基配合物。研究表明,顺磁性Eu(III)离子与氮氧自由基之间存在反铁磁耦合作用[77]。这一工作为设计基于镧系元素与自由基的多功能磁性发光材料提供了重要参考。2014年,Tretyakov课题组在吡唑啉喹啉体系中引入硝基氮氧化物基团,发现该基团不仅能够猝灭吡唑啉喹啉部分的荧光,还能诱导氮氧自由基配体产生近红外发光[78]。这一结果表明,氮氧自由基不仅可以作为荧光猝灭剂,还可以通过合理的分子设计实现其自身的发光特性。2022年,曾泽兵课题组设计合成了首个非共轭发光自由基聚合物。尽管该聚合物缺乏传统的π-π共轭稳定作用,但其在固态下表现出红光发射特性。研究发现,传统的荧光猝灭剂2,2,6,6-四甲基哌啶-1-氧基(TEMPO)接枝到聚合物主链后,能够转变为红色发色团,其发光特性与氮氧自由基的存在密切相关,并受到聚合物填充结构的显著影响[79]。这一突破性研究为非共轭自由基发光材料的开发开辟了新的方向(如图6)。

Figure 6. Common luminescent nitroxide radicals

6. 常见发光氮氧自由基

3.3. 氮自由基

氮氮自由基是指单电子位于氮原子上的自由基。1964年,Neugebauer课题组首次报道了稳定的氮自由基——Verdazyl自由基[80]。1999年,Hick课题组通过将Verdazyl自由基的C3原子替换为磷原子,成功合成了磷杂Verdazyl自由基。通过电子顺磁共振(EPR)光谱和轨道对称性理论分析,推测该衍生物保留了Verdazyl自由基的环平面性[81]。这类含磷自由基衍生物被称为磷杂Verdazyl自由基,其独特的电子结构为自由基化学提供了新的研究方向。1968年,Blatter课题组在Verdazyl自由基的基础上设计合成了另一种稳定的氮自由基——1,2,4-苯并三嗪自由基[82]。之后,研究者们在此基础上开发了一系列苯并三嗪类自由基,统称为Blatter自由基。其中,连接三氟甲基的Blatter自由基表现出异常的稳定性,成为研究氮自由基稳定性和反应活性的重要模型体系[83]。2013年,Tuononen课题组设计合成了一种能够在空气和水分中稳定存在的N,N-螯合自由基配体。该配体与Cu(hfac)2·2H2O反应生成金属自由基配合物。研究表明,在1.8~300 K的温度范围内,该配合物中存在强的铁磁性金属–自由基相互作用和弱的反铁磁性自由基–自由基相互作用[83] [84]。这一发现为设计基于氮自由基的分子磁性材料提供了重要参考。2014年,Koutentis课题组设计并制备了一系列基于咪唑、噻唑和恶唑的Blatter自由基。由于Blatter自由基通过π-π滑移堆积形成分子柱,引入这些杂环基团能够增强分子间相互作用,从而调控自由基的磁相互作用[85]。2016年,Young课题组设计合成了两种新型自由基:含硫原子的自由基和含氧原子的自由基。其中,含硫自由基由于分子平面化导致近红外区域的吸收光谱红移,表现出更大的自旋离域和阳极位移的还原电位,并在高温下表现出一维铁磁相互作用。而含氧自由基则表现出反铁磁相互作用[86]。这些研究为理解氮自由基的电子结构、磁性和光物理性质之间的关系提供了重要实验依据(如图7)。

Figure 7. Common nitrogen free radicals

7. 常见的氮自由基

二噻二唑自由基以其优异的热稳定性而闻名,但其易发生水解反应,限制了其实际应用。为了提高其稳定性,研究者们尝试将二噻二唑自由基与平面芳香性取代基(如苯环或氯代苯环)连接。然而,这类自由基倾向于形成二聚体,难以实现平面堆积结构,所得材料通常表现为抗磁性绝缘体。尽管如此,通过在二噻二唑自由基上引入不同官能团,研究者们开辟了新的研究方向。例如,连接荧光发色团是否能够使原本无荧光特性的自由基实现发光,成为了一个有趣的研究课题。2017年,Rawson课题组以1,2,3,5-二噻二唑自由基为基础,连接多环芳烃,成功设计合成了在乙腈溶液中发蓝色荧光的自由基分子,其最大发射波长为410 nm,荧光量子产率为11% [87]。2018年,该课题组进一步在二噻二唑自由基上引入芘发色团,获得了在固态下发深蓝色荧光的自由基分子,其荧光量子效率高达50% [88]。光谱分析表明,荧光发射主要来源于芘发色团,而非自由基中心。然而,自由基的存在通过增强非辐射衰变过程,对荧光发射产生了适度的猝灭作用。2022年,杨海波课题组设计合成了一种开壳层氮中心双自由基,该自由基能够进行可逆的路易斯酸碱反应,形成酸碱加合物。这一特性使其能够有效调控分子基态的电子结构、双自由基特性以及自旋密度分布。该双自由基在CH2Cl2溶液中呈现绿色,最大吸收峰位于620 nm,并在近红外区域表现出微弱的荧光发射,量子效率约为4% [89]。2023年,李峰课题组通过在Verdazyl自由基上引入咔唑荧光发色团,成功合成了具有反卡莎规则(anti-Kasha)发射特性的自由基分子。该分子的最低能量吸收带位于655 nm,而在环己烷溶液中的最大发射峰为355 nm。尽管反卡莎发射主要来源于苯基咔唑,但稳定的自由基中心通过分子内电荷转移也参与了荧光发射过程[90] (如图8)。

3.4. 其他类型的自由基

目前,关于稳定的有机自由基分子的研究已取得显著进展,尤其是在碳自由基、氮氧自由基和氮自由基领域。这些自由基在特定条件下不仅能够稳定存在,还表现出优异的光稳定性。然而,并非所有稳定的自由基分子都具备发光特性,且不同类型的自由基分子在稳定性评判标准上存在差异。对于单线态双自由基性质的开壳层多环芳烃(PHs),其稳定性通常通过Clar六元环规则和双自由基性质来评估[91]-[94]。Clar六元环规则指出,化学成分相同的苯类多环芳烃中,芳香六元环数量越多,分子的稳定性越高,反应活性越低。这是因为含有6个π电子的苯环具有较高的共振能,能够显著增强分子的热力学稳定性。2012年,孙哲课题组报道了一种通过动力学阻断策略合成八乙炔衍生物的新方法。他们在自由基活性位点引入大位阻的三异丙基硅乙炔(TIPS),成功制备了稳定的单线态开壳层自由基分子OZ-TIPS。该分子在氯仿溶液中呈现蓝绿色,但未观察到荧光发射。其在795 nm、719 nm和668 nm处的吸收峰可能源于基态开壳双自由基结构,最低能量吸收则来自于双激发电子构型主导的低能单线态[95]。2013年,孙哲课题组进一步以两种二苯并七乙烯(DBHZ)异构体为基础,设计合成了两种具有不同六元环数量的自由基分子。通过引入叔丁基苯基和三异丙基乙基等大位阻基团,阻断海湾区域的活性位点,成功将活性位点限制在之字形边缘。其中,DBHZ2由于含有更多的六元环,表现出更强的双自由基特性[96]。对醌二甲烷(p-DQM)是设计低带隙和开壳双自由基π共轭体系的重要构建单元,但其高反应性和低溶解度限制了其应用。2013年,曾则兵课题组通过苯环化和末端氰基取代策略,成功合成了nPer-CN分子,证明了该方法是制备可溶性和稳定四氯低聚醌二甲烷的有效途径。研究表明,多个双自由基形式的芳香六元环是获得显著双自由基特征分子的关键驱动力之一[97]。此外,Soumyajit课题组设计合成了喹啉和咔唑交替排列的自由基分子4MC,该分子表现出显著的多自由基特征和极小的基态能隙。作为首个真正的开壳层有机单线态四自由基分子,4MC具有局域较小的激发能隙,能够通过热填充进入高自旋激发态,并在室温下产生磁化效应[98]

Figure 8. Common luminescent nitrogen free radicals

8. 常见的发光氮自由基

尽管碳自由基和氮自由基在光学、电学和磁学领域备受研究者关注,但其他元素的自由基(如硼自由基和硅自由基)也因其独特的性质逐渐成为研究热点。然而,由于这些自由基通常具有较高的反应活性,其分离和稳定化一直是研究的难点。硼自由基因其不稳定性而难以单独分离,但Marilyn课题组通过自旋离域和空间位阻保护策略,成功分离并稳定了三芳基硼自由基阴离子 [ BMeS 3 ] · [99]。2016年,Philip课题组报道了一种以硼为中心的自由基分子1 K,该分子可视为连接硼自由基阴离子与中心自由基的桥梁。通过电子顺磁共振(EPR)和紫外–可见吸收光谱表征,研究发现N…K相互作用显著影响了分子的几何结构、成键特性以及自旋密度分布[100]。硅自由基的研究同样面临挑战。由于其高反应活性,硅自由基通常仅作为有机反应中间体存在。直到1970年,Lappert课题组通过紫外光照射硅烷,成功制备了烷基取代的硅中心自由基,其半衰期约为10分钟,并通过EPR光谱进行了表征,但未能实现分离[101]。2001年,Sekiguchi课题组首次分离并表征了硅自由基,发现自旋密度分布在三个硅原子上[102]。2019年,Richard课题组设计合成了一种体积庞大的超硅基自由基。由于该自由基中心具有极强的空间位阻效应,其在空气中以固态形式稳定存在超过16小时,且未观察到分解现象。此外,三硅基取代的自由基在有机自由基电池中展现出作为电极材料的巨大潜力[103] (如图9)。

Figure 9. Other types of free radicals

9. 其他类型的自由基

4. 课题的提出及主要内容

开壳的发光自由基分子相比于闭壳发光分子的优势在于其基态和激发态的自旋组态均为双线态,双线态激子能够通过辐射跃迁的形式直接回到基态,且激子利用率理论上可以达到100%。稳定的有机自由基分子由于拥有独特的电子结构,可以应用于光学、磁学和电学等领域。现如今,已经有许多有机发光自由基由于具有足够的稳定性,并且能够被分离出来。

参考文献

[1] Forrester, A.R., Hay, J.M. and Thomson, R.H. (1968) Organic Chemistry of Stable Free Radicals. Academic Press.
[2] Hicks, R.G. (2007) What’s New in Stable Radical Chemistry? Organic & Biomolecular Chemistry, 5, 1321-1338.
https://doi.org/10.1039/b617142g
[3] Ratera, I. and Veciana, J. (2012) Playing with Organic Radicals as Building Blocks for Functional Molecular Materials. Chemical Society Reviews, 41, 303-349.
https://doi.org/10.1039/c1cs15165g
[4] Kumar, S., Kumar, Y., Keshri, S. and Mukhopadhyay, P. (2016) Recent Advances in Organic Radicals and Their Magnetism. Magnetochemistry, 2, Article 42.
https://doi.org/10.3390/magnetochemistry2040042
[5] Friebe, C. and Schubert, U.S. (2017) High-Power-Density Organic Radical Batteries. Topics in Current Chemistry, 375, Article No. 19.
https://doi.org/10.1007/s41061-017-0103-1
[6] Kato, K. and Osuka, A. (2019) Platforms for Stable Carbon‐Centered Radicals. Angewandte Chemie International Edition, 58, 8978-8986.
https://doi.org/10.1002/anie.201900307
[7] Ji, L., Shi, J., Wei, J., Yu, T. and Huang, W. (2020) Air‐Stable Organic Radicals: New‐Generation Materials for Flexible Electronics? Advanced Materials, 32, Article ID: 1908015.
https://doi.org/10.1002/adma.201908015
[8] Yuan, D., Liu, W. and Zhu, X. (2021) Design and Applications of Single-Component Radical Conductors. Chem, 7, 333-357.
https://doi.org/10.1016/j.chempr.2020.10.001
[9] Deumal, M., Vela, S., Fumanal, M., Ribas-Arino, J. and Novoa, J.J. (2021) Insights into the Magnetism and Phase Transitions of Organic Radical-Based Materials. Journal of Materials Chemistry C, 9, 10624-10646.
https://doi.org/10.1039/d1tc01376a
[10] Gomberg, M. (1900) An Instance of Trivalent Carbon: Triphenylmethyl. Journal of the American Chemical Society, 22, 757-771.
https://doi.org/10.1021/ja02049a006
[11] Schlenk, W., Weickel, T. and Herzenstein, A. (1910) Ueber Triphenylmethyl und Analoga des Triphenylmethyls in der Biphenylreihe. Justus Liebigs Annalen der Chemie, 372, 1-20.
https://doi.org/10.1002/jlac.19103720102
[12] Mas-Torrent, M., Crivillers, N., Mugnaini, V., Ratera, I., Rovira, C. and Veciana, J. (2009) Organic Radicals on Surfaces: Towards Molecular Spintronics. Journal of Materials Chemistry, 19, 1691-1695.
https://doi.org/10.1039/b809875a
[13] Colvin, M.T., Giacobbe, E.M., Cohen, B., Miura, T., Scott, A.M. and Wasielewski, M.R. (2010) Competitive Electron Transfer and Enhanced Intersystem Crossing in Photoexcited Covalent Tempo-Perylene-3,4:9,10-Bis(Dicarboximide) Dyads: Unusual Spin Polarization Resulting from the Radical-Triplet Interaction. The Journal of Physical Chemistry A, 114, 1741-1748.
https://doi.org/10.1021/jp909212c
[14] Sanvito, S. (2011) Molecular Spintronics. Chemical Society Reviews, 40, 3336-3355.
https://doi.org/10.1039/c1cs15047b
[15] Souto, M., Calbo, J., Ratera, I., Ortí, E. and Veciana, J. (2017) Tetrathiafulvalene-Polychlorotriphenylmethyl Dyads: Influence of Bridge and Open‐Shell Characteristics on Linear and Nonlinear Optical Properties. ChemistryA European Journal, 23, 11067-11075.
https://doi.org/10.1002/chem.201701623
[16] Xu, F., Xu, H., Chen, X., Wu, D., Wu, Y., Liu, H., et al. (2015) Radical Covalent Organic Frameworks: A General Strategy to Immobilize Open‐accessible Polyradicals for High‐Performance Capacitive Energy Storage. Angewandte Chemie International Edition, 54, 6814-6818.
https://doi.org/10.1002/anie.201501706
[17] Morita, Y., Nishida, S., Murata, T., Moriguchi, M., Ueda, A., Satoh, M., et al. (2011) Organic Tailored Batteries Materials Using Stable Open-Shell Molecules with Degenerate Frontier Orbitals. Nature Materials, 10, 947-951.
https://doi.org/10.1038/nmat3142
[18] Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. and Nishide, H. (2009) Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery. Advanced Materials, 21, 1627-1630.
https://doi.org/10.1002/adma.200803073
[19] Nishide, H. and Oyaizu, K. (2008) Toward Flexible Batteries. Science, 319, 737-738.
https://doi.org/10.1126/science.1151831
[20] Awaga, K. and Maruyama, Y. (1989) Ferromagnetic and Antiferromagnetic Intermolecular Interactions of Organic Radicals, α-Nitronyl Nitroxides. II. The Journal of Chemical Physics, 91, 2743-2747.
https://doi.org/10.1063/1.456984
[21] Banister, A.J., Bricklebank, N., Lavender, I., Rawson, J.M., Gregory, C.I., Tanner, B.K., et al. (1996) Spontaneous Magnetization in a Sulfur-Nitrogen Radical at 36 K. Angewandte Chemie International Edition in English, 35, 2533-2535.
https://doi.org/10.1002/anie.199625331
[22] Train, C., Gruselle, M. and Verdaguer, M. (2011) The Fruitful Introduction of Chirality and Control of Absolute Configurations in Molecular Magnets. Chemical Society Reviews, 40, 3297-3312.
https://doi.org/10.1039/c1cs15012j
[23] Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Lefer, D.J., Giannella, E., et al. (1994) Three-Dimensional Spectral-Spatial EPR Imaging of Free Radicals in the Heart: A Technique for Imaging Tissue Metabolism and Oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 91, 3388-3392.
https://doi.org/10.1073/pnas.91.8.3388
[24] Dhimitruka, I., Velayutham, M., Bobko, A.A., Khramtsov, V.V., Villamena, F.A., Hadad, C.M., et al. (2007) Large-scale Synthesis of a Persistent Trityl Radical for Use in Biomedical EPR Applications and Imaging. Bioorganic & Medicinal Chemistry Letters, 17, 6801-6805.
https://doi.org/10.1016/j.bmcl.2007.10.030
[25] Keana, J.F.W. (1978) Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chemical Reviews, 78, 37-64.
https://doi.org/10.1021/cr60311a004
[26] Bagryanskaya, E.G. and Marque, S.R.A. (2014) Scavenging of Organic C-Centered Radicals by Nitroxides. Chemical Reviews, 114, 5011-5056.
https://doi.org/10.1021/cr4000946
[27] Bin, Z., Duan, L. and Qiu, Y. (2015) Air Stable Organic Salt as an N-Type Dopant for Efficient and Stable Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 7, 6444-6450.
https://doi.org/10.1021/acsami.5b00839
[28] Bin, Z., Liu, Z., Wei, P., Duan, L. and Qiu, Y. (2016) Using an Organic Radical Precursor as an Electron Injection Material for Efficient and Stable Organic Light-Emitting Diodes. Nanotechnology, 27, Article ID: 174001.
https://doi.org/10.1088/0957-4484/27/17/174001
[29] Peng, Q., Obolda, A., Zhang, M. and Li, F. (2015) Organic Light‐Emitting Diodes Using a Neutral Π Radical as Emitter: The Emission from a Doublet. Angewandte Chemie International Edition, 54, 7091-7095.
https://doi.org/10.1002/anie.201500242
[30] Obolda, A., Ai, X., Zhang, M. and Li, F. (2016) Up to 100% Formation Ratio of Doublet Exciton in Deep-Red Organic Light-Emitting Diodes Based on Neutral π-Radical. ACS Applied Materials & Interfaces, 8, 35472-35478.
https://doi.org/10.1021/acsami.6b12338
[31] Neier, E., Arias Ugarte, R., Rady, N., Venkatesan, S., Hudnall, T.W. and Zakhidov, A. (2017) Solution-Processed Organic Light-Emitting Diodes with Emission from a Doublet Exciton; Using (2, 4, 6-Trichlorophenyl)methyl as Emitter. Organic Electronics, 44, 126-131.
https://doi.org/10.1016/j.orgel.2017.02.010
[32] Mesa, J.A., Velázquez-Palenzuela, A., Brillas, E., Coll, J., Torres, J.L. and Juliá, L. (2012) Preparation and Characterization of Persistent Maltose-Conjugated Triphenylmethyl Radicals. The Journal of Organic Chemistry, 77, 1081-1086.
https://doi.org/10.1021/jo202356u
[33] Bobko, A.A., Dhimitruka, I., Zweier, J.L. and Khramtsov, V.V. (2007) Trityl Radicals as Persistent Dual Function pH and Oxygen Probes for in Vivo Electron Paramagnetic Resonance Spectroscopy and Imaging: Concept and Experiment. Journal of the American Chemical Society, 129, 7240-7241.
https://doi.org/10.1021/ja071515u
[34] Cao, Q., Dornan, L.M., Rogan, L., Hughes, N.L. and Muldoon, M.J. (2014) Aerobic Oxidation Catalysis with Stable Radicals. Chemical Communications, 50, 4524-4543.
https://doi.org/10.1039/c3cc47081d
[35] Jiao, Y., Li, W., Xu, J., Wang, G., Li, J., Wang, Z., et al. (2016) A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie, 128, 9079-9083.
https://doi.org/10.1002/ange.201603182
[36] Sheldon, R.A., Arends, I.W.C.E., ten Brink, G. and Dijksman, A. (2002) Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 35, 774-781.
https://doi.org/10.1021/ar010075n
[37] Aliaga, C., Aspée, A. and Scaiano, J.C. (2003) A New Method to Study Antioxidant Capability: Hydrogen Transfer from Phenols to a Prefluorescent Nitroxide. Organic Letters, 5, 4145-4148.
https://doi.org/10.1021/ol035589w
[38] Braunecker, W.A. and Matyjaszewski, K. (2007) Controlled/living Radical Polymerization: Features, Developments, and Perspectives. Progress in Polymer Science, 32, 93-146.
https://doi.org/10.1016/j.progpolymsci.2006.11.002
[39] Nicolas, J., Guillaneuf, Y., Lefay, C., Bertin, D., Gigmes, D. and Charleux, B. (2013) Nitroxide-Mediated Polymerization. Progress in Polymer Science, 38, 63-235.
https://doi.org/10.1016/j.progpolymsci.2012.06.002
[40] Matyjaszewski, K. and Xia, J. (2001) Atom Transfer Radical Polymerization. Chemical Reviews, 101, 2921-2990.
https://doi.org/10.1021/cr940534g
[41] Moad, G., Rizzardo, E. and Thang, S.H. (2008) Radical Addition-Fragmentation Chemistry in Polymer Synthesis. Polymer, 49, 1079-1131.
https://doi.org/10.1016/j.polymer.2007.11.020
[42] Khramtsov, V.V., Yelinova (Popova), V.I., Weiner, L.M., Berezina, T.A., Martin, V.V. and Volodarsky, L.B. (1989) Quantitative Determination of SH Groups in Low-and High-Molecular-Weight Compounds by an Electron Spin Resonance Method. Analytical Biochemistry, 182, 58-63.
https://doi.org/10.1016/0003-2697(89)90718-5
[43] Koelsch, C.F. (1957) Syntheses with Triarylvinylmagnesium Bromides. α, γ-Bisdiphenylene-β-Phenylallyl, a Stable Free Radical. Journal of the American Chemical Society, 79, 4439-4441.
https://doi.org/10.1021/ja01573a053
[44] Kuhn, R. and Neugebauer, A. (1964) Über substituierte Bis-biphenylen-allyl-Radikale. Monatshefte für Chemie, 95, 3-23.
https://doi.org/10.1007/bf00909246
[45] Miura, Y., Tomimura, T., Matsuba, N., Tanaka, R., Nakatsuji, M. and Teki, Y. (2001) First Isolation of Monomeric n-Alkoxyarylaminyl Radicals and Their Chemical and Magnetic Properties. The Journal of Organic Chemistry, 66, 7456-7463.
https://doi.org/10.1021/jo0106288
[46] Fischer, H. (2005) Nitroxide Radicals and Nitroxide Based High-Spin Systems. Springer.
[47] Pope, M. and Swenberg, C.E. (1999) Electronic Processes in Organic Crystals and Polymers. Oxford University Press.
[48] Baldo, M.A., O’Brien, D.F., Thompson, M.E. and Forrest, S.R. (1999) Excitonic Singlet-Triplet Ratio in a Semiconducting Organic Thin Film. Physical Review B, 60, 14422-14428.
https://doi.org/10.1103/physrevb.60.14422
[49] Chen, Z.X., Li, Y. and Huang, F. (2021) Persistent and Stable Organic Radicals: Design, Synthesis, and Applications. Chem, 7, 288-332.
https://doi.org/10.1016/j.chempr.2020.09.024
[50] Zhang, K., Monteiro, M.J. and Jia, Z. (2016) Stable Organic Radical Polymers: Synthesis and Applications. Polymer Chemistry, 7, 5589-5614.
https://doi.org/10.1039/c6py00996d
[51] Nguyen, T.P., Easley, A.D., Kang, N., Khan, S., Lim, S., Rezenom, Y.H., et al. (2021) Polypeptide Organic Radical Batteries. Nature, 593, 61-66.
https://doi.org/10.1038/s41586-021-03399-1
[52] Xie, Y., Zhang, K., Yamauchi, Y., Oyaizu, K. and Jia, Z. (2021) Nitroxide Radical Polymers for Emerging Plastic Energy Storage and Organic Electronics: Fundamentals, Materials, and Applications. Materials Horizons, 8, 803-829.
https://doi.org/10.1039/d0mh01391a
[53] Kawata, S., Pu, Y., Saito, A., Kurashige, Y., Beppu, T., Katagiri, H., et al. (2015) Singlet Fission of Non‐Polycyclic Aromatic Molecules in Organic Photovoltaics. Advanced Materials, 28, 1585-1590.
https://doi.org/10.1002/adma.201504281
[54] Phan, H., Herng, T.S., Wang, D., Li, X., Zeng, W., Ding, J., et al. (2019) Room-Temperature Magnets Based on 1, 3, 5-Triazine-Linked Porous Organic Radical Frameworks. Chem, 5, 1223-1234.
https://doi.org/10.1016/j.chempr.2019.02.024
[55] Thorarinsdottir, A.E. and Harris, T.D. (2020) Metal-Organic Framework Magnets. Chemical Reviews, 120, 8716-8789.
https://doi.org/10.1021/acs.chemrev.9b00666
[56] Lü, B., Chen, Y., Li, P., Wang, B., Müllen, K. and Yin, M. (2019) Stable Radical Anions Generated from a Porous Perylenediimide Metal-Organic Framework for Boosting Near-Infrared Photothermal Conversion. Nature Communications, 10, Article No. 767.
https://doi.org/10.1038/s41467-019-08434-4
[57] Chan, J.M.W., Wojtecki, R.J., Sardon, H., Lee, A.L.Z., Smith, C.E., Shkumatov, A., et al. (2017) Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic Radical-Functionalized Diblock Copolymers. ACS Macro Letters, 6, 176-180.
https://doi.org/10.1021/acsmacrolett.6b00924
[58] Ballester, M., Riera-Figueras, J. and Rodríguez-Siurana, A. (1970) Synthesis and Isolation of a Perchlorotriphenylcarbonium Salt. Tetrahedron Letters, 11, 3615-3618.
https://doi.org/10.1016/s0040-4039(01)98542-9
[59] Ballester, M., Riera-Figueras, J., Castaner, J., Badfa, C. and Monso, J.M. (1971) Inert Carbon Free Radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl Radical Series. Journal of the American Chemical Society, 93, 2215-2225.
https://doi.org/10.1021/ja00738a021
[60] Armet, O., Veciana, J., Rovira, C., Riera, J., Castaner, J., Molins, E., et al. (1987) Inert Carbon Free Radicals. 8. Polychlorotriphenylmethyl Radicals: Synthesis, Structure, and Spin-Density Distribution. The Journal of Physical Chemistry, 91, 5608-5616.
https://doi.org/10.1021/j100306a023
[61] Fox, M.A., Gaillard, E. and Chen, C.C. (1987) Photochemistry of Stable Free Radicals: The Photolysis of Perchlorotriphenylmethyl Radicals. Journal of the American Chemical Society, 109, 7088-7094.
https://doi.org/10.1021/ja00257a030
[62] Gamero, V., Velasco, D., Latorre, S., López-Calahorra, F., Brillas, E. and Juliá, L. (2006) [4-(n-Carbazolyl)-2, 6-Dichlorophenyl]bis(2,4,6-Trichlorophenyl)methyl Radical an Efficient Red Light-Emitting Paramagnetic Molecule. Tetrahedron Letters, 47, 2305-2309.
https://doi.org/10.1016/j.tetlet.2006.02.022
[63] López, M., Velasco, D., López-Calahorra, F. and Juliá, L. (2008) Light-emitting Persistent Radicals for Efficient Sensor Devices of Solvent Polarity. Tetrahedron Letters, 49, 5196-5199.
https://doi.org/10.1016/j.tetlet.2008.06.040
[64] Hattori, Y., Kusamoto, T. and Nishihara, H. (2014) Luminescence, Stability, and Proton Response of an Open‐Shell (3,5‐Dichloro‐4‐Pyridyl)bis(2,4,6‐Trichlorophenyl)methyl Radical. Angewandte Chemie International Edition, 53, 11845-11848.
https://doi.org/10.1002/anie.201407362
[65] Hattori, Y., Kusamoto, T. and Nishihara, H. (2015) Highly Photostable Luminescent Open-Shell (3, 5-Dihalo-4-Pyridyl)bis(2,4,6-Trichlorophenyl)methyl Radicals: Significant Effects of Halogen Atoms on Their Photophysical and Photochemical Properties. RSC Advances, 5, 64802-64805.
https://doi.org/10.1039/c5ra14268g
[66] Hattori, Y., Kusamoto, T. and Nishihara, H. (2015) Enhanced Luminescent Properties of an Open‐Shell (3, 5‐Dichloro‐4‐Pyridyl)bis(2,4,6‐Trichlorophenyl)methyl Radical by Coordination to Gold. Angewandte Chemie International Edition, 54, 3731-3734.
https://doi.org/10.1002/anie.201411572
[67] Ai, X., Chen, Y., Feng, Y. and Li, F. (2018) A Stable Room‐Temperature Luminescent Biphenylmethyl Radical. Angewandte Chemie International Edition, 57, 2869-2873.
https://doi.org/10.1002/anie.201713321
[68] Kimura, S., Tanushi, A., Kusamoto, T., Kochi, S., Sato, T. and Nishihara, H. (2018) A Luminescent Organic Radical with Two Pyridyl Groups: High Photostability and Dual Stimuli-Responsive Properties, with Theoretical Analyses of Photophysical Processes. Chemical Science, 9, 1996-2007.
https://doi.org/10.1039/c7sc04034b
[69] Liu, C., Hamzehpoor, E., Sakai‐Otsuka, Y., Jadhav, T. and Perepichka, D.F. (2020) A Pure‐Red Doublet Emission with 90% Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angewandte Chemie International Edition, 59, 23030-23034.
https://doi.org/10.1002/anie.202009867
[70] Sheldon, R.A., Arends, I.W.C.E., ten Brink, G. and Dijksman, A. (2002) Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 35, 774-781.
https://doi.org/10.1021/ar010075n
[71] Tebben, L. and Studer, A. (2011) Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angewandte Chemie International Edition, 50, 5034-5068.
https://doi.org/10.1002/anie.201002547
[72] Grubbs, R.B. (2011) Nitroxide-Mediated Radical Polymerization: Limitations and Versatility. Polymer Reviews, 51, 104-137.
https://doi.org/10.1080/15583724.2011.566405
[73] Wertz, S. and Studer, A. (2013) Nitroxide-Catalyzed Transition-Metal-Free Aerobic Oxidation Processes. Green Chemistry, 15, 3116-3134.
https://doi.org/10.1039/c3gc41459k
[74] Nicolas, J., Guillaneuf, Y., Lefay, C., Bertin, D., Gigmes, D. and Charleux, B. (2013) Nitroxide-Mediated Polymerization. Progress in Polymer Science, 38, 63-235.
https://doi.org/10.1016/j.progpolymsci.2012.06.002
[75] Beaulac, R., Bussière, G., Reber, C., Lescop, C. and Luneau, D. (2003) Solid-State Absorption and Luminescence Spectroscopy of Nitronyl Nitroxide Radicals. New Journal of Chemistry, 27, 1200-1206.
https://doi.org/10.1039/b301479g
[76] Beaulac, R., Luneau, D. and Reber, C. (2005) The Emitting State of the Imino Nitroxide Radical. Chemical Physics Letters, 405, 153-158.
https://doi.org/10.1016/j.cplett.2005.02.024
[77] Wang, Y., Gao, Y., Ma, Y., Wang, Q., Li, L. and Liao, D. (2013) Syntheses, Crystal Structures, Magnetic and Luminescence Properties of Five Novel Lanthanide Complexes of Nitronyl Nitroxide Radical. Journal of Solid State Chemistry, 202, 276-281.
https://doi.org/10.1016/j.jssc.2013.03.052
[78] Tretyakov, E.V., Plyusnin, V.F., Suvorova, A.O., Larionov, S.V., Popov, S.A., Antonova, O.V., et al. (2014) Luminescence of the Nitronyl Nitroxide Radical Group in a Spin-Labelled Pyrazolylquinoline. Journal of Luminescence, 148, 33-38.
https://doi.org/10.1016/j.jlumin.2013.11.017
[79] Wang, Z., Zou, X., Xie, Y., Zhang, H., Hu, L., Chan, C.C.S., et al. (2022) A Nonconjugated Radical Polymer with Stable Red Luminescence in the Solid State. Materials Horizons, 9, 2564-2571.
https://doi.org/10.1039/d2mh00808d
[80] Kuhn, R., Neugebauer, F.A. and Trischmann, H. (1966) Stabile N-Haltige Biradikale und Triradikale. Monatshefte fur Chemie, 97, 525-553.
https://doi.org/10.1007/bf00905273
[81] Hicks, R.G. and Hooper, R. (1998) Synthesis and EPR Characterization of “Phosphaverdazyl” Radicals. Inorganic Chemistry, 38, 284-286.
https://doi.org/10.1021/ic980985+
[82] Ballester, M., Riera-Figueras, J., Castaner, J., Badfa, C. and Monso, J.M. (1971) Inert Carbon Free Radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl Radical Series. Journal of the American Chemical Society, 93, 2215-2225.
https://doi.org/10.1021/ja00738a021
[83] Ballester, M., Castañer, J. and Olivella, S. (1974) Syntheses and Isolation of the Perchlodiphenylaminyl, an Exceptionally Stable Radical. Tetrahedron Letters, 15, 615-616.
https://doi.org/10.1016/s0040-4039(01)82286-3
[84] Berezin, A.A., Constantinides, C.P., Mirallai, S.I., Manoli, M., Cao, L.L., Rawson, J.M., et al. (2013) Synthesis and Properties of Imidazolo-Fused Benzotriazinyl Radicals. Organic & Biomolecular Chemistry, 11, 6780-6795.
https://doi.org/10.1039/c3ob41169a
[85] Constantinides, C.P., Berezin, A.A., Manoli, M., Leitus, G.M., Zissimou, G.A., Bendikov, M., et al. (2014) Structural, Magnetic, and Computational Correlations of Some Imidazolo‐Fused 1, 2, 4‐Benzotriazinyl Radicals. ChemistryA European Journal, 20, 5388-5396.
https://doi.org/10.1002/chem.201304538
[86] Kaszyński, P., Constantinides, C.P. and Young, V.G. (2016) The Planar Blatter Radical: Structural Chemistry of 1, 4‐Dihydrobenzo[e] [1,2,4]triazin‐4‐yls. Angewandte Chemie International Edition, 55, 11149-11152.
https://doi.org/10.1002/anie.201605612
[87] Beldjoudi, Y., Osorio-Román, I., Nascimento, M.A. and Rawson, J.M. (2017) A Fluorescent Dithiadiazolyl Radical: Structure and Optical Properties of Phenanthrenyl Dithiadiazolyl in Solution and Polymer Composites. Journal of Materials Chemistry C, 5, 2794-2799.
https://doi.org/10.1039/c6tc05576a
[88] Rawson, M., Beldjoudi, Y., et al. (2018) Multi-Functional Dithiadiazolyl Radicals: Fluorescence, Electroluminescence and Photo-Conducting Behavior in Pyren1’-Yl-Dithi-Adiazolyl. Journal of the American Chemical Society, 24, 1-13.
[89] Huang, B., Kang, H., Zhang, C., Zhao, X., Shi, X. and Yang, H. (2022) Design of an Open-Shell Nitrogen-Centered Diradicaloid with Tunable Stimuli-Responsive Electronic Properties. Communications Chemistry, 5, Article No. 127.
https://doi.org/10.1038/s42004-022-00747-8
[90] Gao, S., Ding, J., Yu, S. and Li, F. (2023) Stable Nitrogen-Centered Radicals with Anti-Kasha Emission. Journal of Materials Chemistry C, 11, 6400-6406.
https://doi.org/10.1039/d2tc05471j
[91] Montgomery, L.K., Huffman, J.C., Jurczak, E.A. and Grendze, M.P. (1986) The Molecular Structures of Thiele’s and Chichibabin’s Hydrocarbons. Journal of the American Chemical Society, 108, 6004-6011.
https://doi.org/10.1021/ja00279a056
[92] Shimizu, A., Kubo, T., Uruichi, M., Yakushi, K., Nakano, M., Shiomi, D., et al. (2010) Alternating Covalent Bonding Interactions in a One-Dimensional Chain of a Phenalenyl-Based Singlet Biradical Molecule Having Kekulé Structures. Journal of the American Chemical Society, 132, 14421-14428.
https://doi.org/10.1021/ja1037287
[93] Sun, Z. and Wu, J. (2012) Open-Shell Polycyclic Aromatic Hydrocarbons. Journal of Materials Chemistry, 22, 4151-4160.
https://doi.org/10.1039/c1jm14786b
[94] Nobusue, S., Miyoshi, H., Shimizu, A., Hisaki, I., Fukuda, K., Nakano, M., et al. (2015) Tetracyclopenta[def, jkl, pqr, vwx]Tetraphenylene: A Potential Tetraradicaloid Hydrocarbon. Angewandte Chemie International Edition, 54, 2090-2094.
https://doi.org/10.1002/anie.201410791
[95] Li, Y., Heng, W., Lee, B.S., Aratani, N., Zafra, J.L., Bao, N., et al. (2012) Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State? Journal of the American Chemical Society, 134, 14913-14922.
https://doi.org/10.1021/ja304618v
[96] Sun, Z., Lee, S., Park, K.H., Zhu, X., Zhang, W., Zheng, B., et al. (2013) Dibenzoheptazethrene Isomers with Different Biradical Characters: An Exercise of Clar’s Aromatic Sextet Rule in Singlet Biradicaloids. Journal of the American Chemical Society, 135, 18229-18236.
https://doi.org/10.1021/ja410279j
[97] Zeng, Z., Ishida, M., Zafra, J.L., Zhu, X., Sung, Y.M., Bao, N., et al. (2013) Pushing Extended p-Quinodimethanes to the Limit: Stable Tetracyano-Oligo(n-Annulated Perylene)Quinodimethanes with Tunable Ground States. Journal of the American Chemical Society, 135, 6363-6371.
https://doi.org/10.1021/ja402467y
[98] Das, S., Herng, T.S., Zafra, J.L., Burrezo, P.M., Kitano, M., Ishida, M., et al. (2016) Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-Radical Characters. Journal of the American Chemical Society, 138, 7782-7790.
https://doi.org/10.1021/jacs.6b04539
[99] Yuan, N., Wang, W., Wu, Z., Chen, S., Tan, G., Sui, Y., et al. (2016) A Boron-Centered Radical: A Potassium-Crown Ether Stabilized Boryl Radical Anion. Chemical Communications, 52, 12714-12716.
https://doi.org/10.1039/c6cc06918e
[100] Lednor, W., Lappert, F., et al. (1974) Photochemical Synthesis and Electron Spin Resonance Characterisation of Stable Trivalent Metal Alkyls (Si, Ge, Sn) and Amides (Ge and Sn) of Group IV Elements. Journal of the Chemical Society, Chemical Communications, No. 16, 651-652.
[101] Lednor, W., Lappert, F., et al. (1976) Subvalent Group 4B Metal Alkyls and Amides. Part 4.’ An Electron Spin Resonance Study of Some Long-Lived Photochemically Synthesised Trisubstituted Silyl, Germyl, and Stannyl Radicals. Journal of the Chemical Society, Dalton Transactions, No. 22, 2369-2375.
[102] Sekiguchi, A., Matsuno, T. and Ichinohe, M. (2001) Cyclotetrasilenyl: The First Isolable Silyl Radical. Journal of the American Chemical Society, 123, 12436-12437.
https://doi.org/10.1021/ja011617z
[103] Holzner, R., Kaushansky, A., Tumanskii, B., Frisch, P., Linsenmann, F. and Inoue, S. (2019) Isolation of a Relatively Air‐Stable, Bulky Silyl‐Substituted, Neutral Silicon‐Centered Radical. European Journal of Inorganic Chemistry, 2019, 2977-2981.
https://doi.org/10.1002/ejic.201900522