|
[1]
|
Forrester, A.R., Hay, J.M. and Thomson, R.H. (1968) Organic Chemistry of Stable Free Radicals. Academic Press.
|
|
[2]
|
Hicks, R.G. (2007) What’s New in Stable Radical Chemistry? Organic & Biomolecular Chemistry, 5, 1321-1338. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ratera, I. and Veciana, J. (2012) Playing with Organic Radicals as Building Blocks for Functional Molecular Materials. Chemical Society Reviews, 41, 303-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kumar, S., Kumar, Y., Keshri, S. and Mukhopadhyay, P. (2016) Recent Advances in Organic Radicals and Their Magnetism. Magnetochemistry, 2, Article 42. [Google Scholar] [CrossRef]
|
|
[5]
|
Friebe, C. and Schubert, U.S. (2017) High-Power-Density Organic Radical Batteries. Topics in Current Chemistry, 375, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kato, K. and Osuka, A. (2019) Platforms for Stable Carbon‐Centered Radicals. Angewandte Chemie International Edition, 58, 8978-8986. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ji, L., Shi, J., Wei, J., Yu, T. and Huang, W. (2020) Air‐Stable Organic Radicals: New‐Generation Materials for Flexible Electronics? Advanced Materials, 32, Article ID: 1908015. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yuan, D., Liu, W. and Zhu, X. (2021) Design and Applications of Single-Component Radical Conductors. Chem, 7, 333-357. [Google Scholar] [CrossRef]
|
|
[9]
|
Deumal, M., Vela, S., Fumanal, M., Ribas-Arino, J. and Novoa, J.J. (2021) Insights into the Magnetism and Phase Transitions of Organic Radical-Based Materials. Journal of Materials Chemistry C, 9, 10624-10646. [Google Scholar] [CrossRef]
|
|
[10]
|
Gomberg, M. (1900) An Instance of Trivalent Carbon: Triphenylmethyl. Journal of the American Chemical Society, 22, 757-771. [Google Scholar] [CrossRef]
|
|
[11]
|
Schlenk, W., Weickel, T. and Herzenstein, A. (1910) Ueber Triphenylmethyl und Analoga des Triphenylmethyls in der Biphenylreihe. Justus Liebigs Annalen der Chemie, 372, 1-20. [Google Scholar] [CrossRef]
|
|
[12]
|
Mas-Torrent, M., Crivillers, N., Mugnaini, V., Ratera, I., Rovira, C. and Veciana, J. (2009) Organic Radicals on Surfaces: Towards Molecular Spintronics. Journal of Materials Chemistry, 19, 1691-1695. [Google Scholar] [CrossRef]
|
|
[13]
|
Colvin, M.T., Giacobbe, E.M., Cohen, B., Miura, T., Scott, A.M. and Wasielewski, M.R. (2010) Competitive Electron Transfer and Enhanced Intersystem Crossing in Photoexcited Covalent Tempo-Perylene-3,4:9,10-Bis(Dicarboximide) Dyads: Unusual Spin Polarization Resulting from the Radical-Triplet Interaction. The Journal of Physical Chemistry A, 114, 1741-1748. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sanvito, S. (2011) Molecular Spintronics. Chemical Society Reviews, 40, 3336-3355. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Souto, M., Calbo, J., Ratera, I., Ortí, E. and Veciana, J. (2017) Tetrathiafulvalene-Polychlorotriphenylmethyl Dyads: Influence of Bridge and Open‐Shell Characteristics on Linear and Nonlinear Optical Properties. Chemistry—A European Journal, 23, 11067-11075. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xu, F., Xu, H., Chen, X., Wu, D., Wu, Y., Liu, H., et al. (2015) Radical Covalent Organic Frameworks: A General Strategy to Immobilize Open‐accessible Polyradicals for High‐Performance Capacitive Energy Storage. Angewandte Chemie International Edition, 54, 6814-6818. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Morita, Y., Nishida, S., Murata, T., Moriguchi, M., Ueda, A., Satoh, M., et al. (2011) Organic Tailored Batteries Materials Using Stable Open-Shell Molecules with Degenerate Frontier Orbitals. Nature Materials, 10, 947-951. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. and Nishide, H. (2009) Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery. Advanced Materials, 21, 1627-1630. [Google Scholar] [CrossRef]
|
|
[19]
|
Nishide, H. and Oyaizu, K. (2008) Toward Flexible Batteries. Science, 319, 737-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Awaga, K. and Maruyama, Y. (1989) Ferromagnetic and Antiferromagnetic Intermolecular Interactions of Organic Radicals, α-Nitronyl Nitroxides. II. The Journal of Chemical Physics, 91, 2743-2747. [Google Scholar] [CrossRef]
|
|
[21]
|
Banister, A.J., Bricklebank, N., Lavender, I., Rawson, J.M., Gregory, C.I., Tanner, B.K., et al. (1996) Spontaneous Magnetization in a Sulfur-Nitrogen Radical at 36 K. Angewandte Chemie International Edition in English, 35, 2533-2535. [Google Scholar] [CrossRef]
|
|
[22]
|
Train, C., Gruselle, M. and Verdaguer, M. (2011) The Fruitful Introduction of Chirality and Control of Absolute Configurations in Molecular Magnets. Chemical Society Reviews, 40, 3297-3312. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kuppusamy, P., Chzhan, M., Vij, K., Shteynbuk, M., Lefer, D.J., Giannella, E., et al. (1994) Three-Dimensional Spectral-Spatial EPR Imaging of Free Radicals in the Heart: A Technique for Imaging Tissue Metabolism and Oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 91, 3388-3392. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dhimitruka, I., Velayutham, M., Bobko, A.A., Khramtsov, V.V., Villamena, F.A., Hadad, C.M., et al. (2007) Large-scale Synthesis of a Persistent Trityl Radical for Use in Biomedical EPR Applications and Imaging. Bioorganic & Medicinal Chemistry Letters, 17, 6801-6805. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Keana, J.F.W. (1978) Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chemical Reviews, 78, 37-64. [Google Scholar] [CrossRef]
|
|
[26]
|
Bagryanskaya, E.G. and Marque, S.R.A. (2014) Scavenging of Organic C-Centered Radicals by Nitroxides. Chemical Reviews, 114, 5011-5056. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bin, Z., Duan, L. and Qiu, Y. (2015) Air Stable Organic Salt as an N-Type Dopant for Efficient and Stable Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 7, 6444-6450. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Bin, Z., Liu, Z., Wei, P., Duan, L. and Qiu, Y. (2016) Using an Organic Radical Precursor as an Electron Injection Material for Efficient and Stable Organic Light-Emitting Diodes. Nanotechnology, 27, Article ID: 174001. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Peng, Q., Obolda, A., Zhang, M. and Li, F. (2015) Organic Light‐Emitting Diodes Using a Neutral Π Radical as Emitter: The Emission from a Doublet. Angewandte Chemie International Edition, 54, 7091-7095. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Obolda, A., Ai, X., Zhang, M. and Li, F. (2016) Up to 100% Formation Ratio of Doublet Exciton in Deep-Red Organic Light-Emitting Diodes Based on Neutral π-Radical. ACS Applied Materials & Interfaces, 8, 35472-35478. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Neier, E., Arias Ugarte, R., Rady, N., Venkatesan, S., Hudnall, T.W. and Zakhidov, A. (2017) Solution-Processed Organic Light-Emitting Diodes with Emission from a Doublet Exciton; Using (2, 4, 6-Trichlorophenyl)methyl as Emitter. Organic Electronics, 44, 126-131. [Google Scholar] [CrossRef]
|
|
[32]
|
Mesa, J.A., Velázquez-Palenzuela, A., Brillas, E., Coll, J., Torres, J.L. and Juliá, L. (2012) Preparation and Characterization of Persistent Maltose-Conjugated Triphenylmethyl Radicals. The Journal of Organic Chemistry, 77, 1081-1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bobko, A.A., Dhimitruka, I., Zweier, J.L. and Khramtsov, V.V. (2007) Trityl Radicals as Persistent Dual Function pH and Oxygen Probes for in Vivo Electron Paramagnetic Resonance Spectroscopy and Imaging: Concept and Experiment. Journal of the American Chemical Society, 129, 7240-7241. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cao, Q., Dornan, L.M., Rogan, L., Hughes, N.L. and Muldoon, M.J. (2014) Aerobic Oxidation Catalysis with Stable Radicals. Chemical Communications, 50, 4524-4543. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jiao, Y., Li, W., Xu, J., Wang, G., Li, J., Wang, Z., et al. (2016) A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie, 128, 9079-9083. [Google Scholar] [CrossRef]
|
|
[36]
|
Sheldon, R.A., Arends, I.W.C.E., ten Brink, G. and Dijksman, A. (2002) Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 35, 774-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Aliaga, C., Aspée, A. and Scaiano, J.C. (2003) A New Method to Study Antioxidant Capability: Hydrogen Transfer from Phenols to a Prefluorescent Nitroxide. Organic Letters, 5, 4145-4148. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Braunecker, W.A. and Matyjaszewski, K. (2007) Controlled/living Radical Polymerization: Features, Developments, and Perspectives. Progress in Polymer Science, 32, 93-146. [Google Scholar] [CrossRef]
|
|
[39]
|
Nicolas, J., Guillaneuf, Y., Lefay, C., Bertin, D., Gigmes, D. and Charleux, B. (2013) Nitroxide-Mediated Polymerization. Progress in Polymer Science, 38, 63-235. [Google Scholar] [CrossRef]
|
|
[40]
|
Matyjaszewski, K. and Xia, J. (2001) Atom Transfer Radical Polymerization. Chemical Reviews, 101, 2921-2990. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Moad, G., Rizzardo, E. and Thang, S.H. (2008) Radical Addition-Fragmentation Chemistry in Polymer Synthesis. Polymer, 49, 1079-1131. [Google Scholar] [CrossRef]
|
|
[42]
|
Khramtsov, V.V., Yelinova (Popova), V.I., Weiner, L.M., Berezina, T.A., Martin, V.V. and Volodarsky, L.B. (1989) Quantitative Determination of SH Groups in Low-and High-Molecular-Weight Compounds by an Electron Spin Resonance Method. Analytical Biochemistry, 182, 58-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Koelsch, C.F. (1957) Syntheses with Triarylvinylmagnesium Bromides. α, γ-Bisdiphenylene-β-Phenylallyl, a Stable Free Radical. Journal of the American Chemical Society, 79, 4439-4441. [Google Scholar] [CrossRef]
|
|
[44]
|
Kuhn, R. and Neugebauer, A. (1964) Über substituierte Bis-biphenylen-allyl-Radikale. Monatshefte für Chemie, 95, 3-23. [Google Scholar] [CrossRef]
|
|
[45]
|
Miura, Y., Tomimura, T., Matsuba, N., Tanaka, R., Nakatsuji, M. and Teki, Y. (2001) First Isolation of Monomeric n-Alkoxyarylaminyl Radicals and Their Chemical and Magnetic Properties. The Journal of Organic Chemistry, 66, 7456-7463. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Fischer, H. (2005) Nitroxide Radicals and Nitroxide Based High-Spin Systems. Springer.
|
|
[47]
|
Pope, M. and Swenberg, C.E. (1999) Electronic Processes in Organic Crystals and Polymers. Oxford University Press.
|
|
[48]
|
Baldo, M.A., O’Brien, D.F., Thompson, M.E. and Forrest, S.R. (1999) Excitonic Singlet-Triplet Ratio in a Semiconducting Organic Thin Film. Physical Review B, 60, 14422-14428. [Google Scholar] [CrossRef]
|
|
[49]
|
Chen, Z.X., Li, Y. and Huang, F. (2021) Persistent and Stable Organic Radicals: Design, Synthesis, and Applications. Chem, 7, 288-332. [Google Scholar] [CrossRef]
|
|
[50]
|
Zhang, K., Monteiro, M.J. and Jia, Z. (2016) Stable Organic Radical Polymers: Synthesis and Applications. Polymer Chemistry, 7, 5589-5614. [Google Scholar] [CrossRef]
|
|
[51]
|
Nguyen, T.P., Easley, A.D., Kang, N., Khan, S., Lim, S., Rezenom, Y.H., et al. (2021) Polypeptide Organic Radical Batteries. Nature, 593, 61-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Xie, Y., Zhang, K., Yamauchi, Y., Oyaizu, K. and Jia, Z. (2021) Nitroxide Radical Polymers for Emerging Plastic Energy Storage and Organic Electronics: Fundamentals, Materials, and Applications. Materials Horizons, 8, 803-829. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kawata, S., Pu, Y., Saito, A., Kurashige, Y., Beppu, T., Katagiri, H., et al. (2015) Singlet Fission of Non‐Polycyclic Aromatic Molecules in Organic Photovoltaics. Advanced Materials, 28, 1585-1590. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Phan, H., Herng, T.S., Wang, D., Li, X., Zeng, W., Ding, J., et al. (2019) Room-Temperature Magnets Based on 1, 3, 5-Triazine-Linked Porous Organic Radical Frameworks. Chem, 5, 1223-1234. [Google Scholar] [CrossRef]
|
|
[55]
|
Thorarinsdottir, A.E. and Harris, T.D. (2020) Metal-Organic Framework Magnets. Chemical Reviews, 120, 8716-8789. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Lü, B., Chen, Y., Li, P., Wang, B., Müllen, K. and Yin, M. (2019) Stable Radical Anions Generated from a Porous Perylenediimide Metal-Organic Framework for Boosting Near-Infrared Photothermal Conversion. Nature Communications, 10, Article No. 767. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Chan, J.M.W., Wojtecki, R.J., Sardon, H., Lee, A.L.Z., Smith, C.E., Shkumatov, A., et al. (2017) Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic Radical-Functionalized Diblock Copolymers. ACS Macro Letters, 6, 176-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ballester, M., Riera-Figueras, J. and Rodríguez-Siurana, A. (1970) Synthesis and Isolation of a Perchlorotriphenylcarbonium Salt. Tetrahedron Letters, 11, 3615-3618. [Google Scholar] [CrossRef]
|
|
[59]
|
Ballester, M., Riera-Figueras, J., Castaner, J., Badfa, C. and Monso, J.M. (1971) Inert Carbon Free Radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl Radical Series. Journal of the American Chemical Society, 93, 2215-2225. [Google Scholar] [CrossRef]
|
|
[60]
|
Armet, O., Veciana, J., Rovira, C., Riera, J., Castaner, J., Molins, E., et al. (1987) Inert Carbon Free Radicals. 8. Polychlorotriphenylmethyl Radicals: Synthesis, Structure, and Spin-Density Distribution. The Journal of Physical Chemistry, 91, 5608-5616. [Google Scholar] [CrossRef]
|
|
[61]
|
Fox, M.A., Gaillard, E. and Chen, C.C. (1987) Photochemistry of Stable Free Radicals: The Photolysis of Perchlorotriphenylmethyl Radicals. Journal of the American Chemical Society, 109, 7088-7094. [Google Scholar] [CrossRef]
|
|
[62]
|
Gamero, V., Velasco, D., Latorre, S., López-Calahorra, F., Brillas, E. and Juliá, L. (2006) [4-(n-Carbazolyl)-2, 6-Dichlorophenyl]bis(2,4,6-Trichlorophenyl)methyl Radical an Efficient Red Light-Emitting Paramagnetic Molecule. Tetrahedron Letters, 47, 2305-2309. [Google Scholar] [CrossRef]
|
|
[63]
|
López, M., Velasco, D., López-Calahorra, F. and Juliá, L. (2008) Light-emitting Persistent Radicals for Efficient Sensor Devices of Solvent Polarity. Tetrahedron Letters, 49, 5196-5199. [Google Scholar] [CrossRef]
|
|
[64]
|
Hattori, Y., Kusamoto, T. and Nishihara, H. (2014) Luminescence, Stability, and Proton Response of an Open‐Shell (3,5‐Dichloro‐4‐Pyridyl)bis(2,4,6‐Trichlorophenyl)methyl Radical. Angewandte Chemie International Edition, 53, 11845-11848. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Hattori, Y., Kusamoto, T. and Nishihara, H. (2015) Highly Photostable Luminescent Open-Shell (3, 5-Dihalo-4-Pyridyl)bis(2,4,6-Trichlorophenyl)methyl Radicals: Significant Effects of Halogen Atoms on Their Photophysical and Photochemical Properties. RSC Advances, 5, 64802-64805. [Google Scholar] [CrossRef]
|
|
[66]
|
Hattori, Y., Kusamoto, T. and Nishihara, H. (2015) Enhanced Luminescent Properties of an Open‐Shell (3, 5‐Dichloro‐4‐Pyridyl)bis(2,4,6‐Trichlorophenyl)methyl Radical by Coordination to Gold. Angewandte Chemie International Edition, 54, 3731-3734. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Ai, X., Chen, Y., Feng, Y. and Li, F. (2018) A Stable Room‐Temperature Luminescent Biphenylmethyl Radical. Angewandte Chemie International Edition, 57, 2869-2873. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Kimura, S., Tanushi, A., Kusamoto, T., Kochi, S., Sato, T. and Nishihara, H. (2018) A Luminescent Organic Radical with Two Pyridyl Groups: High Photostability and Dual Stimuli-Responsive Properties, with Theoretical Analyses of Photophysical Processes. Chemical Science, 9, 1996-2007. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Liu, C., Hamzehpoor, E., Sakai‐Otsuka, Y., Jadhav, T. and Perepichka, D.F. (2020) A Pure‐Red Doublet Emission with 90% Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angewandte Chemie International Edition, 59, 23030-23034. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Sheldon, R.A., Arends, I.W.C.E., ten Brink, G. and Dijksman, A. (2002) Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 35, 774-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Tebben, L. and Studer, A. (2011) Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angewandte Chemie International Edition, 50, 5034-5068. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Grubbs, R.B. (2011) Nitroxide-Mediated Radical Polymerization: Limitations and Versatility. Polymer Reviews, 51, 104-137. [Google Scholar] [CrossRef]
|
|
[73]
|
Wertz, S. and Studer, A. (2013) Nitroxide-Catalyzed Transition-Metal-Free Aerobic Oxidation Processes. Green Chemistry, 15, 3116-3134. [Google Scholar] [CrossRef]
|
|
[74]
|
Nicolas, J., Guillaneuf, Y., Lefay, C., Bertin, D., Gigmes, D. and Charleux, B. (2013) Nitroxide-Mediated Polymerization. Progress in Polymer Science, 38, 63-235. [Google Scholar] [CrossRef]
|
|
[75]
|
Beaulac, R., Bussière, G., Reber, C., Lescop, C. and Luneau, D. (2003) Solid-State Absorption and Luminescence Spectroscopy of Nitronyl Nitroxide Radicals. New Journal of Chemistry, 27, 1200-1206. [Google Scholar] [CrossRef]
|
|
[76]
|
Beaulac, R., Luneau, D. and Reber, C. (2005) The Emitting State of the Imino Nitroxide Radical. Chemical Physics Letters, 405, 153-158. [Google Scholar] [CrossRef]
|
|
[77]
|
Wang, Y., Gao, Y., Ma, Y., Wang, Q., Li, L. and Liao, D. (2013) Syntheses, Crystal Structures, Magnetic and Luminescence Properties of Five Novel Lanthanide Complexes of Nitronyl Nitroxide Radical. Journal of Solid State Chemistry, 202, 276-281. [Google Scholar] [CrossRef]
|
|
[78]
|
Tretyakov, E.V., Plyusnin, V.F., Suvorova, A.O., Larionov, S.V., Popov, S.A., Antonova, O.V., et al. (2014) Luminescence of the Nitronyl Nitroxide Radical Group in a Spin-Labelled Pyrazolylquinoline. Journal of Luminescence, 148, 33-38. [Google Scholar] [CrossRef]
|
|
[79]
|
Wang, Z., Zou, X., Xie, Y., Zhang, H., Hu, L., Chan, C.C.S., et al. (2022) A Nonconjugated Radical Polymer with Stable Red Luminescence in the Solid State. Materials Horizons, 9, 2564-2571. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Kuhn, R., Neugebauer, F.A. and Trischmann, H. (1966) Stabile N-Haltige Biradikale und Triradikale. Monatshefte fur Chemie, 97, 525-553. [Google Scholar] [CrossRef]
|
|
[81]
|
Hicks, R.G. and Hooper, R. (1998) Synthesis and EPR Characterization of “Phosphaverdazyl” Radicals. Inorganic Chemistry, 38, 284-286. [Google Scholar] [CrossRef]
|
|
[82]
|
Ballester, M., Riera-Figueras, J., Castaner, J., Badfa, C. and Monso, J.M. (1971) Inert Carbon Free Radicals. I. Perchlorodiphenylmethyl and Perchlorotriphenylmethyl Radical Series. Journal of the American Chemical Society, 93, 2215-2225. [Google Scholar] [CrossRef]
|
|
[83]
|
Ballester, M., Castañer, J. and Olivella, S. (1974) Syntheses and Isolation of the Perchlodiphenylaminyl, an Exceptionally Stable Radical. Tetrahedron Letters, 15, 615-616. [Google Scholar] [CrossRef]
|
|
[84]
|
Berezin, A.A., Constantinides, C.P., Mirallai, S.I., Manoli, M., Cao, L.L., Rawson, J.M., et al. (2013) Synthesis and Properties of Imidazolo-Fused Benzotriazinyl Radicals. Organic & Biomolecular Chemistry, 11, 6780-6795. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Constantinides, C.P., Berezin, A.A., Manoli, M., Leitus, G.M., Zissimou, G.A., Bendikov, M., et al. (2014) Structural, Magnetic, and Computational Correlations of Some Imidazolo‐Fused 1, 2, 4‐Benzotriazinyl Radicals. Chemistry—A European Journal, 20, 5388-5396. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Kaszyński, P., Constantinides, C.P. and Young, V.G. (2016) The Planar Blatter Radical: Structural Chemistry of 1, 4‐Dihydrobenzo[e] [1,2,4]triazin‐4‐yls. Angewandte Chemie International Edition, 55, 11149-11152. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Beldjoudi, Y., Osorio-Román, I., Nascimento, M.A. and Rawson, J.M. (2017) A Fluorescent Dithiadiazolyl Radical: Structure and Optical Properties of Phenanthrenyl Dithiadiazolyl in Solution and Polymer Composites. Journal of Materials Chemistry C, 5, 2794-2799. [Google Scholar] [CrossRef]
|
|
[88]
|
Rawson, M., Beldjoudi, Y., et al. (2018) Multi-Functional Dithiadiazolyl Radicals: Fluorescence, Electroluminescence and Photo-Conducting Behavior in Pyren1’-Yl-Dithi-Adiazolyl. Journal of the American Chemical Society, 24, 1-13.
|
|
[89]
|
Huang, B., Kang, H., Zhang, C., Zhao, X., Shi, X. and Yang, H. (2022) Design of an Open-Shell Nitrogen-Centered Diradicaloid with Tunable Stimuli-Responsive Electronic Properties. Communications Chemistry, 5, Article No. 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Gao, S., Ding, J., Yu, S. and Li, F. (2023) Stable Nitrogen-Centered Radicals with Anti-Kasha Emission. Journal of Materials Chemistry C, 11, 6400-6406. [Google Scholar] [CrossRef]
|
|
[91]
|
Montgomery, L.K., Huffman, J.C., Jurczak, E.A. and Grendze, M.P. (1986) The Molecular Structures of Thiele’s and Chichibabin’s Hydrocarbons. Journal of the American Chemical Society, 108, 6004-6011. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Shimizu, A., Kubo, T., Uruichi, M., Yakushi, K., Nakano, M., Shiomi, D., et al. (2010) Alternating Covalent Bonding Interactions in a One-Dimensional Chain of a Phenalenyl-Based Singlet Biradical Molecule Having Kekulé Structures. Journal of the American Chemical Society, 132, 14421-14428. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Sun, Z. and Wu, J. (2012) Open-Shell Polycyclic Aromatic Hydrocarbons. Journal of Materials Chemistry, 22, 4151-4160. [Google Scholar] [CrossRef]
|
|
[94]
|
Nobusue, S., Miyoshi, H., Shimizu, A., Hisaki, I., Fukuda, K., Nakano, M., et al. (2015) Tetracyclopenta[def, jkl, pqr, vwx]Tetraphenylene: A Potential Tetraradicaloid Hydrocarbon. Angewandte Chemie International Edition, 54, 2090-2094. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Li, Y., Heng, W., Lee, B.S., Aratani, N., Zafra, J.L., Bao, N., et al. (2012) Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State? Journal of the American Chemical Society, 134, 14913-14922. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Sun, Z., Lee, S., Park, K.H., Zhu, X., Zhang, W., Zheng, B., et al. (2013) Dibenzoheptazethrene Isomers with Different Biradical Characters: An Exercise of Clar’s Aromatic Sextet Rule in Singlet Biradicaloids. Journal of the American Chemical Society, 135, 18229-18236. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Zeng, Z., Ishida, M., Zafra, J.L., Zhu, X., Sung, Y.M., Bao, N., et al. (2013) Pushing Extended p-Quinodimethanes to the Limit: Stable Tetracyano-Oligo(n-Annulated Perylene)Quinodimethanes with Tunable Ground States. Journal of the American Chemical Society, 135, 6363-6371. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Das, S., Herng, T.S., Zafra, J.L., Burrezo, P.M., Kitano, M., Ishida, M., et al. (2016) Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-Radical Characters. Journal of the American Chemical Society, 138, 7782-7790. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Yuan, N., Wang, W., Wu, Z., Chen, S., Tan, G., Sui, Y., et al. (2016) A Boron-Centered Radical: A Potassium-Crown Ether Stabilized Boryl Radical Anion. Chemical Communications, 52, 12714-12716. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Lednor, W., Lappert, F., et al. (1974) Photochemical Synthesis and Electron Spin Resonance Characterisation of Stable Trivalent Metal Alkyls (Si, Ge, Sn) and Amides (Ge and Sn) of Group IV Elements. Journal of the Chemical Society, Chemical Communications, No. 16, 651-652.
|
|
[101]
|
Lednor, W., Lappert, F., et al. (1976) Subvalent Group 4B Metal Alkyls and Amides. Part 4.’ An Electron Spin Resonance Study of Some Long-Lived Photochemically Synthesised Trisubstituted Silyl, Germyl, and Stannyl Radicals. Journal of the Chemical Society, Dalton Transactions, No. 22, 2369-2375.
|
|
[102]
|
Sekiguchi, A., Matsuno, T. and Ichinohe, M. (2001) Cyclotetrasilenyl: The First Isolable Silyl Radical. Journal of the American Chemical Society, 123, 12436-12437. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Holzner, R., Kaushansky, A., Tumanskii, B., Frisch, P., Linsenmann, F. and Inoue, S. (2019) Isolation of a Relatively Air‐Stable, Bulky Silyl‐Substituted, Neutral Silicon‐Centered Radical. European Journal of Inorganic Chemistry, 2019, 2977-2981. [Google Scholar] [CrossRef]
|